FEATURES

Fixed gain of 20 dB

Operation up to 500 MHz
Input/output internally matched to 50Ω
Integrated bias control circuit
Output IP3
41 dBm at 70 MHz
39 dBm at 190 MHz
Output 1 dB compression: 20.6 dB at 190 MHz
Noise figure: $\mathbf{2 . 5} \mathbf{~ d B}$ at 190 MHz
Single 5 V power supply
Small footprint 8-lead LFCSP
ADL5534 20 dB gain dual-channel version
± 2 kV ESD (Class 2)

GENERAL DESCRIPTION

The ADL5531 is a broadband, fixed-gain, linear amplifier that operates at frequencies up to 500 MHz . The device can be used in a wide variety of equipment, including cellular, satellite, broadband, and instrumentation equipment.

The ADL5531 provides a gain of 20 dB , which is stable over frequency, temperature, power supply, and from device to device. This amplifier is single ended and internally matched to 50Ω. Only input/output ac coupling capacitors, power supply decoupling capacitors, and external inductors are required for operation.

FUNCTIONAL BLOCK DIAGRAM

NC = NO CONNECT

Figure 1.

The ADL5531 is fabricated on a GaAs HBT process and has an ESD rating of $\pm 2 \mathrm{kV}$ (Class 2). The device is packaged in an 8 -lead $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ LFCSP that uses an exposed paddle for excellent thermal impedance.

The ADL5531 consumes 100 mA on a single 5 V supply and is fully specified for operation from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
The dual-channel 20 dB gain version, ADL5534, is also available from Analog Devices, Inc.

ADL5531

TABLE OF CONTENTS

Features .1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Typical Scattering Parameters. 4
Absolute Maximum Ratings 5
ESD Caution 5
Pin Configuration and Function Descriptions 6
REVISION HISTORY
8/2017—Rev. B to Rev. C
Changed CP-8-2 to CP-8-13

\qquad
Throughout
Updated Outline Dimensions 11
Changes to Ordering Guide 11
11/2013-Rev. A to Rev. B
Changes to Figure 2 6
Added Figure 14, Renumbered Sequentially 8
8/2008—Rev. 0 to Rev. A
Changes to Features Section and General Description
Section. 1
Added Exposed Pad Notation to Outline Dimensions 11
8/2007—Revision 0: Initial Version

SPECIFICATIONS

VPOS $=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1.

Parameter	Conditions	Min	Typ	Max	Unit
OVERALL FUNCTION Frequency Range Gain (S21) Input Return Loss (S11) Output Return Loss (S22) Reverse Isolation (S12)	$\begin{aligned} & 190 \mathrm{MHz} \\ & 190 \mathrm{MHz} \\ & 190 \mathrm{MHz} \\ & 190 \mathrm{MHz} \end{aligned}$	20	$\begin{aligned} & 20.3 \\ & -19.5 \\ & -26.5 \\ & -23.0 \end{aligned}$	500	MHz dB dB dB dB
```FREQUENCY = 70 MHz Gain vs. Frequency vs. Temperature vs. Supply Output 1 dB Compression Point Output Third-Order Intercept Noise Figure```	$\begin{aligned} & \pm 5 \mathrm{MHz} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\ & \Delta \mathrm{f}=1 \mathrm{MHz} \text {, output power (Pout) }=0 \mathrm{dBm} \text { per tone } \end{aligned}$		$\begin{aligned} & 20.9 \\ & \pm 0.03 \\ & \pm 0.22 \\ & \pm 0.19 \\ & 20.4 \\ & 41.0 \\ & 2.5 \end{aligned}$		dB   dB   dB   dB   dBm   dBm   dB
FREQUENCY $=190 \mathrm{MHz}$   Gain   vs. Frequency   vs. Temperature   vs. Supply   Output 1 dB Compression Point   Output Third-Order Intercept   Noise Figure	$\begin{aligned} & \pm 50 \mathrm{MHz} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\ & \\ & \Delta \mathrm{f}=1 \mathrm{MHz} \text {, output power (Pout) }=0 \mathrm{dBm} \text { per tone } \end{aligned}$	19.7	$\begin{aligned} & 20.3 \\ & \pm 0.12 \\ & \pm 0.22 \\ & \pm 0.17 \\ & 20.6 \\ & 39.0 \\ & 2.5 \end{aligned}$	21.0	dB   dB   dB   dB   dBm   dBm   dB
```FREQUENCY = 380 MHz Gain vs. Frequency vs. Temperature vs. Supply Output 1 dB Compression Point Output Third-Order Intercept Noise Figure```	$\begin{aligned} & \pm 50 \mathrm{MHz} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\ & \Delta \mathrm{f}=1 \mathrm{MHz} \text {, output power (Pout) }=0 \mathrm{dBm} \text { per tone } \end{aligned}$	19.2	$\begin{aligned} & 19.7 \\ & \pm 0.15 \\ & \pm 0.24 \\ & \pm 0.15 \\ & 20.4 \\ & 36.0 \\ & 3.0 \end{aligned}$	20.5	dB   dB   dB   dB   dBm   dBm   dB
POWER INTERFACE Supply Voltage Supply Current vs. Temperature Power Dissipation	Pin RFOUT $\begin{aligned} & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & \text { VPOS }=5 \mathrm{~V} \end{aligned}$	4.75	$\begin{aligned} & 5 \\ & 100 \\ & \pm 15 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 5.25 \\ & 110 \end{aligned}$	V mA mA W

ADL5531

TYPICAL SCATTERING PARAMETERS

VPOS $=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. The effects of the test fixture have been de-embedded up to the pins of the device.
Table 2.

Frequency (MHz)	S11		S21		S12		S22	
	Magnitude (dB)	Angle (${ }^{\circ}$)	Magnitude (dB)	Angle (${ }^{\circ}$)	Magnitude (dB)	Angle (${ }^{\circ}$)	Magnitude (dB)	Angle (${ }^{\circ}$)
20	-19.9933	-132.614	21.99753	173.7349	-24.2574	4.854191	-19.1444	-46.7161
50	-19.6622	-151.093	21.20511	170.3258	-23.4894	5.603544	-21.4752	-89.9497
100	-17.9244	-166.031	20.83152	167.5595	-23.22	6.119636	-23.0386	-115.741
150	-18.4041	-177.116	20.67117	164.1871	-23.0914	6.631844	-23.335	-119.722
200	-18.6386	+179.6269	20.56097	160.4721	-22.9921	7.784913	-22.8555	-115.855
250	-19.2303	+175.3384	20.45422	156.5272	-22.9219	8.763143	-21.6619	-111.307
300	-19.4456	+175.0622	20.34563	152.4398	-22.8475	9.908631	-20.2707	-106.681
350	-20.1783	+173.422	20.21365	148.3008	-22.7662	11.21706	-18.7007	-104.369
400	-20.2409	+174.1593	20.07116	144.2311	-22.665	12.36953	-17.1242	-103.565
450	-20.7266	+175.6233	19.90932	140.0789	-22.5569	13.57857	-15.726	-103.863
500	-20.6064	+175.853	19.72779	135.9952	-22.4519	14.73385	-14.41	-105.079

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
Supply Voltage on RFOUT	5.5 V
Input Power on RFIN	10 dBm
Internal Power Dissipation (Paddle Soldered)	600 mW
θ_{JA} (Junction to Air)	$103^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ESD Rating-Human Body Model	$\pm 2 \mathrm{kV}$

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ADL5531

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
$1,3,4,6,8$	NC	No Connect.
2	RFIN	RF Input. Requires a 10 nF dc blocking capacitor.
5	CLIN	A 1 nF capacitor connected between Pin 5 and ground provides decoupling for the on-board linearizer.
7	RFOUT	RF Output and Bias. DC bias is provided to this pin through a 470 nH inductor (Coilcraft 1008CS-471XJLC or equivalent). The RF path requires a 10 nF dc blocking capacitor.
EP	Exposed Pad	GND. Solder this pad to a low impedance ground plane.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. Noise Figure, Gain, P1dB, and OIP3 vs. Frequency

Figure 4. Gain vs. Frequency and Temperature

Figure 5. Input Return Loss (S11), Reverse Isolation (S12), and Output Return Loss (S22) vs. Frequency

Figure 6. P1dB and OIP3 vs. Frequency and Temperature

Figure 7. OIP3 vs. Output Power (Pout) and Frequency

Figure 8. Noise Figure vs. Frequency and Temperature

Figure 9. OIP3 Distribution at 190 MHz

Figure 10. P1dB Distribution at 190 MHz

Figure 11. Gain Distribution at 190 MHz

Figure 12. Noise Figure vs. Frequency at $25^{\circ} \mathrm{C}$, Multiple Devices Shown

Figure 13. Supply Current vs. Supply Voltage and Temperature

Figure 14. Supply Current vs. Pout and Temperature

BASIC CONNECTIONS

The basic connections for operating the ADL5531 are shown in Figure 16. The input and output are ac-coupled with 10 nF (0402) capacitors. DC bias is provided to the amplifier via an inductor (Coilcraft 1008CS-471XJLC or equivalent) connected to the RFOUT pin. The bias voltage should be decoupled using 10 nF and $1 \mu \mathrm{~F}$ capacitors.

SOLDERING INFORMATION AND RECOMMENDED PCB LAND PATTERN

Figure 15 shows the recommended land pattern for ADL5531. To minimize thermal impedance, the exposed pad on the

Figure 15. Recommended Land Pattern package underside is soldered down to a ground plane. If multiple ground layers exist, they are stitched together using vias (a minimum of five vias is recommended). Pin 1, Pin 3, Pin 4, Pin 6, and Pin 8 can be left unconnected or can be connected to ground. Connecting these pins to ground slightly enhances thermal impedance. For more information on land pattern design and layout, refer to AN-772 Application Note, A Design and Manufacturing Guide for the Lead Frame Chip Scale Package (LFCSP).

Figure 16. Basic Connections

ADL5531

EVALUATION BOARD

Figure 19 shows the schematic for the ADL5531 evaluation board. The board is powered by a single 5 V supply.
The components used on the board are listed in Table 5. Power can be applied to the board through clip-on leads or through Jumper W1. Note that C4, C7, C8, L3, L4, L5, R1, and R2 have no function.

Figure 18. Evaluation Board Layout (Top)

Figure 17. Evaluation Board Layout (Bottom)

Figure 19. Evaluation Board Schematic

Table 5. Evaluation Board Configuration Options

Component	Function	Default Value
Z1	DUT	ADL5531
C1, C2	AC coupling capacitors	$10 \mathrm{nF}, 0402$
C3	Linearizer capacitor	$1 \mathrm{nF}, 0603$
C5	Power supply decoupling capacitor	$10 \mathrm{nF}, 0603$
C6	Power supply decoupling capacitor	$1 \mu \mathrm{HF}, 0603$
C4, C7, C8		Open
R1, R2	DC bias inductor	Open
L1		$470 \mathrm{nH}, 1008$ (Coilcraft 1008CS-471XJLC or equivalent)
L2	$0 \Omega, 0402$	
L3, L4, L5	Open	
VPOS, GND	Clip-on terminals for power supply	VPOS, GND
W1	2-pin jumper for connection of ground and supply via cable	W1
RFIN, RFOUT	50 Ω SMA female connectors	RFIN, RFOUT

OUTLINE DIMENSIONS

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Branding
ADL5531ACPZ-R7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8-$ Lead LFCSP, 7 " Tape and Reel Evaluation Board	CP-8-13	Q16
ADL5531-EVALZ				

[^0]
NOTES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT\# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT\# MAX2692EVKIT\# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB

[^0]: ${ }^{1} Z=$ RoHS Compliant Part.

