

*i*Sensor[™] PC Evaluation System

Preliminary Technical Data

ADISEVAL

GENERAL DESCRIPTION

The ADISEVAL is a PC-based evaluation system for many of the *i*SensorTM products. It comes with a Parallel Interface Board, parallel interface cable, 2 12-pin ribbon cables, and the *i*SensorTM CD, which contains product documentation and evaluation software.

GETTING STARTED

Getting started with this system requires four simple steps.

- 1. Connect J2 of the Parallel Interface Board (see Figure 1) to the appropriate power supply, using Table 1. For simplicity, connect pin 1 to pin 4 and connect pin 2 to pin 3. Set the voltage on the power supply per Table 2. Turn power off.
- 2. Install the ADIS16XXX/PCBZ evaluation board on the Parallel Interface Board, using 2mm machine screws and the two 12-pin ribbon cables, as shown in Figure 2. Make sure that these cables are aligned correctly on each header before applying power. Hook up the system to a PC using the parallel cable.
- Locate the product-specific evaluation software on the iSensor[™] CD or download it from: <u>www.analog.com/isensor-evaluation</u>. See Table 3 for a list of products supported by each installation package.
- 4. Unpack the zip file and double click on the setup.exe file. Follow the prompts to install the software.
- 5. Go to the created directory. In most cases, this will be a subdirectoy under "C:\ProgramFiles\Analog Devices iSensors\." Double-click on the giveio.exe. Follow the prompts to install this driver, which enables the parallel port communications in the PC.
- 6. Double click on the ADIS*.exe file to start the software.
- Click on "Interface" and select, "Parallel." Enter the address of the parallel port on the PC and click the "OK" button. The parallel port address can be found under the Device Manager in Windows XP.

The software contains help files that describe each function of the software. The right button on the mouse has the ability to speed up changes when the Pointer is placed over titles, graph axes and waveform data.

See Figure 4 (ADIS16003, ADIS16006), Figure 5 (ADIS16080, ADIS16100), Figure 6 (ADIS16201), Figure 7 (ADIS16203), Figure 8 (ADIS16209) and Figure 9 (ADIS16250) for basic software assistance.

Table 1. Power Supply Hook-up – J2

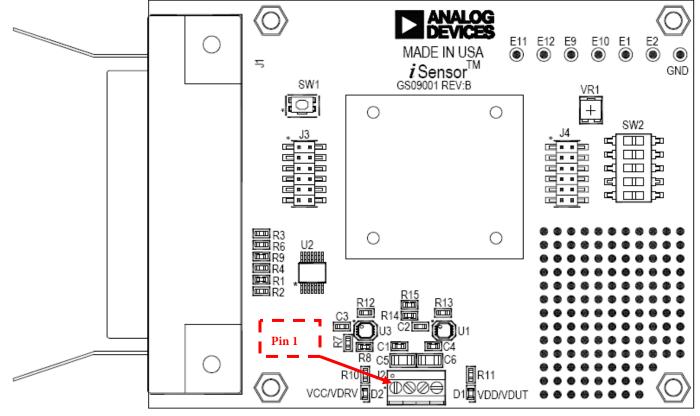
Pin Number	Function
1	Digital I/O Power Supply
2	Common
3	Common
4	Sensor Power Supply

NOTE: No reverse polarity protection provided.

Table 2. Power Supply Voltages

Evaluation Board	Power Supply Voltage
ADIS16003/PCBZ	+3.0 to +5.25V
ADIS16006/PCBZ	+3.0 to +5.25V
ADIS16060/PCBZ	+4.75 to +5.25V
ADIS16080/PCBZ	+4.75 to +5.25V
ADIS16100/PCB	+4.75 to +5.25V
ADIS1620x/PCBZ	+3.0 to +3.6V
ADIS1625x/PCBZ	+4.75 to +5.25V

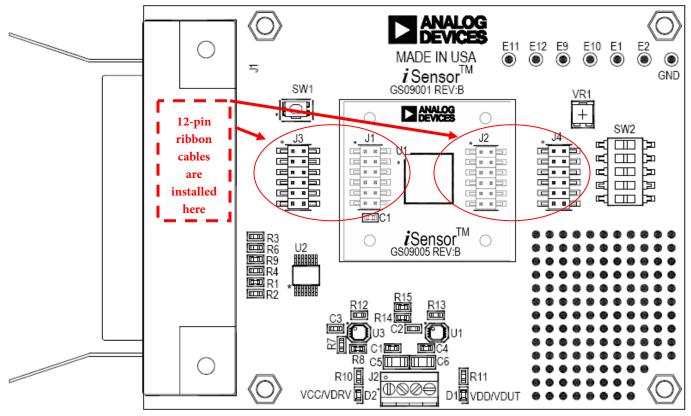
Table 3. Evaluation Software


Installation Package Filename	Supported Pro	oducts
003ES(x).zip	ADIS16003	ADIS16006
	ADIS16060	ADIS16080
	ADIS16100	
201ES(x).zip	ADIS16201	
203ES(x).zip	ADIS16203	
204ES(x).zip	ADIS16024	
209ES(x).zip	ADIS16209	
250ES(x).zip	ADIS16250	ADIS16251
	ADIS16255	

ORDERING GUIDE

Model	Package Description	
ADISEVAL	<i>i</i> Sensor [™] PC Evaluation System	

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


Rev. Pr.C

DO NOT INSTALL U1, U3, R7, R8, R14 AND R15.

Figure 1 – *i*Sensor[™] PC Interface Board Layout

Preliminary Technical Data

DO NOT INSTALL U1, U3, R7, R8, R14 AND R15.

Figure 2 – *i*Sensor TM PC Interface Board with ADIS16201/PCBZ installed

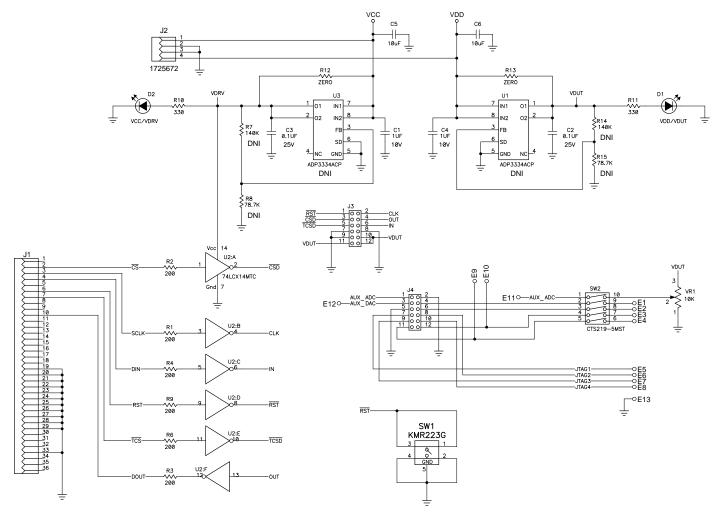


Figure 3 – *i*Sensor [™]PC Evaluation Board Schematic

Preliminary Technical Data

ADIS16003 / 16006	/ 16080 / 16100 Evaluati	on - Rev 1.1				
Interface Device Read Te	emp Run Test FFT Print Help	Exit 3				
Program Setup Interface Parallel Port 378 Device Adis16003	Part Setup X accel Powerdown Y accel Self Test 2	Data Setup Continuous Loop Samples 2048 Read Delay (mS) 0.00	Plot Data Log Data	Configure Output File Adis16003 1		
Time ADIS1	6003 X Accel Channel - (G)					
2.498 - 1.873 - 5 1.249 - 0.624 - 0.000 - - 0.624 - - 1.249 - - 1.249 - - 1.249 -					Statistics Temp Average Pk Pk Max Min AC RMS Ts (mS)	25.75 0.06 0.08 0.02 0.01 1.30
-2.498 – 0	512	102	24	1536	2048	

FIGURE FLAG NOTES:

- 1. Set the Device type to ADIS16003 or ADIS16006.
- 2. Set the axis to measure. Test function exercises a self-test during a single sweep on the screen.
- 3. Plot and log data to files.
- 4. Set up data logging parameters.
- 5. Right click over Y-Axis to adjust scale and offset of the plot.

Figure 4. ADIS16003 and ADIS16006 Evaluation Software

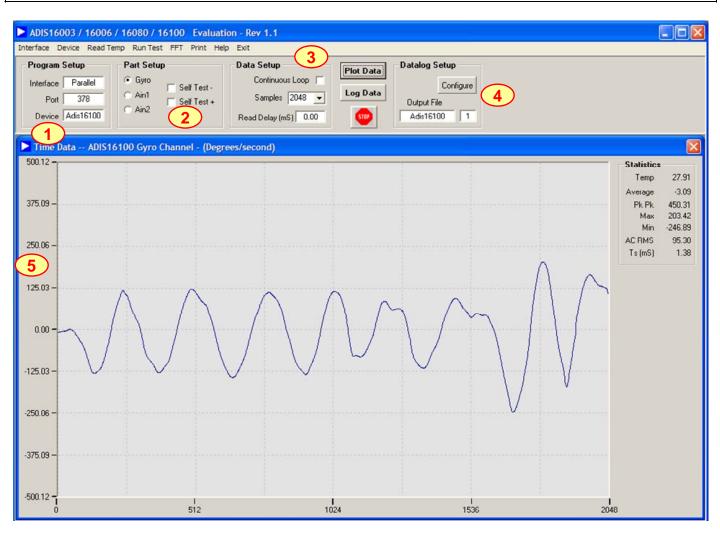
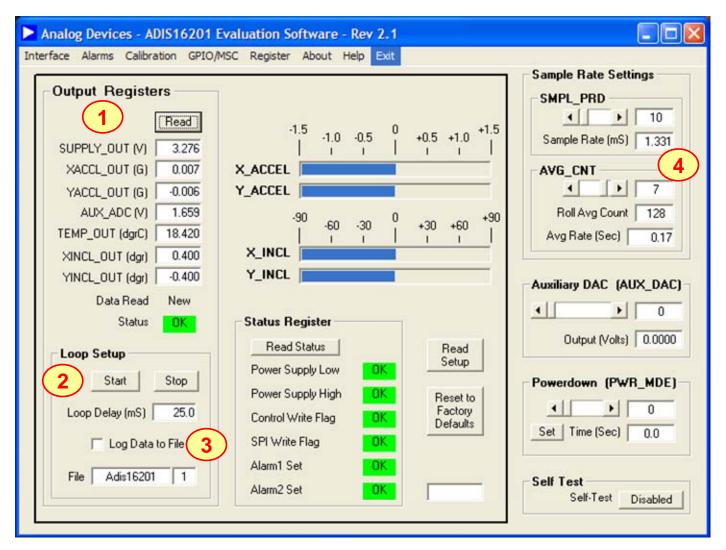



FIGURE FLAG NOTES:

- 1. Set the Device type to ADIS16060, ADIS16080 or ADIS16100.
- 2. Set the output channel to measure. Test function exercises a self-test during a single sweep on the screen.
- 3. Plot and log data to files.
- 4. Set up data logging parameters.
- 5. Right click over Y-Axis to adjust scale and offset of the plot.

Figure 5. ADIS16060, ADIS16080 and ADIS16100 Evaluation Software Screen

FIGURE FLAG NOTES:

- 1. Perform a single read of the ADIS16201's output data
- 2. Start and stop continuous reading of the ADIS16201's output data. The acquisition loop delay time provides rough control over sample times. Please note that this data will not have a high degree of coherence.
- 3. Select the file data logging option.
- 4. Configure the ADIS16201's internal sample rate and filter response.

Figure 6. ADIS16201 Evaluation Software

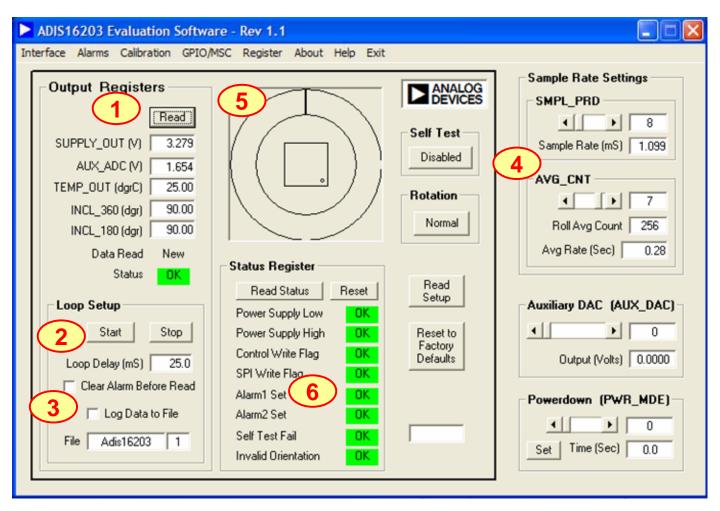


FIGURE FLAG NOTES:

- 1. Perform a single read of the ADIS16203's output data
- 2. Start and stop continuous reading of the ADIS16203's output data. The acquisition loop delay time provides rough control over sample times. Please note that this data will not have a high degree of coherence.
- 3. Select the file data logging option.
- 4. Configure the ADIS16203's internal sample rate and filter response.
- 5. Graphical orientation. Note that for incline angle 0°, the corner dot would be in the lower, left hand corner.
- 6. Alarm monitoring. Note that these turn red on alarm condition. They maintain their status until the Reset button is pressed, even if the error condition has cleared.

Figure 7. ADIS16203 Evaluation Software

Analog Devices - ADIS16209 Evaluation Software - Rev 1 Interface Alarms Calibration GPIO/MSC Registers Exit **Output Registers** Reset to Read DUT Read Settings Factory Defaults SUPPLY_OUT (V) 3.293 XACCL_OUT (G) -0.001SMPL_PRD 1 -0.0431 YACCL_OUT (G) 1 Sample Rate (ms) 0.366 AUX_ADC (V) 1.484 6 TEMP_OUT (dgrC) 33.460 AVG CNT XINCL_OUT (dar) -0.1008 4 . YINCL_OUT (dgr) -2.500Roll Avg Count 256 -87.950 ROTATION (dgr) -90 0 +90 +60 -60 -30 +30Data Read X_INCL Auxiliary DAC AUX_DAC New Status OK. Y_INCL 4 . 0 Output (Volts) 0.0000 **Status Register** Loop Setup Start **Read Status** Clear Stopped Sleep Count SLP_CNT 4 . 0 Loop Delay (mS) Power Supply High 0K 0.0 Power Supply Low Time (Sec) OK Control Write Flag OK Set Log Data to File SPI Write Flag OK. Alarm1 Set File Datalog 1 **OK** Self Test Alarm2 Set Self-Test OK Disabled Record cnt Self Test Fail OK.

FIGURE FLAG NOTES:

- 1. Perform a single read of the ADIS16209's output data
- 2. XINCL_OUT and YINCL_OUT are horizontal incline outputs. ROTATION is the vertical-oriented rotational position measurement. This requires the X and Y axes to be in the vertical plane, with respect to the earth's surface.
- 3. This graph displays the vertical oriented, rotational position. This requires the X and Y axes to be in the vertical plane, with respect to the earth's surface.
- 4. Start and stop continuous reading of the ADIS16209's output data. The acquisition loop time provides rough control over sample times. Please note that this data will not have a high degree of coherence.
- 5. The acquisition loop time provides rough control over sample times. Please note that this data will not have a high degree of coherence.

6. Configure the ADIS16209's internal sample rate and filter response.

Figure	8. ADIS	16209	Fvalue	ntion	Softwo	ire
iguie	0. ADIS	10209	Lvuiuc	luon	5011000	11 C

Analog Devices - Al 6 50 E	valuation Software - Rev 1.0	
Interface Alarms User Cal GPIO/MS	C Register Aux DAC Powerdown About H	felp Exit
Angle 0 45 90 Output 1 1 1	135 180 225 270 315 I I I I I	360 Scale (S2-S0) ▲ ▶ 320 Read Factory Setup Defaults
320		
. ₃₂₀ – Output Registers – – – –	Status Register	Sample Rate Settings
IFleadSUPPLY_OUT (V)4.985GYRO (Dgr/S)0.88AUX_ADC (V)2.499Temp Out (dgr)36.04Angle Out (dgr)0.33Data ReadNewStatusOK	Read Status St Power Supply Low OK Loop D Power Supply High OK Loop D Control Write Flag OK St SPI Write Flag OK St Gyro Overrange OK St Diag Error OK File Alarm1 Set OK	art Stop belay (mS) 25.0 op after 1 sweep 3 Log Data to File Image: CNT Adis16250 1 o Count 6 Roll Avg Count 64 Avg Rate (Sec) 0.50

FIGURE FLAG NOTES:

- 1. Perform a single read of the ADIS16250's output data
- 2. Start and stop continuous reading of the ADIS16250's output data. The acquisition loop delay time provides rough control over sample times. Please note that this data will not have a high degree of coherence.
- 3. Select the file data logging option.
- 4. Configure the ADIS16250's internal sample rate and filter response.
- 5. Set the measurement range from the three options available in the ADIS16250.
- 6. Exercise the user calibration functions.
- 7. Note, for the ADIS16251, divide the data by a factor of 4. The ADIS16255 data requires no scaling.

Figure 9. ADIS16250 Evaluation Software

©2008 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. EB06335-0-7/08(PrC)

Rev. PrC | Page 10 of 10

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Acceleration Sensor Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

2019 EVAL-ADXL343Z-S BRKOUT-FXLN8362Q MXC6655XA-B 1018 EVAL-ADXL362-ARDZ EVAL-KXTJ2-1009 1231 1413 DEV-13629 2020 EVAL-ADXL343Z-DB EVAL-ADXL344Z-M EVAL-ADXL375Z-S EV-BUNCH-WSN-1Z EV-CLUSTER-WSN-2Z STEVAL-MKI033V1 EVAL-ADXL344Z-DB EVAL-ADXL346Z-DB EVAL-ADXL363Z-MLP EV-CLUSTER-WSN-1Z 2472 EVAL-ADXL312Z EVAL-ADXL343Z EVAL-ADXL344Z-S EVAL-ADXL363Z-S EVAL-ADXL375Z STEVALMKI032V1 DFR0143 SEN0032 SEN0079 SEN0168 SEN0224 MXD6240AU-B FIT0031 SEN-13963 MXP7205VW-B ASD2511-R-A 3463 SEN0140 SEN0183 SEN-11446 EVAL-KX022-1020 EVAL-KX023-1025 163 2809 4097 4344 4627 4626