FEATURES

SPI interface with error detection
Includes CRC, invalid read/write address, and SCLK count error detection

Supports burst mode and daisy-chain mode
Industry-standard SPI Mode $\mathbf{0}$ and Mode 3 interface compatible
Guaranteed break-before-make switching allowing external wiring of switches to deliver multiplexer configurations
1.5Ω typical on resistance at $25^{\circ} \mathrm{C}$
0.3Ω typical on resistance flatness at $25^{\circ} \mathrm{C}$
0.1Ω typical on resistance match between channels at $25^{\circ} \mathrm{C}$
$V_{s S}$ to $V_{D D}$ analog signal range
Fully specified at $\pm 15 \mathrm{~V}, \pm 5 \mathrm{~V}$, and +12 V
1.8 V logic compatibility with $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{L}} \leq 3.3 \mathrm{~V}$
24-lead LFCSP

APPLICATIONS

Automated test equipment
Data acquisition systems
Battery-powered systems
Sample-and-hold systems
Audio signal routing
Video signal routing
Communications systems
Relay replacement

GENERAL DESCRIPTION

The ADGS1412 contains four independent single-pole/singlethrow (SPST) switches. A serial peripheral interface (SPI) controls the switches. The SPI interface has robust error detection features such as cyclic redundancy check (CRC) error detection, invalid read/write address detection, and SCLK count error detection.
It is possible to daisy-chain multiple ADGS1412 devices together. Daisy-chain mode enables the configuration of multiple devices with a minimal amount of digital lines. The ADGS1412 can also operate in burst mode to decrease the time between SPI commands.
iCMOS construction ensures ultralow power dissipation, making the device ideally suited for portable and battery-powered instruments.
Each switch conducts equally well in both directions when on, and each switch has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked.

FUNCTIONAL BLOCK DIAGRAM

The on-resistance profile is flat over the full analog input range, which ensures good linearity and low distortion when switching audio signals.

PRODUCT HIGHLIGHTS

1. SPI interface removes the need for parallel conversion, logic traces and reduces general-purpose input/output (GPIO) channel count.
2. Daisy-chain mode removes additional logic traces when multiple devices are used.
3. CRC error detection, invalid read/write address detection, and SCLK count error detection ensures a robust digital interface.
4. CRC and error detection capabilities allow the use of the ADGS1412 in safety critical systems.
5. Guaranteed break-before-make switching allows the use of the ADGS1412 in multiplexer configurations with external wiring.
6. Minimum distortion.

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagrams 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
± 15 V Dual Supply 3
± 5 V Dual Supply 5
12 V Single Supply. 7
Continuous Current per Channel, Sx or Dx 9
Timing Characteristics 9
Absolute Maximum Ratings 11
Thermal Resistance 11
ESD Caution 11
Pin Configurations and Function Descriptions 12
Typical Performance Characteristics 13
Test Circuits 17
Terminology 19
Theory of Operation 20
Address Mode 20
REVISION HISTORY
8/2017—Rev. A to Rev. B
Changes to Product Title, Features Section, and Product Highlights Section 1
Changes to Table 1 3
Changes to Table 2 5
Changes to Table 3 7
Changes to V_{L} to GND Parameter and Digital Inputs Parameter,Table 711
Changes to Figure 17 14
Added Figure 27; Renumbered Sequentially 16
Changes to Figure 30 17
Added Figure 35 17
Added Figure 36 18
Change to Theory of Operation Section 20
Added Break-Before-Make Switching Section, Figure 45, and Digital Input Buffers Section 23
Changes to Ordering Guide 27
Error Detection Features 20
Clearing the Error Flags Register 21
Burst Mode 21
Software Reset 21
Daisy-Chain Mode 21
Power-On Reset 22
Applications Information 23
Break-Before-Make Switching 23
Digital Input Buffers 23
Power Supply Rails 23
Power Supply Recommendations 23
Register Summary 24
Register Details 25
Switch Data Register 25
Error Configuration Register. 25
Error Flags Register 26
Burst Enable Register 26
Software Reset Register 26
Outline Dimensions 27
Ordering Guide 27
3/2017—Rev. 0 to Rev. A
Changes to Features Section and Product Highlights Section 1 Change to I_{L} Inactive Parameter, Table 1 4
Change to $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V}\left(\theta_{\mathrm{IA}}=54^{\circ} \mathrm{C} / \mathrm{W}\right)$ Parameter, Table 5. 7
Change to Theory of Operation Section 18
Updated Outline Dimensions Section 25
10/2016—Revision 0: Initial Version

SPECIFICATIONS

± 15 V DUAL SUPPLY
$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{L}}=2.7 \mathrm{~V}$ to 5.5 V , and $\mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On-Resistance Match Between Channels, Δ Ron On-Resistance Flatness, Rflat(on)	$\begin{aligned} & 1.5 \\ & 1.8 \\ & 0.1 \\ & \\ & 0.18 \\ & 0.3 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 0.19 \\ & 0.4 \end{aligned}$	VDD to $V_{S S}$ 2.6 0.21 0.45	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \text {, see Figure } 29 \\ & \mathrm{~V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-13.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, lo (Off) Channel On Leakage, ID (On), Is (On)	$\begin{aligned} & \pm 0.03 \\ & \pm 0.55 \\ & \pm 0.03 \\ & \pm 0.55 \\ & \pm 0.15 \\ & \pm 2 \\ & \hline \end{aligned}$	± 2 ± 2 ± 4	$\begin{aligned} & \pm 12.5 \\ & \pm 12.5 \\ & \pm 30 \\ & \hline \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & V_{D D}=+16.5 \mathrm{~V}, V_{S S}=-16.5 \mathrm{~V} \\ & V_{S}= \pm 10 \mathrm{~V}, V_{D}=\mp 10 \mathrm{~V}, \text { see Figure } 32 \\ & V_{S}= \pm 10 \mathrm{~V}, V_{D}=\mp 10 \mathrm{~V}, \text { see Figure } 32 \\ & V_{S}=V_{D}= \pm 10 \mathrm{~V} \text {, see Figure } 28 \end{aligned}$
DIGITAL OUTPUT Output Voltage Low, Vol High Impedance Leakage Current High Impedance Output Capacitance	$\begin{aligned} & 0.001 \\ & 4 \end{aligned}$		$\begin{gathered} 0.4 \\ 0.2 \\ \pm 0.1 \end{gathered}$	V max V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\begin{aligned} & \mathrm{I}_{\mathrm{SINK}}=5 \mathrm{~mA} \\ & \mathrm{I}_{\text {SINK }}=1 \mathrm{~mA} \\ & \text { Output voltage }\left(\mathrm{V}_{\text {OUT }}\right)=\text { ground voltage }\left(\mathrm{V}_{\mathrm{GND}}\right) \text { or } \mathrm{V}_{\mathrm{L}} \end{aligned}$
DIGITAL INPUTS Input Voltage High, VINH Low, $\mathrm{V}_{\text {INL }}$ Input Current, linı or linh Digital Input Capacitance, C_{IN}	$\begin{aligned} & 0.001 \\ & 4 \\ & \hline \end{aligned}$		$\begin{aligned} & 2 \\ & 1.35 \\ & 0.8 \\ & 0.8 \\ & \\ & \pm 0.1 \end{aligned}$	\vee min V min V max V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\begin{aligned} & 3.3 \mathrm{~V}<\mathrm{V}_{\mathrm{L}} \leq 5.5 \mathrm{~V} \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{L}} \leq 3.3 \mathrm{~V} \\ & 3.3 \mathrm{~V}<\mathrm{V}_{\mathrm{L}} \leq 5.5 \mathrm{~V} \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{L}} \leq 3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\text {GND }} \text { or } \mathrm{V}_{\mathrm{L}} \end{aligned}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ ton toff Break-Before-Make Time Delay, to Charge Injection, Qins Off Isolation Channel to Channel Crosstalk Total Harmonic Distortion + Noise	$\begin{aligned} & 400 \\ & \\ & 475 \\ & 160 \\ & 190 \\ & 215 \\ & \\ & -20 \\ & -76 \\ & -100 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 480 \\ & 210 \end{aligned}$	$\begin{aligned} & 485 \\ & 225 \\ & 170 \end{aligned}$	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ \% typ	Load resistance $\left(R_{L}\right)=300 \Omega$, load capacitance $\left(\mathrm{C}_{\mathrm{L}}\right)=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}$, see Figure 37 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{s}}=10 \mathrm{~V}$, see Figure 37 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=10 \mathrm{~V}$, see Figure 36 $V_{S}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$, see Figure 38 $R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, f=1 \mathrm{MHz}$, see Figure 31 $R_{L}=50 \Omega, C_{L}=5 p F, f=1 \mathrm{MHz}$, see Figure 30 $\mathrm{R}_{\mathrm{L}}=110 \Omega, 15 \mathrm{~V}$ p-p,f$=20 \mathrm{~Hz}$ to 20 kHz , see Figure 33

[^0]
± 5 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{L}}=2.7 \mathrm{~V}$ to 5.5 V , and $\mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On-Resistance Match Between Channels, Δ Ron On-Resistance Flatness, Rflat (on)	$\begin{aligned} & 3.3 \\ & 4 \\ & 0.13 \\ & 0.22 \\ & 0.9 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 4.9 \\ & 0.23 \\ & 1.24 \end{aligned}$	$V_{D D}$ to $V_{S S}$ 5.4 0.25 1.31	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \text {, see Figure } 29 \\ & \mathrm{~V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, I_{D} (Off) Channel On Leakage, $\mathrm{I}_{\mathrm{D}}(\mathrm{On})$, IS (On	$\begin{aligned} & \pm 0.03 \\ & \pm 0.55 \\ & \pm 0.03 \\ & \pm 0.55 \\ & \pm 0.05 \\ & \pm 1.0 \end{aligned}$	± 2 ± 2 ± 4	$\begin{aligned} & \pm 12.5 \\ & \pm 12.5 \\ & \pm 30 \\ & \hline \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V} \text {, see Figure } 32 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V} \text {, see Figure } 32 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V} \text {, see Figure } 28 \end{aligned}$
DIGITAL OUTPUT Output Voltage Low, Vol High Impedance Leakage Current High Impedance Output Capacitance	$\begin{aligned} & 0.001 \\ & 4 \end{aligned}$		$\begin{aligned} & 0.4 \\ & 0.2 \\ & \pm 0.1 \end{aligned}$	V max V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\begin{aligned} & \mathrm{I}_{\mathrm{SINK}}=5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{SIIK}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{GND}} \text { or } \mathrm{V}_{\mathrm{L}} \end{aligned}$
DIGITAL INPUTS Input Voltage High, VINH Low, $\mathrm{V}_{\text {INL }}$ Input Current, linı or line Digital Input Capacitance, $\mathrm{Cl}_{\mathrm{IN}}$	$\begin{aligned} & 0.001 \\ & 4 \end{aligned}$		$\begin{aligned} & 2 \\ & 1.35 \\ & 0.8 \\ & 0.8 \\ & \\ & \pm 0.1 \end{aligned}$	V min V min V max V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\begin{aligned} & 3.3 \mathrm{~V}<\mathrm{V}_{\mathrm{L}} \leq 5.5 \mathrm{~V} \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{L}} \leq 3.3 \mathrm{~V} \\ & 3.3 \mathrm{~V}<\mathrm{V}_{\mathrm{L}} \leq 5.5 \mathrm{~V} \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{L}} \leq 3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{GND}} \text { or } \mathrm{V}_{\mathrm{L}} \end{aligned}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ ton toff Break-Before-Make Time Delay, to $_{\text {D }}$ Charge Injection, Q_{IN} Off Isolation Channel to Channel Crosstalk Total Harmonic Distortion + Noise -3 dB Bandwidth Insertion Loss C_{s} (Off) C_{D} (Off) $\mathrm{C}_{\mathrm{D}}(\mathrm{On}), \mathrm{C}_{\mathrm{s}}(\mathrm{On})$	$\begin{aligned} & 510 \\ & 645 \\ & 280 \\ & 365 \\ & 245 \\ & \\ & 10 \\ & -76 \\ & -100 \\ & 0.03 \\ & 130 \\ & -0.3 \\ & 32 \\ & 33 \\ & 116 \end{aligned}$	$\begin{aligned} & 680 \\ & 400 \end{aligned}$	$\begin{aligned} & 710 \\ & 435 \\ & 200 \end{aligned}$	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ \% typ MHz typ dB typ pF typ pF typ pF typ	

[^1]
12 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=2.7 \mathrm{~V}$ to 5.5 V , and $\mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On-Resistance Match Between Channels, Δ Ron On-Resistance Flatness, Rflat (on)	$\begin{aligned} & 2.8 \\ & 3.5 \\ & 0.13 \\ & 0.21 \\ & 0.6 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 4.3 \\ & 0.23 \\ & 1.2 \end{aligned}$	0 V to V_{DD} 4.8 0.25 1.3	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & V_{S}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \text {, see Figure } 29 \\ & \mathrm{~V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{s}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, I_{D} (Off) Channel On Leakage, ID (On), Is (On)	$\begin{aligned} & \pm 0.02 \\ & \pm 0.55 \\ & \pm 0.02 \\ & \pm 0.55 \\ & \pm 0.15 \\ & \pm 1.5 \end{aligned}$	$\begin{aligned} & \pm 2 \\ & \pm 2 \\ & \pm 4 \end{aligned}$	$\begin{aligned} & \pm 12.5 \\ & \pm 12.5 \\ & \pm 30 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V} \text {, see Figure } 32 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V} \text {, see Figure } 32 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} / 10 \mathrm{~V} \text {, see Figure } 28 \end{aligned}$
DIGITAL OUTPUT Output Voltage Low, Vol High Impedance Leakage Current High Impedance Output Capacitance	$\begin{aligned} & 0.001 \\ & 4 \end{aligned}$		$\begin{aligned} & 0.4 \\ & 0.2 \\ & \pm 0.1 \end{aligned}$	\checkmark max \vee max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\begin{aligned} & \mathrm{I}_{\text {SINK }}=5 \mathrm{~mA} \\ & \mathrm{I}_{\text {SINK }}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\text {oUT }}=\mathrm{V}_{\text {GND }} \text { or } \mathrm{V}_{\mathrm{L}} \end{aligned}$
DIGITAL INPUTS Input Voltage High, VINH Low, $\mathrm{V}_{\text {INL }}$ Input Current, linl or line Digital Input Capacitance, C_{IN}	$\begin{aligned} & 0.001 \\ & 4 \end{aligned}$		$\begin{aligned} & 2 \\ & 1.35 \\ & 0.8 \\ & 0.8 \\ & \\ & \pm 0.1 \end{aligned}$	V min V min \checkmark max \checkmark max μA typ $\mu \mathrm{A}$ max pF typ	$\begin{aligned} & 3.3 \mathrm{~V}<\mathrm{V}_{\mathrm{L}} \leq 5.5 \mathrm{~V} \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{L}} \leq 3.3 \mathrm{~V} \\ & 3.3 \mathrm{~V}<\mathrm{V}_{\mathrm{L}} \leq 5.5 \mathrm{~V} \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{L}} \leq 3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\text {GND }} \text { or } \mathrm{V}_{\mathrm{L}} \end{aligned}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ ton toff Break-Before-Make Time Delay, to Charge Injection, Qins Off Isolation Channel to Channel Crosstalk Total Harmonic Distortion + Noise -3 dB Bandwidth Insertion Loss C_{s} (Off) C_{D} (Off) $C_{D}(O n), C_{S}(O n)$	470 570 170 215 280 10 -76 -100 0.06 130 -0.3 29 30 116	$\begin{aligned} & 615 \\ & 240 \end{aligned}$	$\begin{aligned} & 300 \\ & 265 \\ & 225 \end{aligned}$	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ \% typ MHz typ $d B$ typ pF typ pF typ pF typ	

[^2]
CONTINUOUS CURRENT PER CHANNEL, Sx OR Dx

Table 4. Four Channels On

Parameter	$\mathbf{2 5}{ }^{\circ} \mathbf{C}$	$\mathbf{8 5}^{\circ} \mathbf{C}$	$\mathbf{1 2 5}^{\circ} \mathbf{C}$	Unit
CONTINUOUS CURRENT, Sx OR Dx				
$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{S S}=-15 \mathrm{~V}\left(\theta_{\mathrm{JA}}=54^{\circ} \mathrm{C} / \mathrm{W}\right)$				
$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}\left(\theta_{\mathrm{JA}}=54^{\circ} \mathrm{C} / \mathrm{W}\right)$	297	165	79	mA maximum
$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}\left(\theta_{\mathrm{JA}}=54^{\circ} \mathrm{C} / \mathrm{W}\right)$	240	142	74	mA maximum

${ }^{1}$ Sx refers to the S1 to S4 pins, and Dx refers to the D1 to D4 pins.

Table 5. One Channel On

Parameter	$\mathbf{2 5}{ }^{\circ} \mathbf{C}$	$\mathbf{8 5}^{\circ} \mathbf{C}$	$\mathbf{1 2 5}^{\circ} \mathbf{C}$	Unit
CONTINUOUS CURRENT, Sx OR Dx ${ }^{1}$				
$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{S S}=-15 \mathrm{~V}\left(\theta_{\mathrm{JA}}=54^{\circ} \mathrm{C} / \mathrm{W}\right)$	531	235	87	mA maximum
$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}\left(\theta_{\mathrm{JA}}=54^{\circ} \mathrm{C} / \mathrm{W}\right)$	433	210	85	mA maximum
$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}\left(\theta_{\mathrm{JA}}=54^{\circ} \mathrm{C} / \mathrm{W}\right)$	404	202	84	mA maximum

${ }^{1}$ Sx refers to the S1 to S4 pins, and Dx refers to the D1 to D4 pins.

TIMING CHARACTERISTICS

$\mathrm{V}_{\mathrm{L}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, and all specifications $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Guaranteed by design and characterization, not production tested.

Table 6.

Parameter	Limit	Unit	Test Conditions/Comments
TIMING CHARACTRISTICS			
t_{1}	20	$n \mathrm{n}$ min	SCLK period
t_{2}	8	ns min	SCLK high pulse width
t_{3}	8	ns min	SCLK low pulse width
t_{4}	10	ns min	$\overline{C S}$ falling edge to SCLK active edge
t_{5}	6	ns min	Data setup time
t_{6}	8	ns min	Data hold time
t_{7}	10	ns min	SCLK active edge to $\overline{C S}$ rising edge
t_{8}	20	ns max	$\overline{\text { CS }}$ falling edge to SDO data available
$\mathrm{t}_{9}{ }^{1}$	20	ns max	SCLK falling edge to SDO data available
t_{10}	20	ns max	$\overline{\mathrm{CS}}$ rising edge to SDO returns to high impedance
t_{11}	20	ns min	$\overline{\mathrm{CS}}$ high time between SPI commands
t_{12}	8	ns min	$\overline{\text { CS }}$ falling edge to SCLK becomes stable
t_{13}	8	ns min	$\overline{\mathrm{CS}}$ rising edge to SCLK becomes stable

[^3]
Timing Diagrams

Figure 2. Address Mode Timing Diagram

Figure 3. Daisy-Chain Timing Diagram

Figure 4. SCLK/CS Timing Relationship

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 7.

Parameter	Rating
$V_{\text {DD }}$ to V $\mathrm{V}_{\text {S }}$	35 V
Vod to GND	-0.3 V to +25 V
$V_{\text {ss }}$ to GND	+0.3 V to -25 V
V_{L} to GND	-0.3 V to +6 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or }$ 30 mA , whichever occurs first
Digital Inputs ${ }^{1}$	-0.3 V to +6 V
Peak Current, Sx or Dx Pins ${ }^{2}$	600 mA (pulsed at 1 ms , 10% duty cycle maximum)
Continuous Current, Sx or Dx ${ }^{2,3}$	Data + 15\%
Temperature Range	
Operating	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Reflow Soldering Peak Temperature, Pb Free	$260(+0 /-5)^{\circ} \mathrm{C}$

[^4]Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

Table 8. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}$	$\boldsymbol{\theta}_{\mathrm{JCB}}{ }^{\mathbf{1}}$	Unit
$\mathrm{CP}-24-17^{2}$	54	3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1} \theta_{\text {лсв }}$ is the junction to the bottom of the case value.
${ }^{2}$ Thermal impedance simulated values are based on JEDEC 2S2P thermal test board with four thermal vias. See JEDEC JESD-51.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 5. Pin Configuration

Table 9. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	D1	Drain Terminal 1. This pin can be an input or output.
2	S1	Source Terminal 1. This pin can be an input or output.
3	$\mathrm{V}_{5 s}$	Most Negative Power Supply Potential. In single-supply applications, tie this pin to ground.
4, 11	GND	Ground (0V) Reference.
5	S4	Source Terminal 4. This pin can be an input or output.
6	D4	Drain Terminal 4. This pin can be an input or output.
$\begin{aligned} & 7,8,10,12 \\ & 16,19,24 \end{aligned}$	NIC	Not Internally Connected.
9	$\overline{\mathrm{RESET}} / \mathrm{V}_{\mathrm{L}}$	$\overline{\operatorname{RESET}} /$ Logic Power Supply Input (V_{L}). Under normal operation, drive the $\overline{\mathrm{RESET}} / \mathrm{V}_{\mathrm{L}}$ pin with a 2.7 V to 5.5 V supply. Pull the $\overline{\text { RESET }}$ pin low to complete a hardware reset. After a reset, all switches open, and the appropriate registers are set to their default.
13	D3	Drain Terminal 3. This pin can be an input or output.
14	S3	Source Terminal 3. This pin can be an input or output.
15	VD	Most Positive Power Supply Potential.
17	S2	Source Terminal 2. This pin can be an input or output.
18	D2	Drain Terminal 2. This pin can be an input or output.
20	SDO	Serial Data Output. This pin can be used for daisy chaining a number of these devices together or for reading back the data stored in a register for diagnostic purposes. The serial data is propagated on the falling edge of SCLK. Pull this open-drain output to V_{L} with an external resistor.
21	$\overline{C S}$	Active Low Control Input. $\overline{C S}$ is the frame synchronization signal for the input data.
22	SCLK	Serial Clock Input. Data is captured on the positive edge of SCLK. Data can be transferred at rates of up to 50 MHz .
23	SDI	Serial Data Input. Data is captured on the positive edge of SCLK.
	EPAD	Exposed Pad. The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the exposed pad be soldered to the substrate, V_{55}.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 6. On Resistance vs. Vs or V_{D} for Various Dual Supplies

Figure 7. On Resistance vs. Vs or Vo for Various Dual Supplies

Figure 8. On Resistance vs. V_{s} or V_{D} for Various Single Supplies

Figure 9. On Resistance vs. V or V V_{D} for Various Temperatures, ± 15 V Dual Supply

Figure 10. On Resistance vs. V_{S} or V_{D} for Various Temperatures,
± 5 V Dual Supply

Figure 11. On Resistance vs. Vs or Vo for Various Temperatures,
12 V Single Supply

Figure 12. On Resistance vs. V_{S} or V_{D} for Various Current Levels and Temperatures, ± 5 V Dual Supply

Figure 13. Leakage Current vs. Temperature, ± 15 V Dual Supply

Figure 14. Leakage Current vs. Temperature, ± 5 V Dual Supply

Figure 15. Leakage Current vs. Temperature, 12 V Single Supply

Figure 16. Charge Injection vs. Source Voltage (Vs)

Figure 17. $t_{0 N} / t_{\text {off }}$ Time vs. Temperature for Single Supply (SS) and Dual Supply (DS)

Figure 18. Off Isolation vs. Frequency, ± 15 V Dual Supply

Figure 19. Crosstalk vs. Frequency, ± 15 V Dual Supply

Figure 20. Insertion Loss vs. Frequency, ± 15 V Dual Supply

Figure 21. AC Power Supply Rejection Ratio (AC PSRR) vs. Frequency, $\pm 15 \mathrm{~V}$ Dual Supply

Figure 22. $T H D+N$ vs. Frequency, ± 15 V Dual Supply

Figure 23. $T H D+N$ vs. Frequency, ± 5 V Dual Supply

Figure 24. THD $+N$ vs. Frequency, 12 V Single Supply

Figure 25. Digital Feedthrough

Figure 26. $I_{D D}$ vs. V_{L}

Figure 27. IL vs. SCLK Frequency when $\overline{C S}$ High

TEST CIRCUITS

Figure 28. On Leakage

Figure 29. On Resistance

CHANNEL TO CHANNEL CROSSTALK $=20 \log \frac{v_{\text {OUT }}}{V_{S}}$
Figure 30. Channel to Channel Crosstalk

Figure 32. Off Leakage

Figure 33. THD + Noise

INSERTION LOSS $=20 \log \frac{v_{\text {OUT }} \text { WITH SWITCH }}{V_{\text {S }} \text { WITHOUT SWITCH }}$
Figure 34. $-3 d B$ Bandwidth

notes

1. BOARD AND COMPONENT EFFECTS ARE NOT DE-EMBEDDED FROM THE AC PSRR MEASUREMENT.

Figure 35. AC PSRR

Figure 36. Break-Before-Make Time Delay, t_{D}

Figure 37. Switching Times, ton and toff

Figure 38. Charge Injection, $Q_{I N J}$

ADGS1412

TERMINOLOGY

IDD
IdD represents the positive supply current.
Iss
Iss represents the negative supply current.
V_{D}, V_{s}
V_{D} and V_{S} represent the analog voltage on Terminal $D x$ and Terminal Sx, respectively.
$\mathrm{R}_{\text {on }}$
Ron represents the ohmic resistance between Terminal Dx and Terminal Sx.

$\Delta \mathrm{R}_{\text {on }}$

Δ Ron represents the difference between the Ron of any two channels.
$\mathbf{R}_{\text {flat (on) }}$
Flatness that is defined as the difference between the maximum and minimum value of on resistance measured over the specified analog signal range is represented by $\mathrm{R}_{\text {FLAT (ON) }}$.
I_{s} (Off)
I_{s} (Off) is the source leakage current with the switch off.
I_{D} (Off)
I_{D} (Off) is the drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}(\mathbf{O n}), \mathrm{I}_{\mathrm{s}}(\mathbf{O n})$
$\mathrm{I}_{\mathrm{D}}(\mathrm{On})$ and $\mathrm{I}_{\mathrm{S}}(\mathrm{On})$ represent the channel leakage currents with the switch on.

VinL
$\mathrm{V}_{\text {INL }}$ is the maximum input voltage for Logic 0 .
$V_{\text {INH }}$
$\mathrm{V}_{\text {INH }}$ is the minimum input voltage for Logic 1.
Int, $\mathbf{I}_{\text {INH }}$
$\mathrm{I}_{\mathrm{INL}}$ and $\mathrm{I}_{\mathrm{INH}}$ represent the low and high input currents of the digital inputs.
C_{D} (Off)
C_{D} (Off) represents the off switch drain capacitance, which is measured with reference to ground.
C_{s} (Off)
C_{s} (Off) represents the off switch source capacitance, which is measured with reference to ground.
C_{p} (On), Cs (On)
$\mathrm{C}_{\mathrm{d}}(\mathrm{On})$ and $\mathrm{Cs}_{s}(\mathrm{On})$ represent on switch capacitances, which are measured with reference to ground.
$\mathrm{C}_{\text {IN }}$
$\mathrm{C}_{\text {IN }}$ is the digital input capacitance.
ton
ton represents the delay between applying the digital control input and the output switching on.
$\mathbf{t}_{\text {off }}$
$t_{\text {off }}$ represents the delay between applying the digital control input and the output switching off.

Off Isolation

Off isolation is a measure of unwanted signal coupling through an off switch.

Charge Injection

Charge injection is a measure of the glitch impulse transferred from the digital input to the analog output during switching.

Crosstalk

Crosstalk is a measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

-3 dB Bandwidth

Bandwidth is the frequency at which the output is attenuated by 3 dB .

On Response

On response is the frequency response of the on switch.

Insertion Loss

Insertion loss is the loss due to the on resistance of the switch.
Total Harmonic Distortion + Noise (THD + N)
The ratio of the harmonic amplitude plus noise of the signal to the fundamental is represented by THD + N.

AC Power Supply Rejection Ratio (AC PSRR)

AC PSRR is the ratio of the amplitude of signal on the output to the amplitude of the modulation. AC PSRR is a measure of the ability of the device to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p.

THEORY OF OPERATION

The ADGS1412 is a set of serially controlled, quad SPST switches with error detection features. SPI Mode 0 and Mode 3 can be used with the device, and it operates with SCLK frequencies up to 50 MHz . The default mode for the ADGS1412 is address mode in which the registers of the device are accessed by a 16 -bit SPI command that is bounded by $\overline{\mathrm{CS}}$. The SPI command becomes 24 bit if the user enables CRC error detection. Other error detection features include SCLK count error and invalid read/write error. If any of these SPI interface errors occur, they are detectable by reading the error flags register. The ADGS1412 can also operate in two other modes, namely burst mode and daisy-chain mode.
The interface pins of the ADGS1412 are $\overline{\mathrm{CS}}, \mathrm{SCLK}, \mathrm{SDI}$, and SDO. Hold $\overline{\mathrm{CS}}$ low when using the SPI interface. Data is captured on the SDI on the rising edge of SCLK, and data is propagated out on the SDO on the falling edge of SCLK. SDO has an open-drain output; thus, connect a pull-up to this output. When not pulled low by the ADGS1412, SDO is in a high impedance state.

ADDRESS MODE

Address mode is the default mode for the ADGS1412 upon power up. A single SPI frame in address mode is bounded by $\mathrm{a} \overline{\mathrm{CS}}$ falling edge and the succeeding $\overline{\mathrm{CS}}$ rising edge. It is comprised of 16 SCLK cycles. The timing diagram for address mode is shown in Figure 39. The first SDI bit indicates if the SPI command is a read or write command. When the first bit is set to 0 , a write command is issued, and if the first bit is set to 1 , a read command is issued. The next seven bits determine the target register address. The remaining eight bits provide the data to the addressed register. The last eight bits are ignored during a read command, because during these clock cycles, SDO propagates out the data contained in the addressed register.
The target register address of an SPI command is determined on the eighth SCLK rising edge. Data from this register propagates out on SDO from the $9^{\text {th }}$ to the $16^{\text {th }}$ SCLK falling edge during SPI reads. A register write occurs on the $16^{\text {th }}$ SCLK rising edge
during SPI writes.

SCLK Count Error Detection

SCLK count error detection allows the user to detect if an incorrect number of SCLK cycles are sent by the microcontroller/ CPU. When in address mode, with CRC disabled, 16 SCLK cycles are expected. If 16 SCLK cycles are not detected, the SCLK count error flag asserts in the error flags register. When less than 16 SCLK cycles are received by the device, a write to the register map never occurs. When the ADGS1412 receives more than 16 SCLK cycles, a write to the memory map still occurs at the $16^{\text {th }}$ SCLK rising edge, and the flag asserts in the error flags register. With CRC enabled, the expected number of SCLK cycles becomes 24. SCLK count error detection is enabled by default and can be configured by the user through the error configuration register.

Invalid Read/Write Address Error

An invalid read/write address error detects when a nonexistent register address is a target for a read or write. In addition, this error asserts when a write to a read only register is attempted. The invalid read/write address error flag asserts in the error flags register when an invalid read/write address error happens. The invalid read/write address error is detected on the ninth SCLK rising edge, which means a write to the register never occurs when an invalid address is targeted. Invalid read/write address error detection is enabled by default and can be disabled by the user through the error configuration register.

CLEARING THE ERROR FLAGS REGISTER

To clear the error flags register, write the special 16-bit SPI frame, 0x6CA9, to the device. This SPI command does not trigger the invalid R / W address error. When CRC is enabled, the user must also send the correct CRC byte for a successful error clear command. At the $16^{\text {th }}$ or $24^{\text {th }}$ SCLK rising edge, the error flags register resets to zero.

BURST MODE

The SPI interface can accept consecutive SPI commands without the need to deassert the $\overline{\mathrm{CS}}$ line, which is called burst mode. Burst mode is enabled through the burst enable register. This mode uses the same 16 -bit command to communicate with the device. In addition, the response of the device at SDO is still aligned with the corresponding SPI command. Figure 41 shows an example of SDI and SDO during burst mode.

The invalid read/write address and CRC error checking functions operate similarly during burst mode as they do during address mode. However, SCLK count error detection operates in a slightly different manner. The total number of SCLK cycles within a given $\overline{\mathrm{CS}}$ frame are counted, and if the total is not a multiple of 16 , or a multiple of 24 when CRC is enabled, the SCLK count error flag asserts.

SOFTWARE RESET

When in address mode, the user can initiate a software reset. To do so, write two consecutive SPI commands, $0 x A 3$ followed by 0×05, targeting Register 0 x 0 B . After a software reset, all register values are set to default.

DAISY-CHAIN MODE

The connection of several ADGS1412 devices in a daisy-chain configuration is possible, and Figure 42 illustrates this setup. All devices share the same $\overline{\mathrm{CS}}$ and SCLK line, whereas the SDO of a device forms a connection to the SDI of the next device, creating a shift register. In daisy-chain mode, SDO is an 8 cycle delayed version of SDI. When in daisy-chain mode, all commands target the switch data register. Therefore, it is not possible to make configuration changes while in daisy-chain mode.

Figure 42. Two ADGS1412 Devices Connected in a Daisy-Chain Configuration

ADGS1412

The ADGS1412 can only enter daisy-chain mode when in address mode by sending the 16 -bit SPI command, 0x2500 (see Figure 43). When the ADGS1412 receives this command, the SDO of the device sends out the same command because the alignment bits at SDO are 0x25, which allows multiple daisy-connected devices to enter daisy-chain mode in a single SPI frame. A hardware reset is required to exit daisy-chain mode.

For the timing diagram of a typical daisy-chain SPI frame, see Figure 44. When $\overline{\mathrm{CS}}$ goes high, Device 1 writes Command 0, Bits[7:0] to its switch data register, Device 2 writes Command 1, Bits[7:0] to its switches, and so on. The SPI block uses the last eight bits it received through SDI to update the switches. After entering daisy-chain mode, the first eight bits sent out by SDO on each device in the chain are 0×00. When $\overline{\mathrm{CS}}$ goes high, the internal shift register value does not reset back to zero.

An SCLK rising edge reads in data on SDI while data is propagated out SDO on an SCLK falling edge. The expected number of SCLK cycles must be a multiple of eight before $\overline{\mathrm{CS}}$ goes high. When this is not the case, the SPI interface sends the last eight bits received to the switch data register.

POWER-ON RESET

The digital section of the ADGS1412 goes through an initialization phase during V_{L} power up. This initialization also occurs after a hardware or software reset. After V_{L} power-up or a reset, ensure that a minimum of $120 \mu \mathrm{~s}$ from the time of power-up or reset before any SPI command is issued. Ensure that V_{L} does not drop out during the 120μ s initialization phase because it may result in incorrect operation of the ADGS1412.

APPLICATIONS INFORMATION

BREAK-BEFORE-MAKE SWITCHING

The ADGS1412 exhibits break-before-make switching action. This feature allows the use of the device in multiplexer applications. Using the device like a multiplexer can be accomplished by externally hardwiring the device into the desired mux configuration, as shown in Figure 45.

Figure 45. An SPI Controlled Switch Configured into a 4:1 Mux

DIGITAL INPUT BUFFERS

There are input buffers present on the digital input pins ($\overline{\mathrm{CS}}$, SCLK, and SDI). These buffers are active at all times. Therefore, there is current draw from the V_{L} supply if SCLK or SDI is toggling, regardless of whether $\overline{\mathrm{CS}}$ is active. For typical values of this current draw, refer to the Specifications section and Figure 27.

POWER SUPPLY RAILS

To guarantee correct operation of the ADGS1412, $0.1 \mu \mathrm{~F}$ decoupling capacitors are required.

The ADGS1412 can operate with bipolar supplies between $\pm 4.5 \mathrm{~V}$ and $\pm 16.5 \mathrm{~V}$. The supplies on V_{DD} and $\mathrm{V}_{\text {SS }}$ do not have to be symmetrical; however, the $V_{D D}$ to $V_{\text {ss }}$ range must not exceed 33 V . The ADGS1412 can also operate with single supplies between 5 V and 20 V with $\mathrm{V}_{\text {ss }}$ connected to GND.

The voltage range that can be supplied to V_{L} is from 2.7 V to 5.5 V .
The device is fully specified at $\pm 15 \mathrm{~V}, \pm 5 \mathrm{~V}$, and +12 V analog supply voltage ranges.

POWER SUPPLY RECOMMENDATIONS

Analog Devices, Inc., has a wide range of power management products to meet the requirements of most high performance signal chains.

An example of a bipolar power solution is shown in Figure 46. The ADP5070 (dual switching regulator) generates a positive and negative supply rail for the ADGS1412, an amplifier, and/or a precision converter in a typical signal chain. Also shown in Figure 46 are two optional low dropout regulators (LDOs), the ADP7118 and ADP7182 positive and negative LDOs respectively, that can be used to reduce the output ripple of the ADP5070 in ultralow noise sensitive applications.
The ADM7160 can be used to generate V_{L} voltage that is required to power digital circuitry within the ADGS1412.

Figure 46. Bipolar Power Solution
Table 10. Recommended Power Management Devices

Product	Description
ADP5070	$1 \mathrm{~A} / 0.6 \mathrm{~A}$, dc-to-dc switching regulator with
independent positive and negative outputs	
ADM7160	$5.5 \mathrm{~V}, 200 \mathrm{~mA}$, ultralow noise, linear regulator
ADP7118	$20 \mathrm{~V}, 200 \mathrm{~mA}$, low noise, CMOS LDO linear regulator
ADP7182	$-28 \mathrm{~V},-200 \mathrm{~mA}$, low noise, LDO linear regulator

REGISTER SUMMARY

Table 11. Register Summary

Register (Hex)	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default	R/W
0x01	SW_DATA		Res			SW4_EN	SW3_EN	SW2_EN	SW1_EN	0x00	R/W
0×02	ERR_CONFIG			Reserv			RW_ERR_EN	SCLK_ERR_EN	CRC_ERR_EN	0x06	R/W
0x03	ERR_FLAGS			Reser	ved		RW_ERR_FLAG	SCLK_ERR_FLAG	CRC_ERR_FLAG	0x00	R
0×05	BURST_EN	Reserved							BURST_MODE_EN	0x00	R/W
0x0B	SOFT_RESETB	SOFT_RESETB								0x00	R/W

REGISTER DETAILS

SWITCH DATA REGITTER

Address: 0x01, Reset: 0x00, Name: SW_DATA
The switch data register controls the status of the four switches of the ADGS1412.
Table 12. Bit Descriptions for SW_DATA

Bits	Bit Name	Settings	Description	Default	Access
[7:4]	Reserved		These bits are reserved; set these bits to 0 .	0x0	R
3	SW4_EN	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Enable bit for SW4. SW4 open. SW4 closed.	0x0	R/W
2	SW3_EN	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Enable bit for SW3. SW3 open. SW3 closed.	0x0	R/W
1	SW2_EN	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Enable bit for SW2. SW2 open. SW2 closed.	0x0	R/W
0	SW1_EN	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Enable bit for SW1. SW1 open. SW1 closed.	0x0	R/W

ERROR CONFIGURATION REGISTER

Address: 0x02, Reset: 0x06, Name: ERR_CONFIG

The error configuration register allows the user to enable and disable the relevant error features as required.
Table 13. Bit Descriptions for ERR_CONFIG

Bits	Bit Name	Settings	Description	Default	Access
[7:3]	Reserved		These bits are reserved; set these bits to 0 .	0x0	R
2	RW_ERR_EN	0	Enable bit for detecting invalid read/write address. Disabled. Enabled.	0x1	R/W
1	SCLK_ERR_EN	0	Enable bit for detecting the correct number of SCLK cycles in an SPI frame. 16 SCLK cycles are expected when CRC is disabled and burst mode is disabled. 24 SCLK cycles are expected when CRC is enabled and burst mode is disabled. A multiple of 16 SCLK cycles are expected when CRC is disabled and burst mode is enabled. A multiple of 24 SCLK cycles are expected when CRC is enabled and burst mode is enabled. Disabled. Enabled.	0x1	R/W
0	CRC_ERR_EN	0	Enable bit for CRC error detection. SPI frames are 24 bits wide when enabled. Disabled. Enabled.	0x0	R/W

ADGS1412

ERROR FLAGS REGISTER

Address: 0x03, Reset: 0x00, Name: ERR_FLAGS
The error flags register allows the user to determine if an error has occurred. To clear the error flags register, write the special 16-bit SPI command 0x6CA9 to the device. This SPI command does not trigger the invalid R/W address error. When CRC is enabled, the user must include the correct CRC byte during the SPI write for the clear error flags register command to succeed.

Table 14. Bit Descriptions for ERR_FLAGS

Bits	Bit Name	Settings	Description	Default	Access
[7:3]	Reserved		These bits are reserved and are set to 0 .	0x0	R
2	RW_ERR_FLAG	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Error flag for invalid read/write address. The error flag asserts during an SPI read if the target address does not exist. The error flag also asserts when the target address of an SPI write does not exist or is read only. No error. Error.	0x0	R
1	SCLK_ERR_FLAG	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Error flag for the detection of the correct number of SCLK cycles in an SPI frame. No error. Error.	0x0	R
0	CRC_ERR_FLAG	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Error flag that determines if a CRC error has occurred during a register write. No error. Error.	0x0	R

BURST ENABLE REGISTER

Address: 0x05, Reset: 0x00, Name: BURST_EN
The burst enable register allows the user to enable or disable burst mode. When enabled, the user can send multiple consecutive SPI commands without deasserting $\overline{\mathrm{CS}}$.

Table 15. Bit Descriptions for BURST_EN

Bits	Bit Name	Settings	Description	Default	Access	
$[7: 1]$	Reserved		These bits are reserved; set these bits to 0.	0×0	R	
0	BURST_MODE_EN		Burst mode enable bit.		0×0	R/W
		1	Disabled.	Enabled.		

SOFTWARE RESET REGISTER

Address: 0x0B, Reset: 0x00, Name: SOFT_RESETB
Use the software reset register to perform a software reset. Consecutively, write 0 xA 3 followed by 0 x 05 to this register, and the registers of the device reset to their default state.

Table 16. Bit Descriptions for SOFT_RESETB

Bits	Bit Name	Settings	Description	Default	Access
$[7: 0]$	SOFT_RESETB		To perform a software reset, consecutively write 0xA3 followed by 0x05 to this register.	0×0	R

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-8.
Figure 47. 24-Lead Lead Frame Chip Scale Package [LFCSP]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body and 0.95 mm Package Height (CP-24-17)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADGS1412BCPZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24-Lead Lead Frame Chip Scale Package [LFCSP]	CP-24-17
ADGS1412BCPZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24-Lead Lead Frame Chip Scale Package [LFCSP]	CP-24-17
EVAL-ADGS1412SDZ		Evaluation Board	

${ }^{1} Z=$ RoHS Compliant Part.
www.analog.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE + BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLAS3158MNR2G NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAS4599DFT2G NLASB3157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 DG2502DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 LTC201ACN\#PBF

[^0]: ${ }^{1}$ Guaranteed by design; not subject to production test

[^1]: ${ }^{1}$ Guaranteed by design; not subject to production test.

[^2]: ${ }^{1}$ Guaranteed by design; not subject to production test

[^3]: ${ }^{1}$ Measured with the $1 \mathrm{k} \Omega$ pull-up resistor to V_{L} and 20 pF load. t9 determines the maximum SCLK frequency when SDO is used.

[^4]: ${ }^{1}$ Overvoltages at the digital Sx and Dx pins are clamped by internal diodes. Limit current to the maximum ratings given.
 ${ }^{2}$ Sx refers to the S1 to S4 pins, and Dx refers to the D1 to D4 pins.
 ${ }^{3}$ See Table 4 and Table 5.

