100 MHz to 4000 MHz RFIF Digitally Controlled VGA

Data Sheet

FEATURES

Operating frequency from 100 MHz to $\mathbf{4 0 0 0} \mathbf{~ M H z}$
Digitally controlled VGA with serial and parallel interfaces
6 -bit, 0.5 dB digital step attenuator
31.5 dB gain control range with $\pm 0.25 \mathrm{~dB}$ step accuracy

Gain block amplifier specifications
Gain: $\mathbf{1 9 . 7} \mathbf{~ d B}$ at 2.14 GHz
OIP3: 41.0 dBm at 2.14 GHz
P1dB: 19.5 dBm at 2.14 GHz
Noise figure: $\mathbf{2 . 9} \mathbf{~ d B}$ at 2.14 GHz
Gain block or digital step attenuator can be first
Single supply operation from 4.75 V to 5.25 V
Low quiescent current of 93 mA
Thermally efficient, $5 \mathrm{~mm} \times 5 \mathrm{~mm}$, 32-lead LFCSP
The companion ADL5243 integrates a $1 / 4 \mathrm{~W}$ driver amplifier to
the output of the gain block and DSA

APPLICATIONS

Wireless infrastructure

Automated test equipment
RF/IF gain control

GENERAL DESCRIPTION

The ADL5240 is a high performance, digitally controlled variable gain amplifier (VGA) operating from 100 MHz to 4000 MHz . The VGA integrates a high performance, 20 dB gain, internally matched amplifier (AMP) with a 6-bit digital step attenuator (DSA) that has a gain control range of 31.5 dB in 0.5 dB steps with $\pm 0.25 \mathrm{~dB}$ step accuracy. The attenuation of the DSA can be controlled using a serial or parallel interface.
Both the gain block and DSA are internally matched to 50Ω at their inputs and outputs and are separately biased. The separate bias allows all or part of the ADL5240 to be used, which facilitates easy reuse throughout a design. The pinout of the ADL5240 also enables either the gain block or DSA to be first, giving the VGA maximum flexibility in a signal chain.

The ADL5240 consumes just 93 mA and operates from a single supply ranging from 4.75 V to 5.25 V . The VGA is packaged in a thermally efficient, $5 \mathrm{~mm} \times 5 \mathrm{~mm}$, 32-lead LFCSP and is fully specified for operation from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. A fully populated evaluation board is available.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

TABLE OF CONTENTS

Features 1
Applications. 1
General Description 1
Functional Block Diagram 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 8
ESD Caution 8
Pin Configuration and Function Descriptions 9
Typical Performance Characteristics 10
REVISION HISTORY
6/13-Rev. 0 to Rev. A
Changes to Table 1 4
Changes to Table 3 9
Changes to Figure 3 11
Changes to Figure 16 12
Added Figure 29, Renumbered Sequentially 14
Changes to Table 5, Figure 35, and Figure 36 18
Added Amplifier Drive Level for Optimum ACLR Section and Figure 39 22
Changes to Evaluation Board Section. 23
Changes to Figure 41 and Table 8 24
Added Figure 42 25
Changes to Figure 43 and Figure 44 26
Added Figure 45 27
7/11—Revision 0: Initial Version
Applications Information 16
Basic Layout Connections 16
SPI Timing 18
Loop Performance 20
Amplifier Drive Level for Optimum ACLR 22
Thermal Considerations 22
Evaluation Board 23
Outline Dimensions 28
Ordering Guide 28

SPECIFICATIONS

$\mathrm{VDD}=5 \mathrm{~V}, \mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Table 1.

\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter \& Test Conditions/Comments \& Min \& Typ \& Max \& Unit \\
\hline OVERALL FUNCTION Frequency Range \& \& 100 \& \& 4000 \& MHz \\
\hline \begin{tabular}{l}
AMPLIFIER FREQUENCY \(=150 \mathrm{MHz}\) \\
Gain \\
vs. Frequency \\
vs. Temperature \\
vs.Supply \\
Input Return Loss \\
Output Return Loss \\
Output 1 dB Compression Point \\
Output Third-Order Intercept \\
Noise Figure
\end{tabular} \& Using the AMPIN and AMPOUT pins
\[
\begin{aligned}
\& \pm 50 \mathrm{MHz} \\
\& -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\
\& 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\
\& \mathrm{~S} 11 \\
\& \mathrm{~S} 22
\end{aligned}
\]
\[
\Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{P}_{\text {out }}=4 \mathrm{dBm} / \text { tone }
\] \& \& \[
\begin{aligned}
\& 17.6 \\
\& \pm 1.0 \\
\& \pm 0.04 \\
\& \pm 0.04 \\
\& -10.4 \\
\& -7.7 \\
\& 18.3 \\
\& 30.0 \\
\& 2.8
\end{aligned}
\] \& \& \begin{tabular}{l}
dB \\
dB \\
dB \\
dB \\
dB \\
dB \\
dBm \\
dBm \\
dB
\end{tabular} \\
\hline \begin{tabular}{l}
AMPLIFIER FREQUENCY \(=450 \mathrm{MHz}\) \\
Gain \\
vs. Frequency \\
vs. Temperature \\
vs.Supply \\
Input Return Loss \\
Output Return Loss \\
Output 1 dB Compression Point \\
Output Third-Order Intercept \\
Noise Figure
\end{tabular} \& Using the AMPIN and AMPOUT pins
\[
\begin{aligned}
\& \pm 50 \mathrm{MHz} \\
\& -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\
\& 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\
\& \mathrm{~S} 11 \\
\& \mathrm{~S} 22
\end{aligned}
\]
\[
\Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{Pout}_{\text {out }}=4 \mathrm{dBm} / \text { tone }
\] \& \& \[
\begin{aligned}
\& 20.3 \\
\& \pm 0.11 \\
\& \pm 0.36 \\
\& \pm 0.01 \\
\& -18.3 \\
\& -15.7 \\
\& 20.2 \\
\& 39.0 \\
\& 2.9
\end{aligned}
\] \& \& \begin{tabular}{l}
dB \\
dB \\
dB \\
dB \\
dB \\
dB \\
dBm \\
dBm \\
dB
\end{tabular} \\
\hline \begin{tabular}{l}
AMPLIFIER FREQUENCY \(=748 \mathrm{MHz}\) \\
Gain \\
vs.Frequency \\
vs. Temperature \\
vs.Supply \\
Input Return Loss \\
Output Return Loss \\
Output 1 dB Compression Point \\
Output Third-Order Intercept \\
Noise Figure
\end{tabular} \& Using the AMPIN and AMPOUT pins
\[
\begin{aligned}
\& \pm 50 \mathrm{MHz} \\
\& -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\
\& 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\
\& \text { S11 } \\
\& \text { S22 }
\end{aligned}
\]
\[
\Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{P}_{\text {out }}=4 \mathrm{dBm} / \text { tone }
\] \& \& \[
\begin{aligned}
\& 20.6 \\
\& \pm 0.01 \\
\& \pm 0.31 \\
\& \pm 0.01 \\
\& -25.7 \\
\& -23.7 \\
\& 20.2 \\
\& 40.0 \\
\& 2.7
\end{aligned}
\] \& \& \begin{tabular}{l}
dB \\
dB \\
dB \\
dB \\
dB \\
dB \\
dBm \\
dBm \\
dB
\end{tabular} \\
\hline \begin{tabular}{l}
AMPLIFIER FREQUENCY \(=943 \mathrm{MHz}\) \\
Gain \\
vs.Frequency \\
vs. Temperature \\
vs.Supply \\
Input Return Loss \\
Output Return Loss \\
Output 1 dB Compression Point Output Third-Order Intercept Noise Figure
\end{tabular} \& Using the AMPIN and AMPOUT pins
\[
\begin{aligned}
\& \pm 18 \mathrm{MHz} \\
\& -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\
\& 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\
\& \mathrm{~S} 11 \\
\& \mathrm{~S} 22
\end{aligned}
\]
\[
\Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{P}_{\text {out }}=4 \mathrm{dBm} / \text { tone }
\] \& 19.0

18.5 \& \[
$$
\begin{aligned}
& 20.5 \\
& \pm 0.01 \\
& \pm 0.27 \\
& \pm 0.01 \\
& -30.3 \\
& -24.8 \\
& 20.1 \\
& 40.0 \\
& 2.7 \\
& \hline
\end{aligned}
$$

\] \& 22.0 \& | dB |
| :--- |
| dB |
| dBm |
| dBm |
| dB |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter \& Test Conditions/Comments \& Min \& Typ \& Max \& Unit \\
\hline \begin{tabular}{l}
AMPLIFIER FREQUENCY \(=1960 \mathrm{MHz}\) \\
Gain \\
vs. Frequency \\
vs. Temperature \\
vs.Supply \\
Input Return Loss \\
Output Return Loss \\
Output 1 dB Compression Point Output Third-Order Intercept Noise Figure
\end{tabular} \& Using the AMPIN and AMPOUT pins
\[
\begin{aligned}
\& \pm 30 \mathrm{MHz} \\
\& -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\
\& 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\
\& \text { S11 } \\
\& \text { S22 }
\end{aligned}
\]
\[
\Delta \mathrm{f}=1 \mathrm{MHz}, \text { Pout }=4 \mathrm{dBm} / \text { tone }
\] \& \& \[
\begin{aligned}
\& 19.8 \\
\& \pm 0.03 \\
\& \pm 0.26 \\
\& \pm 0.03 \\
\& -11.9 \\
\& -12.6 \\
\& 19.8 \\
\& 40.0 \\
\& 2.9
\end{aligned}
\] \& \& \begin{tabular}{l}
dB \\
dB \\
dB \\
dB \\
dB \\
dB \\
dBm \\
dBm \\
dB
\end{tabular} \\
\hline \begin{tabular}{l}
AMPLIFIER FREQUENCY \(=2140 \mathrm{MHz}\) \\
Gain \\
vs. Frequency \\
vs. Temperature \\
vs.Supply \\
Input Return Loss \\
Output Return Loss \\
Output 1 dB Compression Point Output Third-Order Intercept Noise Figure
\end{tabular} \& Using the AMPIN and AMPOUT pins
\[
\begin{aligned}
\& \pm 30 \mathrm{MHz} \\
\& -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\
\& 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\
\& \mathrm{~S} 11 \\
\& \mathrm{~S} 22
\end{aligned}
\]
\[
\Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{P}_{\text {out }}=4 \mathrm{dBm} / \text { tone }
\] \& 18.0

17.5 \& \[
$$
\begin{aligned}
& 19.7 \\
& \pm 0.02 \\
& \pm 0.25 \\
& \pm 0.04 \\
& -11.0 \\
& -12.0 \\
& 19.5 \\
& 41.0 \\
& 2.9
\end{aligned}
$$

\] \& 22.0 \& | dB |
| :--- |
| dB |
| dBm |
| dBm |
| dB |

\hline | AMPLIFIER FREQUENCY $=2630 \mathrm{MHz}$ |
| :--- |
| Gain |
| vs. Frequency |
| vs. Temperature |
| vs.Supply |
| Input Return Loss |
| Output Return Loss |
| Output 1 dB Compression Point |
| Output Third-Order Intercept |
| Noise Figure | \& | Using the AMPIN and AMPOUT pins $\begin{aligned} & \pm 60 \mathrm{MHz} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \end{aligned}$ |
| :--- |
| 4.75 V to 5.25 V |
| S11 |
| S22 $\Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{Pout}=4 \mathrm{dBm} / \text { tone }$ | \& 18.0

18.0 \& \[
$$
\begin{aligned}
& 19.6 \\
& \pm 0.01 \\
& \pm 0.22 \\
& \pm 0.04 \\
& -11.0 \\
& -13.3 \\
& 19.9 \\
& 41.0 \\
& 2.9
\end{aligned}
$$

\] \& 22.0 \& | dB |
| :--- |
| dB |
| dBm |
| dBm |
| dB |

\hline ```
AMPLIFIER FREQUENCY $=3600 \mathrm{MHz}$
Gain
vs. Frequency
vs. Temperature
vs.Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure

``` & Using the AMPIN and AMPOUT pins
\[
\begin{aligned}
& \pm 100 \mathrm{MHz} \\
& -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\
& 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\
& \mathrm{~S} 11 \\
& \mathrm{~S} 22
\end{aligned}
\]
\[
\Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{P}_{\text {out }}=4 \mathrm{dBm} / \text { tone }
\] & & \[
\begin{aligned}
& 19.6 \\
& \pm 0.03 \\
& \pm 0.05 \\
& \pm 0.10 \\
& -15.1 \\
& -12.2 \\
& 18.8 \\
& 37.0 \\
& 3.1 \\
& \hline
\end{aligned}
\] & & \begin{tabular}{l}
dB \\
dB \\
dB \\
dB \\
dB \\
dB \\
dBm \\
dBm \\
dB
\end{tabular} \\
\hline ```
DSA FREQUENCY = 150 MHz
    Insertion Loss
        vs.Frequency
        vs.Temperature
    Attenuation Range
    Attenuation Step Error
    Attenuation Absolute Error
    Input Return Loss
    Output Return Loss
    Input Third-Order Intercept
``` & \begin{tabular}{l}
Using the DSAIN and DSAOUT pins \\
Minimum attenuation
\[
\begin{aligned}
& \pm 50 \mathrm{MHz} \\
& -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}
\end{aligned}
\] \\
All attenuation states \\
All attenuation states \\
Minimum attenuation \\
Minimum attenuation \\
\(\Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{P}_{\text {out }}=4 \mathrm{dBm} /\) tone, minimum attenuation
\end{tabular} & & \[
\begin{aligned}
& -1.5 \\
& \pm 0.12 \\
& \pm 0.09 \\
& 28.8 \\
& \pm 0.18 \\
& \pm 1.35 \\
& -13.3 \\
& -13.4 \\
& 47.9
\end{aligned}
\] & & \begin{tabular}{l}
dB \\
dBm
\end{tabular} \\
\hline
\end{tabular}

ADL5240
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Test Conditions/Comments & Min & Typ & Max & Unit \\
\hline DSA FREQUENCY \(=450 \mathrm{MHz}\) & Using the DSAIN and DSAOUT pins & & & & \\
\hline Insertion Loss & Minimum attenuation & & -1.5 & & dB \\
\hline vs.Frequency & \(\pm 50 \mathrm{MHz}\) & & \(\pm 0.02\) & & dB \\
\hline vs. Temperature & \(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\) & & \(\pm 0.10\) & & dB \\
\hline Attenuation Range & & & 30.7 & & dB \\
\hline Attenuation Step Error & All attenuation states & & \(\pm 0.14\) & & dB \\
\hline Attenuation Absolute Error & All attenuation states & & \(\pm 0.42\) & & dB \\
\hline Input Return Loss & Minimum attenuation & & -17.6 & & dB \\
\hline Output Return Loss & Minimum attenuation & & -17.6 & & dB \\
\hline Input Third-Order Intercept & \(\Delta \mathrm{f}=1 \mathrm{MHz}\), \(\mathrm{P}_{\text {OUt }}=4 \mathrm{dBm} /\) tone, minimum attenuation & & 45.0 & & dBm \\
\hline DSA FREQUENCY \(=748 \mathrm{MHz}\) & Using the DSAIN and DSAOUT pins & & & & \\
\hline Insertion Loss & Minimum attenuation & & -1.6 & & dB \\
\hline vs.Frequency & \(\pm 50 \mathrm{MHz}\) & & \(\pm 0.02\) & & dB \\
\hline vs. Temperature & \(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\) & & \(\pm 0.11\) & & dB \\
\hline Attenuation Range & & & 30.9 & & dB \\
\hline Attenuation Step Error & All attenuation states & & \(\pm 0.15\) & & dB \\
\hline Attenuation Absolute Error & All attenuation states & & \(\pm 0.32\) & & dB \\
\hline Input Return Loss & Minimum attenuation & & -17.4 & & dB \\
\hline Output Return Loss & Minimum attenuation & & -17.4 & & dB \\
\hline Input Third-Order Intercept & \(\Delta \mathrm{f}=1 \mathrm{MHz}\), \(\mathrm{P}_{\text {out }}=4 \mathrm{dBm} /\) tone, minimum attenuation & & 43.5 & & dBm \\
\hline DSA FREQUENCY \(=943 \mathrm{MHz}\) & Using the DSAIN and DSAOUT pins & & & & \\
\hline Insertion Loss & Minimum attenuation & & -1.6 & & dB \\
\hline vs.Frequency & \(\pm 18 \mathrm{MHz}\) & & \(\pm 0.01\) & & dB \\
\hline vs. Temperature & \(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\) & & \(\pm 0.12\) & & dB \\
\hline Attenuation Range & & & 30.9 & & dB \\
\hline Attenuation Step Error & All attenuation states & & \(\pm 0.13\) & & dB \\
\hline Attenuation Absolute Error & All attenuation states & & \(\pm 0.30\) & & dB \\
\hline Input Return Loss & Minimum attenuation & & -16.6 & & dB \\
\hline Output Return Loss & Minimum attenuation & & -16.5 & & dB \\
\hline Input 1 dB Compression Point & Minimum attenuation & & 30.5 & & dBm \\
\hline Input Third-Order Intercept & \(\Delta \mathrm{f}=1 \mathrm{MHz}\), \(\mathrm{Pout}=4 \mathrm{dBm} /\) tone, minimum attenuation & & 50.9 & & dBm \\
\hline DSA FREQUENCY = 1960 MHz & Using the DSAIN and DSAOUT pins & & & & \\
\hline Insertion Loss & Minimum attenuation & & -2.4 & & dB \\
\hline vs.Frequency & \(\pm 30 \mathrm{MHz}\) & & \(\pm 0.02\) & & dB \\
\hline vs. Temperature & \(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\) & & \(\pm 0.16\) & & dB \\
\hline Attenuation Range & & & 31.0 & & dB \\
\hline Attenuation Step Error & All attenuation states & & \(\pm 0.15\) & & dB \\
\hline Attenuation Absolute Error & All attenuation states & & \(\pm 0.29\) & & dB \\
\hline Input Return Loss & Minimum attenuation & & -12.0 & & dB \\
\hline Output Return Loss & Minimum attenuation & & -11.5 & & dB \\
\hline Input 1 dB Compression Point & Minimum attenuation & & 31.5 & & dBm \\
\hline Input Third-Order Intercept & \(\Delta \mathrm{f}=1 \mathrm{MHz}\), \(\mathrm{P}_{\text {out }}=4 \mathrm{dBm} /\) tone, minimum attenuation & & 49.5 & & dBm \\
\hline DSA FREQUENCY \(=2140 \mathrm{MHz}\) & Using the DSAIN and DSAOUT pins & & & & \\
\hline Insertion Loss & Minimum attenuation & & -2.5 & & dB \\
\hline vs.Frequency & \(\pm 30 \mathrm{MHz}\) & & \(\pm 0.02\) & & dB \\
\hline vs.Temperature & \(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\) & & \(\pm 0.17\) & & dB \\
\hline Attenuation Range & & & 31.0 & & dB \\
\hline Attenuation Step Error & All attenuation states & & \(\pm 0.12\) & & dB \\
\hline Attenuation Absolute Error & All attenuation states & & \(\pm 0.26\) & & dB \\
\hline Input Return Loss & Minimum attenuation & & -11.9 & & dB \\
\hline Output Return Loss & Minimum attenuation & & -11.2 & & dB \\
\hline Input 1 dB Compression Point & Minimum attenuation & & 31.5 & & dBm \\
\hline Input Third-Order Intercept & \(\Delta \mathrm{f}=1 \mathrm{MHz}\), \(\mathrm{P}_{\text {OUT }}=4 \mathrm{dBm} /\) tone, minimum attenuation & & 49.2 & & dBm \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Test Conditions/Comments & Min & Typ & Max & Unit \\
\hline DSA FREQUENCY \(=2630 \mathrm{MHz}\) & Using the DSAIN and DSAOUT pins & & & & \\
\hline Insertion Loss & Minimum attenuation & & -2.6 & & dB \\
\hline vs.Frequency & \(\pm 60 \mathrm{MHz}\) & & \(\pm 0.04\) & & dB \\
\hline vs. Temperature & \(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\) & & \(\pm 0.19\) & & dB \\
\hline Attenuation Range & & & 31.2 & & dB \\
\hline Attenuation Step Error & All attenuation states & & \(\pm 0.16\) & & dB \\
\hline Attenuation Absolute Error & All attenuation states & & \(\pm 0.19\) & & dB \\
\hline Input Return Loss & Minimum attenuation & & -13.1 & & dB \\
\hline Output Return Loss & Minimum attenuation & & -12.0 & & dB \\
\hline Input 1 dB Compression Point & Minimum attenuation & & 31.5 & & dBm \\
\hline Input Third-Order Intercept & \(\Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{P}_{\text {out }}=4 \mathrm{dBm} /\) tone, minimum attenuation & & 47.6 & & dBm \\
\hline DSA FREQUENCY \(=3600 \mathrm{MHz}\) & Using the DSAIN and DSAOUT pins & & & & \\
\hline Insertion Loss & Minimum attenuation & & -2.8 & & dB \\
\hline vs.Frequency & \(\pm 100 \mathrm{MHz}\) & & \(\pm 0.03\) & & dB \\
\hline vs. Temperature & \(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\) & & \(\pm 0.21\) & & dB \\
\hline Attenuation Range & & & 32.1 & & dB \\
\hline Attenuation Step Error & All attenuation states & & \(\pm 0.37\) & & dB \\
\hline Attenuation Absolute Error & All attenuation states & & \(\pm 0.31\) & & dB \\
\hline Input Return Loss & Minimum attenuation & & -20.2 & & dB \\
\hline Output Return Loss & Minimum attenuation & & -18.2 & & dB \\
\hline Input 1 dB Compression Point & Minimum attenuation & & 31.0 & & dBm \\
\hline Input Third-Order Intercept & \(\Delta \mathrm{f}=1 \mathrm{MHz}\), \(\mathrm{P}_{\text {Out }}=4 \mathrm{dBm} /\) tone, minimum attenuation & & 48.5 & & dBm \\
\hline DIGITAL STEP ATTENUATOR GAIN SETTLING & & & & & \\
\hline Minimum Attenuation to Maximum Attenuation & & & 36 & & ns \\
\hline Maximum Attenuation to Minimum Attenuation & & & 36 & & ns \\
\hline AMP-DSA LOOP FREQUENCY \(=943 \mathrm{MHz}\) & Using the AMPIN and DSAOUT pins, DSA at minimum attenuation & & & & \\
\hline Gain & & & 18.9 & & dB \\
\hline vs.Frequency & \(\pm 18 \mathrm{MHz}\) & & \(\pm 0.01\) & & dB \\
\hline Gain Range & Between maximumand minimumattenuation states & & 30.8 & & dB \\
\hline Input Return Loss & S11 & & -20.5 & & dB \\
\hline Output Return Loss & S22 & & -19.7 & & dB \\
\hline Output 1 dB Compression Point & & & 18.6 & & dBm \\
\hline Output Third-Order Intercept & \(\Delta \mathrm{f}=1 \mathrm{MHz}\), \(\mathrm{P}_{\text {OUT }}=1 \mathrm{dBm} /\) tone & & 36.0 & & dBm \\
\hline Noise Figure & & & 2.7 & & dB \\
\hline AMP-DSA LOOP FREQUENCY \(=2140 \mathrm{MHz}\) & Using the AMPIN and DSAOUT pins, DSA at minimum attenuation & & & & \\
\hline Gain & & & 18.2 & & dB \\
\hline vs.Frequency & \(\pm 30 \mathrm{MHz}\) & & \(\pm 0.01\) & & dB \\
\hline Gain Range & Between maximumand minimumattenuation states & & 31.3 & & dB \\
\hline Input Return Loss & S11 & & -14.9 & & dB \\
\hline Output Return Loss & S22 & & -16.4 & & dB \\
\hline Output 1 dB Compression Point & & & 17.9 & & dBm \\
\hline Output Third-Order Intercept & \(\Delta \mathrm{f}=1 \mathrm{MHz}\), \(\mathrm{P}_{\text {out }}=1 \mathrm{dBm} /\) tone & & 37.5 & & dBm \\
\hline Noise Figure & & & 3.0 & & dB \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Test Conditions/Comments & Min & Typ & Max & Unit \\
\hline AMP-DSA LOOP FREQUENCY \(=2630 \mathrm{MHz}\) & Using the AMPIN and DSAOUT pins, DSA at minimum attenuation & & & & \\
\hline Gain & & & 17.7 & & dB \\
\hline vs. Frequency & \(\pm 60 \mathrm{MHz}\) & & \(\pm 0.11\) & & dB \\
\hline Gain Range & & & 31.5 & & dB \\
\hline Input Return Loss & S11 & & -15.2 & & dB \\
\hline Output Return Loss & S22 & & -9.6 & & dB \\
\hline Output 1 dB Compression Point & & & 16.9 & & dBm \\
\hline Output Third-Order Intercept & \(\Delta \mathrm{f}=1 \mathrm{MHz}\), \(\mathrm{P}_{\text {out }}=1 \mathrm{dBm} /\) tone & & 33.7 & & dBm \\
\hline Noise Figure & & & 3.0 & & dB \\
\hline DSA-AMP LOOP FREQUENCY \(=943 \mathrm{MHz}\) & Using the DSAIN and AMPOUT pins, DSA at minimum attenuation & & & & \\
\hline Gain & & & 18.9 & & dB \\
\hline vs.Frequency & \(\pm 18 \mathrm{MHz}\) & & \(\pm 0.01\) & & dB \\
\hline Gain Range & Between maximumandminimumattenuation states & & 30.8 & & dB \\
\hline Input Return Loss & S11 & & -17.2 & & dB \\
\hline Output Return Loss & S22 & & -23.7 & & dB \\
\hline Output 1 dB Compression Point & & & 20.2 & & dBm \\
\hline Output Third-Order Intercept & \(\Delta \mathrm{f}=1 \mathrm{MHz}\), \(\mathrm{P}_{\text {out }}=4 \mathrm{dBm} /\) tone & & 40.0 & & dBm \\
\hline Noise Figure & & & 4.4 & & dB \\
\hline DSA-AMP LOOP Frequency \(=2140 \mathrm{MHz}\) & Using the DSAIN and AMPOUT pins, DSA at minimum attenuation & & & & \\
\hline Gain & & & 18.0 & & dB \\
\hline vs.Frequency & \(\pm 30 \mathrm{MHz}\) & & \(\pm 0.01\) & & dB \\
\hline Gain Range & Between maximumand minimumattenuation states & & 31.1 & & dB \\
\hline Input Return Loss & S11 & & -13.7 & & dB \\
\hline Output Return Loss & S22 & & -10.0 & & dB \\
\hline Output 1 dB Compression Point & & & 19.7 & & dBm \\
\hline Output Third-Order Intercept & \(\Delta \mathrm{f}=1 \mathrm{MHz}\), \(\mathrm{Pout}_{\text {or }}=4 \mathrm{dBm} /\) tone & & 37.5 & & dBm \\
\hline Noise Figure & & & 4.9 & & dB \\
\hline DSA-AMP LOOP Frequency \(=2630 \mathrm{MHz}\) & Using the DSAIN and AMPOUT pins, DSA at minimum attenuation & & & & \\
\hline Gain & & & 18.2 & & dB \\
\hline vs.Frequency & \(\pm 60 \mathrm{MHz}\) & & \(\pm 0.01\) & & dB \\
\hline Gain Range & Between maximumand minimumattenuation states & & 31.7 & & dB \\
\hline Input Return Loss & S11 & & -15.7 & & dB \\
\hline Output Return Loss & S22 & & -16.9 & & dB \\
\hline Output 1 dB Compression Point & & & 19.8 & & dBm \\
\hline Output Third-Order Intercept & \(\Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{P}_{\text {OUT }}=4 \mathrm{dBm} /\) tone & & 40.8 & & dBm \\
\hline Noise Figure & & & 5.2 & & dB \\
\hline LOGIC INPUTS & CLK, DATA, LE, SEL, D0~D6 & & & & \\
\hline Input High Voltage, VINH & & 2.5 & & & V \\
\hline Input Low Voltage, VINL & & & & 0.8 & V \\
\hline Input Current, IINH/IINL & & & 0.1 & & \(\mu \mathrm{A}\) \\
\hline Input Capacitance, CIN & & & 1.5 & & pF \\
\hline POWER SUPPLIES & Using the VDD and VCC pins & & & & \\
\hline Voltage & & 4.75 & 5.0 & 5.25 & V \\
\hline Supply Current & & & & & \\
\hline Amplifier & & & 93 & 120 & mA \\
\hline Digital Step Attenuator & & & 0.5 & & mA \\
\hline
\end{tabular}

\section*{ABSOLUTE MAXIMUM RATINGS}

Table 2.
\begin{tabular}{l|l}
\hline Parameter & Rating \\
\hline Supply Voltage (VDD, VCC) & 6.5 V \\
Input Power & \\
\(\quad\) AMPIN & 16 dBm \\
\(\quad\) DSAIN & 30 dBm \\
Internal Power Dissipation & 0.5 W \\
\(\theta_{\mathrm{JA}}\) (Exposed Pad Soldered Down) & \(36.8^{\circ} \mathrm{C} / \mathrm{W}\) \\
\(\theta_{\mathrm{JC}}\) (Exposed Pad is the Contact) & \(6.9^{\circ} \mathrm{C} / \mathrm{W}\) \\
Maximum Junction Temperature & \(150^{\circ} \mathrm{C}\) \\
Lead Temperature (Soldering, 60 sec) & \(240^{\circ} \mathrm{C}\) \\
Operating Temperature Range & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{ESD CAUTION}
\begin{tabular}{l|l}
\hline & \begin{tabular}{l}
ESD (electrostatic discharge) sensitive device. \\
Charged devices and circuit boards can discharge \\
without detection. Although this product features \\
patented or proprietary protection circuitry, damage \\
may occur on devices subjected to high energy ESD. \\
Therefore, proper ESD precautions should be taken to \\
avoid performance degradation or loss of functionality.
\end{tabular} \\
\hline
\end{tabular}

\section*{PIN CONFIGURATION AND FUNCTION DESCRIPTIONS}

Figure 2. Pin Configuration
Table 3. Pin Function Descriptions
\begin{tabular}{l|l|l}
\hline Pin No. & Mnemonic & Description \\
\hline 1,24 & VDD & Supply Voltage forDSA. Connect this pin to a 5 V supply. \\
\(2,3,5,6,7,8,9,11,12\), & NC & No Connect. Do not connect to this pin. \\
\(13,14,16,17,18,19,20\), & & \\
22,23 & DSAIN & RF Input to DSA. \\
4 & AMPOUT/VCC & RF Output from Amplifier/Supply Voltage for Amplifier. A bias to the amplifier is provided \\
10 & AMPIN & through a choke inductor connected to this pin. \\
15 & DSAOUT & RF Input to Amplifier. \\
21 & D5 & RF Output from DSA. \\
25 & D4 & Data Bit in Parallel Mode (LSB). Connect this pin to the supply in serial mode. \\
26 & D3 & Data Bit in Parallel Mode. Connect this pin to ground or leave open in serial mode. \\
27 & D2/LE & Data Bit in Parallel Mode. Connect this pin to ground or leave open in serial mode. \\
28 & D1/DATA & Data Bit in Parallel Mode/Latch Enable in Serial Mode. \\
29 & D0/CLK & Data Bit in Parallel Mode (MSB)/Data in Serial Mode. \\
30 & SEL & Connect this pin to ground in parallel mode. This pin functions as a clock in serial mode. \\
31 & EPAD & Select Pin. Connect this pin to the supply to select parallel mode operation; connect this \\
32 & & Exposed Pad. The exposed pad must be connected to ground. \\
\hline
\end{tabular}

\section*{TYPICAL PERFORMANCE CHARACTERISTICS}

Figure 3. AMP: Gain, P1dB, OIP3 at Pout \(=4 \mathrm{dBm} /\) Tone and Noise Figure vs. Frequency

Figure 4. AMP: Gain vs. Frequency and Temperature

Figure 5. AMP: Input Return Loss (S11), Output Return Loss (S22), and Reverse Isolation (S12) vs. Frequency

Figure 6. AMP: OIP3 at Pout \(=4 d B m /\) Tone and P1dB vs. Frequency and Temperature

Figure 7. AMP: OIP3 vs. Pout and Frequency

Figure 8. AMP: Noise Figure vs. Frequency and Temperature

Figure 9. DSA: Attenuation vs. Frequency

Figure 10. DSA: Attenuation vs. Frequency and Temperature

Figure 11. DSA: Step Error vs. Attenuation

Figure 12. DSA: Step Error vs. Frequency, All Attenuation States

Figure 13. DSA: Absolute Error vs. Attenuation

Figure 14. DSA: Input Return Loss vs. Frequency, All States

Figure 15. DSA: Output Return Loss vs. Frequency, All States

Figure 16. DSA: Input P1dB and Input IP3 vs. Frequency, Minimum Attenuation State

Figure 17. DSA: Phase vs. Attenuation

Figure 18. DSA: Gain Settling Time, \(0 d B\) to \(31.5 d B\)

Figure 19. DSA: Gain Settling Time, \(31.5 d B\) to \(0 d B\)

Figure 20. AMP-DSA Loop: Gain and Noise Figure vs. Frequency, Minimum Attenuation State

Figure 21. AMP-DSA Loop: Input Return Loss (S11), Output Return Loss (S22), and Reverse Isolation (S12) vs. Frequency, Minimum Attenuation State

Figure 22. AMP-DSA Loop: OIP3 vs. Pout and Frequency, Minimum Attenuation State

Figure 23. AMP-DSA Loop: Gain vs. Pout and Frequency, Minimum Attenuation State

Figure 24. DSA-AMP Loop: Gain and Noise Figure vs. Frequency, Minimum Attenuation State

Figure 25. DSA-AMP Loop: Input Return Loss (S11), Output Return Loss (S22), and Reverse Isolation (S12) vs. Frequency, Minimum Attenuation State

Figure 26. DSA-AMP Loop: OIP3 vs. Pout and Frequency, Minimum Attenuation State

Figure 27. DSA-AMP Loop: Gain vs. Pout and Frequency, Minimum Attenuation State

Figure 28. AMP: Supply Current vs. Voltage and Temperature

Figure 29. AMP: Supply Current vs. Pout and Temperature

Figure 30. AMP: Gain Distribution at 2140 MHz

Figure 31. AMP:P1dB Distribution at 2140 MHz

Figure 32. AMP: OIP3 Distribution at 2140 MHz

\section*{Data Sheet}

Figure 33. AMP: Noise Figure Distribution at 2140 MHz

\section*{APPLICATIONS INFORMATION \\ BASIC LAYOUT CONNECTIONS}

The basic connections for operating the ADL5240 are shown in Figure 34.

\section*{Amplifier Bias}

The dc bias for the amplifier in ADL5240 is supplied through Inductor L 1 and is connected to the AMPOUT pin. Three decoupling capacitors (C3, C4, and C5) are used to prevent RF signals from propagating onto the dclines. The dc supply ranges from 4.75 V to 5.25 V and should be connected to the VCC test point on the evaluation board.

\section*{Digital Step Attenuator Bias}

The bias for the DSA is provided through the VDD pin. At least one decoupling capacitor (C8) is recommended on the VDD trace. The voltage ranges from 4.75 V to 5.25 V and should be connected to the VDD test point on the evaluation board. The DSA is shown to work for dc voltages as low as 2.5 V .

\section*{Amplifier RF Input Interface}

Pin 15 is the RF input for the amplifier of ADL5240. The amplifier is internally matched to \(50 \Omega\) at the input; therefore, no external components are required. Only a dcblocking capacitor (C1) is required.

\section*{Amplifier RF Output Interface}

Pin 10 is the RF output for the amplifier of ADL5240. The amplifier is internally matched to \(50 \Omega\) at the output; therefore, no external components are required. Only a dc blocking capacitor (C2) is required. The bias is provided through this pin via a choke inductor.

\section*{DSA RF Input Interface}

Pin 4 is the RF input for the DSA of ADL5240. The input impedance of the DSA is close to \(50 \Omega\) over the entire frequency range; therefore, no external components are required. Only a dc blocking capacitor (C6) is required.

\section*{DSA RF Output Interface}

Pin 21 is the RF output for the DSA of ADL5240. The output impedance of the DSA is close to \(50 \Omega\) over the entire frequency range; therefore, no external components are required. Only a dc blocking capacitor (C7) is required.

\section*{DSA SPI Interface}

The DSA of the ADL5240 can operate in either serial or parallel mode.Pin 32 (SEL) controls the mode of operation. To select serial mode, connect SEL to ground; to select parallel mode, connect SEL to VDD. In parallel mode, Pin 25 to Pin 30 (D6 to D1) are the data bits, with D6 being the LSB. Connect Pin 31 (D0) to ground during the parallel mode of operation. In serial mode, Pin 29 is the latch enable (LE), Pin 30 is the data (DATA), and Pin 31 is the clock (CLK). Pin 26, Pin 27, and Pin 28 are not used in serial mode and should be connected to ground. Pin 25 (D6) should be connected to VDD during the serial mode of operation. To prevent noise from coupling onto the digital signals, an RC filter can be used on each data line.

\section*{ADL5240}

\section*{SPI TIMING}

Table 5 provides details about the timing characteristics for the SPI signals-namely, the clock (CLK), latch enable (LE), and data (DATA) signals-and Figure 35 shows the corresponding SPI timing diagram.

\section*{SPI Timing Sequence}

Figure 36 is the timing sequence for the SPI function using a 6-bit operation. The clock canbe as fast as 20 MHz . In serialmode, Register B5 (MSB) is first and Register B0 (LSB) is last.

Table 4. Mode Selection Table
\begin{tabular}{l|l}
\hline Pin 32 (SEL) & Functionality \\
\hline Connect to Ground & Serial mode \\
Connect to Supply & Parallel mode \\
\hline
\end{tabular}

Table 5. SPI Timing Setup
\begin{tabular}{l|l|l|l}
\hline Parameter & Limit & Unit & Test Conditions/Comments \\
\hline \(\mathrm{f}_{\text {CLK }}\) & 10 & MHz & Data clock frequency \\
\(\mathrm{t}_{1}\) & 25 & ns min & Clock high time \\
\(\mathrm{t}_{2}\) & 25 & ns min & Clock low time \\
\(\mathrm{t}_{3}\) & 10 & ns min & Data to clock setup time \\
\(\mathrm{t}_{4}\) & 10 & ns min & Clock to data hold time \\
\(\mathrm{t}_{5}\) & 10 & ns min & Clock low to LE setup time \\
\(\mathrm{t}_{6}\) & 30 & ns min & LE pulse width \\
\hline
\end{tabular}

Figure 35. SPI Timing Diagram (Data Is Loaded MSB First), Serial Mode

Figure 36. SPI Timing Sequence, Serial Mode

\section*{Data Sheet \\ ADL5240}

Table 6. DSA Attenuation Truth Table-Serial Mode
\begin{tabular}{l|l|l|l|l|l|l}
\hline Attenuation State (dB) & B5 (MSB) & B4 & B3 & B2 & B1 & B0 (LSB) \\
\hline 0 (Reference) & 1 & 1 & 1 & 1 & 1 & 1 \\
0.5 & 1 & 1 & 1 & 1 & 1 & 0 \\
1.0 & 1 & 1 & 1 & 1 & 0 & 1 \\
2.0 & 1 & 1 & 0 & 1 & 1 \\
4.0 & 1 & 0 & 1 & 1 & 1 \\
8.0 & 1 & 1 & 1 & 1 & 1 \\
16.0 & 0 & 0 & 1 & 1 & 1 \\
31.5 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

Table 7. DSA Attenuation Truth Table-Parallel Mode
\begin{tabular}{l|l|l|l|l|l|l}
\\
\hline Attenuation State (dB) & D1 (MSB) & D2 & D3 & D4 & D5 & (LSB) \\
\hline 0 (Reference) & 1 & 1 & 1 & 1 & 1 & 1 \\
0.5 & 1 & 1 & 1 & 1 & 1 & 0 \\
1.0 & 1 & 1 & 1 & 1 & 0 & 1 \\
2.0 & 1 & 1 & 1 & 0 & 1 & 1 \\
4.0 & 1 & 0 & 1 & 1 & 1 \\
8.0 & 1 & 0 & 1 & 1 & 1 \\
16.0 & 0 & 1 & 1 & 1 & 1 \\
31.5 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{LOOP PERFORMANCE}

The ADL5240 can be configured so that either the DSA precedes the amplifier (see Figure 37) or the amplifier precedes the DSA (see Figure 38). The performance of the loop configurations is presented in Figure 20 to Figure 27. To improve the overall return loss, a shunt capacitor can be placed between the amplifier and DSA. This helps to align the phases of the two blocks.

Figure 37. DSA-AMP Loop Configuration

\section*{Data Sheet}

Figure 38. AMP-DSA Loop Configuration

\section*{AMPLIFIER DRIVE LEVEL FOR OPTIMUM ACLR}

It is usually required to drive the amplifier as high as possible in order to maximize output power. However, properly driving Amplifier at the ADL5240 is required to achieve optimum ACLR performance. Once output power approaches P1dB and OIP3, there is ACLR degradation. The driving level of amplifier with a modulated signal should be backed off properly from P1dB by at least the amount of a signal crest factor for optimum ACLR. So assuming a gain and output P1dB of Amplifier at 2140 MHz are 19 dB and 19 dBm respectively, the output power, which is backed off by 11 dB crest factor at the modulated signal case, is 8 dBm . Therefore, the proper input driving level should be under -11 dBm .

Figure 39. Single Carrier WCDMA Adjacent Chanel Power Ratio vs. Input Power at Amplifier, 2140 MHz

\section*{THERMAL CONSIDERATIONS}

The ADL5240 is packaged in a thermallyefficient, \(5 \mathrm{~mm} \times 5 \mathrm{~mm}\), 32-lead LFCSP. The thermal resistance from junction to air \(\left(\theta_{\text {IA }}\right)\) is \(36.8^{\circ} \mathrm{C} / \mathrm{W}\). The thermal resistance for the product was extracted assuming a standard 4 -layer JEDEC board with 25 conductive, epoxy filled thermal vias. The thermal resistance from junction to case \(\left(\theta_{\mathrm{JC}}\right)\) is \(6.9^{\circ} \mathrm{C} / \mathrm{W}\), where case is the exposed pad of the lead frame package.

The ADL5240 consumes approximately 93 mA with a 5 V supply voltage. Even though the part dissipates lessthan 0.5 W , for the best thermal performance, it is recommended to add as many thermal vias as possible under the exposed pad of the LFCSP. The thermal resistance values given in this section assume a minimum of 25 thermal vias arranged in a \(5 \times 5\) array with a diameter of 13 mils and a pitch of 25 mils. Figure 40 shows a close-up of the thermal via distribution under the exposed pad.

Figure 40. Exposed Pad with Thermal Via Distribution

\section*{EVALUATION BOARD}

The schematic of the ADL5240 evaluation board is shown in Figure 41, the evaluation board configuration options are detailed in Table 8, and the layout of the ADL5240 evaluation board is shown in Figure 43 and Figure 44. Each RF trace on the evaluation board has a characteristic impedance of \(50 \Omega\) and is fabricated on Rogers 3003 material. In addition, each trace is a coplanar waveguide (CPWG) with a width of 25 mils, a spacing of 20 mils, and a dielectric thickness of 10 mils. The input to and output from the DSA and amplifier should be ac-coupled with capacitors of appropriate values to ensure the broadband performance. The bias to the amplifier is provided by connecting a choke to the AMPOUT pin. Bypassing capacitors are recommended on all supply lines to minimize the RF coupling. The DSA and the amplifier can be individually biased or connected to the VDD plane using Resistors R2 and R1.
The ADL5240 can be operated in two ways: the amplifier can precede the DSA (AMP-DSA loop configuration) or the DSA can precede the amplifier (DSA-AMP loop configuration). The evaluation board can be configured to handle either option. In normal operation, R12 and R13 are open, and R10 and R11 are \(0 \Omega\) and are used to terminate any RF coupling onto the bypass trace. To configure the ADL5240 in AMP-DSA loop configuration, R12 should be replaced with a capacitor, R13 should be replaced with a \(0 \Omega\) resistor, and R10 and R11 shouldbe left open. Similarly, to configure the ADL5240 in the DSA-AMP loop configuration, R16 should be replaced with a capacitor, R17 should be replaced with a \(0 \Omega\) resistor, and R14 and R15 should be left open.

The digital signal traces incorporate a footprint for an RC filter to prevent potential noise from coupling onto the signal. In normal operation, series resistors are \(0 \Omega\) and shunt resistors and capacitors are open.
The evaluation board is designed to control DSA in either parallel or serial mode by connecting the SEL pin to the supply or ground by a switch.

For adjusting attenuation at DSA, the ADL5240 can be programmed in two ways: through the on-board USB interface from a PC USB port, or through an SDP board, which will become the Analog Devices common control board in the future. The on-board USB interface circuitry of the evaluation board is powered directly by the PC. USB based programming software is available to download from the ADL5240 product page at www.analog.com. Figure 45 shows the window of the programming software where the user selects serial or parallel mode for the attenuation adjustmentat DSA. The selection of the mode in the window should match the mode of the evaluation board switch.

It is highly recommended to refer the evaluation boardlayout for the optimal and stable performance of each block as well as for the improvement of thermal efficiency.

Figure 41. ADL5240 Evaluation Board
Table 8. Evaluation Board Configuration Options
\begin{tabular}{|c|c|c|}
\hline Component & Function/Notes & Default Value \\
\hline C1, C2 & Input/output dc blocking capacitors for DSA. & \(\mathrm{C} 1, \mathrm{C} 2=100 \mathrm{pF}\) \\
\hline C3, C4 & Input/output dc blocking capacitors for AMP. & C3, C4 \(=0.1 \mu \mathrm{~F}\) \\
\hline C5, C6, C7 & Power supply decoupling foramplifier. The bias associated with the AMPOUT pin is the most sensitive to noise because the bias is connected directly to the output. The smallest capacitor (C7) should be the closest to the AMPOUT pin. & \[
\begin{aligned}
& \mathrm{C} 5=1 \mu \mathrm{~F} \\
& \mathrm{C} 6=1.2 \mathrm{nF} \\
& \mathrm{C} 7=68 \mathrm{pF}
\end{aligned}
\] \\
\hline C8 & Power supply decoupling forthe DSA. & \(\mathrm{C} 8=0.1 \mu \mathrm{~F}\) \\
\hline L1 & The bias for the amplifier comes through L1 when VCC is connected to a 5 V supply. L1 should be high impedance for the frequency of operation while providing low resistance for the dc current. & \(\mathrm{L} 1=470 \mathrm{nH}\) \\
\hline R1, R2 & Resistors to connect the supply for the amplifier and the DSA to the same VDD plane. & R1, R2 = open \\
\hline R10, R11, R14, R15 & These resistors areused to terminate RF coupling onto thetraces and to close theloop. & \[
\begin{aligned}
& \mathrm{R} 10, \mathrm{R} 11, \mathrm{R} 14, \mathrm{R} 15= \\
& 0 \Omega
\end{aligned}
\] \\
\hline R12, R13, R16, R17 & R12 and R16 are replaced with capacitors, and R13 and R17 are replaced with \(0 \Omega\) to close the loop. & \[
R 12, R 13, R 16, R 17=
\] open \\
\hline S1 & Switch to change between the serial mode and parallel mode of operation. Connect to supply for parallel mode and to ground for serial mode operation. & S1 connected to ground \\
\hline
\end{tabular}

Figure 42. USB/SDP Interface Circuitry on the Customer Evaluation Board

Figure 43. Evaluation Board Layout-Top

Figure 44. Evaluation Board Layout—Bottom

Figure 45. Evaluation Board Control Software

\section*{OUTLINE DIMENSIONS}

Figure 46. 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
\(5 \mathrm{~mm} \times 5 \mathrm{~mm}\) Body, Very Thin Quad
(CP-32-3)
Dimensions shown in millimeters

\section*{ORDERING GUIDE}
\begin{tabular}{l|l|l|l}
\hline Model \(^{1}\) & Temperature Range & Package Description & Package Option \\
\hline ADL5240ACPZ-R7 & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & \begin{tabular}{l}
32 Lead LFCSP_VQ,7" Tape and Reel \\
Avaluation Board
\end{tabular} & \(\mathrm{CP}-32-3\) \\
\hline
\end{tabular}
\({ }^{1} Z=\) RoHS Compliant Part.

\section*{X-ON Electronics}

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Development Tools category:
Click to view products by Analog Devices manufacturer:

Other Similar products are found below :
MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT\# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT\# MAX2692EVKIT\# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 119197HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB```

