Data Sheet

FEATURES

Single positive supply (self biased)
High OIP2: $\mathbf{5 2 \mathrm { dBm } \text { typical at } 0 . 6 \mathrm { GHz } \text { to } 7 . 5 \mathrm { GHz } , ~ (1)}$
High gain: 15 dB typical at 0.6 GHz to $\mathbf{6 ~ G H z}$
High OIP3: $\mathbf{3 2} \mathbf{d B m}$ typical
Low noise figure: 3.5 dB typical at $\mathbf{0 . 4 ~ \mathbf { ~ G H z } \text { to } \mathbf { 6 ~ G H z }}$
RoHS-compliant, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$, 16-lead LFCSP

APPLICATIONS

Test instrumentation
 Military communications

FUNCTIONAL BLOCK DIAGRAM

high output second-order intercept (OIP2) of 52 dBm typical at 0.6 GHz to 6 GHz , making the ADL8104 suitable for military and test instrumentation applications.

The ADL8104 also features inputs and outputs that are internally matched to 50Ω. The $\mathrm{RF}_{\text {IN }}$ and $\mathrm{RF}_{\text {out }}$ pins are internally ac-coupled and the bias inductor is also integrated, making the ADL8104 ideal for surface-mounted technology (SMT)-based, high density applications.

The ADL8104 is housed in an RoHS-compliant, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$, 16-lead LFCSP.

TABLE OF CONTENTS

Features .1
Applications 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
0.4 GHz to 0.6 GHz Frequency Range 3
0.6 GHz to 6 GHz Frequency Range 3
6 GHz to 7.5 GHz Frequency Range 3
DC Specifications 4
Absolute Maximum Ratings 5
Thermal Resistance 5
Electrostatic Discharge (ESD) Ratings 5
ESD Caution 5
Pin Configuration and Function Descriptions 6
Interface Schematics 6
Typical Performance Characteristics 7
Theory of Operation 21
Applications Information 22
Recommended Bias Sequencing 22
Outline Dimensions 23
Ordering Guide 23

REVISION HISTORY

9/2020—Revision 0: Initial Version

SPECIFICATIONS

0.4 GHz TO 0.6 GHz FREQUENCY RANGE

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, total supply current $\left(\mathrm{I}_{\mathrm{DQ}}\right)=150 \mathrm{~mA}, \mathrm{R}_{\text {BIAS }}=90.9 \Omega$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
FREQUENCY RANGE	0.4	0.6	GHz		
GAIN	11.5	14	dB		
\quad Gain Variation over Temperature		0.036	$\mathrm{~dB} /{ }^{\circ} \mathrm{C}$		
NOISE FIGURE	3.5		dB		
RETURN LOSS					
\quad Input		12	dB		
Output		13	dB		
OUTPUT					
OP1dB	16.5	19	dBm		
Saturated Output Power (PSAT)		21	dBm		
OIP3		32	dBm	Measurement taken at output power (Pout) per tone $=5 \mathrm{dBm}$	
OIP2	50	dBm	Measurement taken at Pout per tone $=5 \mathrm{dBm}$		
POWER ADDED EFFICIENCY (PAE)		18	$\%$	Measured at $\mathrm{P}_{\text {SAT }}$	

0.6 GHz TO 6 GHz FREQUENCY RANGE

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=150 \mathrm{~mA}, \mathrm{R}_{\text {BIAS }}=90.9 \Omega$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 2.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
FREQUENCY RANGE	0.6		6	GHz	
GAIN Gain Variation over Temperature	12	$\begin{aligned} & 15 \\ & 0.030 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} /{ }^{\circ} \mathrm{C} \end{aligned}$	
NOISE FIGURE		3.5		dB	
RETURN LOSS Input Output		$\begin{aligned} & 12 \\ & 12 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	
OUTPUT OP1dB $\mathrm{P}_{\text {sat }}$ OIP3 OIP2		$\begin{aligned} & 20 \\ & 21 \\ & 32 \\ & 52 \end{aligned}$		dBm dBm dBm dBm	Measurement taken at Pout per tone $=5 \mathrm{dBm}$ Measurement taken at Pout per tone $=5 \mathrm{dBm}$
PAE		12		\%	Measured at $\mathrm{P}_{\text {SAT }}$

6 GHz TO 7.5 GHz FREQUENCY RANGE

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=150 \mathrm{~mA}, \mathrm{R}_{\text {BIAS }}=90.9 \Omega$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
FREQUENCY RANGE	6		7.5	GHz	
GAIN	10	13		dB	
\quad Gain Variation over Temperature		0.041		$\mathrm{~dB} /{ }^{\circ} \mathrm{C}$	
NOISE FIGURE	4.5		dB		
RETURN LOSS					
\quad Input	12		dB		
\quad Output		12	dB		

ADL8104

Parameter	Min	Typ \quad Max	Unit	Test Conditions/Comments
OUTPUT				
OP1dB	15.5	18		dBm
PSAT		19		dBm
OIP3	32		dBm	Measurement taken at Pout per tone $=5 \mathrm{dBm}$
OIP2	52	dBm	Measurement taken at Pout per tone $=5 \mathrm{dBm}$	
PAE	12	$\%$	Measured at $\mathrm{P}_{\text {SAT }}$	

DC SPECIFICATIONS

Table 4.

Parameter	Min	Typ	Max	Unit
SUPPLY CURRENT				
log		150		mA
Drain Current (ldo)		144		mA
$\mathrm{R}_{\text {bias }}$ Current ((lrbias)		6		mA
SUPPLY VOLTAGE				
$V_{\text {DD }}$	3	5	5.5	V

ADL8104

ABSOLUTE MAXIMUM RATINGS

Table 5.

Parameter	Rating
V_{DD}	6 V
RF Input Power	25 dBm
Continuous Power Dissipation (PDISS), $T_{A}=85^{\circ} \mathrm{C}$ (Derate $22.57 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $85^{\circ} \mathrm{C}$)	2.03 W
Temperature	
Storage Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Peak Reflow (Moisture Sensitivity Level 3 (MSL3)) ${ }^{1}$	$260^{\circ} \mathrm{C}$
Junction to Maintain 1,000,000 Hours Mean Time to Failure (MTTF)	$175^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Nominal Junction }\left(\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}\right. \text {, } \\ & \left.\mathrm{I}_{\mathrm{DQ}}=150 \mathrm{~mA}\right) \end{aligned}$	$118.22^{\circ} \mathrm{C}$

${ }^{1}$ See the Ordering Guide for more information.
Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Close attention to PCB thermal design is required.
θ_{JC} is the junction to case thermal resistance.
Table 6. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\text {Jc }}$	Unit
CP-16-35	44.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES

1. NO CONNECT. THESE PINS ARE NOT CONNECTED INTERNALLY. THESE PINS MUST BE CONNECTED TO THE RF AND DC GROUND.
2. EXPOSED PAD. THE EXPOSED PAD

MUST BE CONNECTED TO THE RF
AND DC GROUND.
Figure 2. Pin Configuration
Table 8. Pin Function Descriptions

Pin No.	Mnemonic	Description
1,10	GND	Ground. The GND pin must be connected to the RF and dc ground. See Figure 6 for the interface schematic.
2	RFIN	RF Input. The RFIN pin is ac-coupled and matched to 50Ω. See Figure 4 for the interface schematic.
3 to 9,12,13, 16	NC	No Connect. These pins are not connected internally. These pins must be connected to the RF and dc ground.
11	RFout	RF Output. The RFout pin is ac-coupled and matched to 50Ω. See Figure 5 for the interface schematic.
14	VDD	Drain Supply Voltage for the Amplifier. See Figure 5 for the interface schematic.
15	RBAAS	Current Mirror Bias Resistor. Use the RBAS pin to set the quiescent current by connecting an external bias resistor as defined in Table 9 . Refer to Figure 87 for the bias resistor connection. See Figure 3 for the interface schematic.
	EPAD	Exposed Pad. The exposed pad must be connected to the RF and dc ground.

INTERFACE SCHEMATICS

Figure 3. R BIAS Interface Schematic

Figure 4. RFis Interface Schematic

Figure 5. $V_{D D}$ and RFout Interface Schematic

Figure 6. GND Interface Schematic

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 7. Gain and Return Loss vs. Frequency, 0.01 GHz to $12 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}$, $I_{D Q}=150 \mathrm{~mA}, R_{B I A S}=90.9 \Omega$ (S22 Is the Output Return Loss, S21 Is the Input Return Loss, and S11 Is the Gain)

Figure 8. Gain vs. Frequency for Various Temperatures, 0.3 GHz to 1 GHz, $V_{D D}=5 \mathrm{~V}, I_{D Q}=150 \mathrm{~mA}, R_{B I A S}=90.9 \Omega$

Figure 9. Gain vs. Frequency for Various $V_{D D}$ and $I_{D Q}$ Values, 0.3 GHz to $1 \mathrm{GHz}, R_{B A A}=90.9 \Omega$

Figure 10. Gain and Return Loss vs. Frequency, 0.1 GHz to $1 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}$, $I_{D Q}=150 \mathrm{~mA}, R_{B A A S}=90.9 \Omega$

Figure 11. Gain vs. Frequency for Various Temperatures, 1 GHz to 10 GHz , $V_{D D}=5 \mathrm{~V}, I_{D Q}=150 \mathrm{~mA}, R_{B I A S}=90.9 \Omega$

Figure 12. Gain vs. Frequency for Various $V_{D D}$ and $I_{D Q}$ Values, 1 GHz to $10 \mathrm{GHz}, R_{\text {BIAS }}=90.9 \Omega$

Figure 13. Gain vs. Frequency for Various $R_{B B A S}$ and $I_{D Q}$ Values, 0.3 GHz to $1 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}$

Figure 14. Input Return Loss vs. Frequency for Various Temperatures, 0.3 GHz to $1 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}, I_{D Q}=150 \mathrm{~mA}, R_{B A A S}=90.9 \Omega$

Figure 15. Input Return Loss vs. Frequency for Various $V_{D D}$ and $I_{D Q}$ Values, 0.3 GHz to $1 \mathrm{GHz}, R_{B A A S}=90.9 \Omega$

Figure 16. Gain vs. Frequency for Various $R_{B B A S}$ and $I_{D Q}$ Values, 1 GHz to $10 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}$

Figure 17. Input Return Loss vs. Frequency for Various Temperatures, 1 GHz to $10 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}, I_{D Q}=150 \mathrm{~mA}, R_{B A A}=90.9 \Omega$

Figure 18. Input Return Loss vs. Frequency for Various $V_{D D}$ and $I_{D Q}$ Values, 1 GHz to $10 \mathrm{GHz}, R_{\text {BIAS }}=90.9 \Omega$

Figure 19. Input Return Loss vs. Frequency for Various $R_{B I A S}$ and $I_{D Q}$ Values, 0.3 GHz to $1 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}$

Figure 20. Output Return Loss vs. Frequency for Various Temperatures, 0.3 GHz to $1 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}, I_{D Q}=150 \mathrm{~mA}, R_{B A A}=90.9 \Omega$

Figure 21. Output Return Loss vs. Frequency for Various VDD and I $I_{D Q}$ Values, 0.3 GHz to $1 \mathrm{GHz}, R_{\text {BIAS }}=90.9 \Omega$

Figure 22. Input Return Loss vs. Frequency for Various $R_{B I A S}$ and $I_{D Q}$ Values, 1 GHz to $10 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}$

Figure 23. Output Return Loss vs. Frequency for Various Temperatures, 1 GHz to $10 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}, I_{D Q}=150 \mathrm{~mA}, R_{B I A S}=90.9 \Omega$

Figure 24. Output Return Loss vs. Frequency for Various $V_{D D}$ and $I_{D Q}$ Values, 1 GHz to $10 \mathrm{GHz}, R_{B A A S}=90.9 \Omega$

Figure 25. Output Return Loss vs. Frequency for Various $R_{B I A S}$ and $I_{D Q}$ Values, 0.3 GHz to $1 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}$

Figure 26. Reverse Isolation vs. Frequency for Various Temperatures, 0.3 GHz to $1 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}, I_{D Q}=150 \mathrm{~mA}, R_{B I A S}=90.9 \Omega$

Figure 27. Reverse Isolation vs. Frequency for Various $V_{D D}$ and $I_{D Q}$ Values, 0.3 GHz to $1 \mathrm{GHz}, R_{B A A}=90.9 \Omega$

Figure 28. Output Return Loss vs. Frequency for Various $R_{B I A S}$ and $I_{D Q}$ Values, 1 GHz to $10 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}$

Figure 29. Reverse Isolation vs. Frequency for Various Temperatures, 1 GHz to $10 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}, I_{D Q}=150 \mathrm{~mA}, R_{B I A S}=90.9 \Omega$

Figure 30. Reverse Isolation vs. Frequency for Various $V_{D D}$ and $I_{D Q}$ Values, 1 GHz to $10 \mathrm{GHz}, R_{B I A S}=90.9 \Omega$

Figure 31. Reverse Isolation vs. Frequency for Various $R_{B I A S}$ and $I_{D Q}$ Values, 0.3 GHz to $1 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}$

Figure 32. Noise Figure vs. Frequency for Various Temperatures, 0.3 GHz to $1 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}, I_{D Q}=150 \mathrm{~mA}, R_{B A A}=90.9 \Omega$

Figure 33. Noise Figure vs. Frequency for Various $V_{D D}$ and $I_{D Q}$ Values, 0.3 GHz to $1 \mathrm{GHz}, R_{B I A S}=90.9 \Omega$

Figure 34. Reverse Isolation vs. Frequency for Various $R_{B I A S}$ and $I_{D Q}$ Values, 1 GHz to $10 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}$

Figure 35. Noise Figure vs. Frequency for Various Temperatures, 1 GHz to $10 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}, I_{D Q}=150 \mathrm{~mA}, R_{B A A S}=90.9 \Omega$

Figure 36. Noise Figure vs. Frequency for Various $V_{D D}$ and $I_{D Q}$ Values, 1 GHz to $10 \mathrm{GHz}, R_{\text {BIAS }}=90.9 \Omega$

Figure 37. Noise Figure vs. Frequency for Various $R_{B I A S}$ and $I_{D Q}$ Values, 0.3 GHz to $1 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}$

Figure 38. OP1dB vs. Frequency for Various Temperatures, 0.35 GHz to $10 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}, I_{D Q}=150 \mathrm{~mA}, R_{B I A S}=90.9 \Omega$

Figure 39. OP1dB vs. Frequency for Various Temperatures, 0.35 GHz to $1 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}, I_{D Q}=150 \mathrm{~mA}, R_{B A A}=90.9 \Omega$

Figure 40. Noise Figure vs. Frequency for Various $R_{B I A S}$ and $I_{D Q}$ Values, 1 GHz to $10 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}$

Figure 41. PsAT Vs. Frequency for Various Temperatures, 0.35 GHz to 10 GHz , $V_{D D}=5 \mathrm{~V}, I_{D Q}=150 \mathrm{~mA}, R_{B A A S}=90.9 \Omega$

Figure 42. OP1dB vs. Frequency for Various Temperatures, 1 GHz to 10 GHz , $V_{D D}=5 \mathrm{~V}, I_{D Q}=150 \mathrm{~mA}, R_{B A A S}=90.9 \Omega$

Figure 43. $O P 1 d B$ vs. Frequency for Various $V_{D D}$ and $I_{D Q}$ Values, 0.35 GHz to $1 \mathrm{GHz}, R_{\text {BIAS }}=90.9 \Omega$

Figure 44. OP1dB vs. Frequency for Various $R_{B I A S}$ and $I_{D Q}$ Values, 0.35 GHz to $1 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}$

Figure 45. PSAT vs. Frequency for Various Temperatures, 0.35 GHz to 1 GHz , $V_{D D}=5 \mathrm{~V}, I_{D Q}=150 \mathrm{~mA}, R_{B I A S}=90.9 \Omega$

Figure 46. $O P 1 d B$ vs. Frequency for Various $V_{D D}$ and $I_{D Q}$ Values, 1 GHz to $10 \mathrm{GHz}, R_{\text {BIAS }}=90.9 \Omega$

Figure 47. OP1dB vs. Frequency for Various RBBAs and IDO Values, 1 GHz to $10 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}$

Figure 48. $P_{S A T}$ Vs. Frequency for Various Temperatures, 1 GHz to 10 GHz , $V_{D D}=5 \mathrm{~V}, I_{D Q}=150 \mathrm{~mA}, R_{B I A S}=90.9 \Omega$

Figure 49. $P_{S A T}$ Vs. Frequency for Various $V_{D D}$ and $I_{D Q}$ Values, 0.35 GHz to $1 \mathrm{GHz}, R_{\text {BIAS }}=90.9 \Omega$

Figure 50. PSAT Vs. Frequency for Various RBAAs and IDQ Values, 0.35 GHz to $1 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}$

Figure 51. PAE vs. Frequency for Various Temperatures, 0.35 GHz to 1 GHz , $V_{D D}=5 \mathrm{~V}, I_{D Q}=150 \mathrm{~mA}, R_{B A A}=90 \Omega$

Figure 52. $P_{S A T}$ Vs. Frequency for Various $V_{D D}$ and $I_{D Q}$ Values, 1 GHz to 10 GHz , $R_{B A A}=90.9 \Omega$

Figure 53. PSAT Vs. Frequency for Various $R_{B A A S}$ and $I_{D Q}$ Values, 1 GHz to $10 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}$

Figure 54. PAE vs. Frequency for Various Temperatures, 1 GHz to 10 GHz , $V_{D D}=5 \mathrm{~V}, I_{D Q}=150 \mathrm{~mA}, R_{B A A}=90 \Omega$

Figure 55. PAE vs. Frequency for Various $V_{D D}$ and $I_{D Q}$ Values, 0.35 GHz to $1 \mathrm{GHz}, R_{\text {BIAS }}=90.9 \Omega$

Figure 56. PAE vs. Frequency for Various RBAAs and IDQ Values, 0.3 GHz to $1 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}$

Figure 57. Pout, Gain, PAE, and $I_{D D}$ vs. Input Power, Power Compression at $0.4 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}, R_{B I A S}=90.9 \Omega$

Figure 58. PAE vs. Frequency for Various VDD and IDQ Values, 1 GHz to 10 GHz , $R_{B A A S}=90.9 \Omega$

Figure 59. PAE vs. Frequency for Various $R_{B B A S}$ and $I_{D Q}$ Values, 1 GHz to $10 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}$

Figure 60. Pout, Gain, PAE, and IDD vs. Input Power,
Power Compression at $2 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}, R_{B A A S}=90.9 \Omega$

Figure 61. Pout, Gain, PAE, and I IDD vs. Input Power, Power Compression at $5 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}, R_{B I A S}=90.9 \Omega$

Figure 62. OP1dB, Gain, $P_{S A T}$, and $I_{D D}$ (Measured at $P_{S A T}$) vs. Supply Voltage, Power Compression at $0.4 \mathrm{GHz}, R_{B I A S}=90.9 \Omega$

Figure 63. OP1dB, Gain, $P_{S A T,}$ and $I_{D D}$ (Measured at $P_{S A T}$) vs. Supply Voltage, Power Compression at $5 \mathrm{GHz}, \mathrm{R}_{\mathrm{BIAS}}=90.9 \Omega$

Figure 64. Pout, Gain, PAE, and $I_{D D}$ vs. Input Power, Power Compression at $7 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}, R_{B I A S}=90.9 \Omega$

Figure 65. OP1dB, Gain, $P_{S A T}$, and $I_{D D}$ (Measured at $P_{S A T}$) vs. Supply Voltage, Power Compression at $2 \mathrm{GHz}, R_{\text {BIAS }}=90.9 \Omega$

Figure 66. OP1dB, Gain, $P_{S A T}$, and IDD (Measured at $P_{S A T}$) vs. Supply Voltage, Power Compression at $7 \mathrm{GHz}, R_{B I A S}=90.9 \Omega$

Figure 67. PDISS Vs. Input Power at $T_{A}=85^{\circ} \mathrm{C}, V_{D D}=5 \mathrm{~V}, I_{D Q}=150 \mathrm{~mA}$, $R_{\text {BIAS }}=90.9 \Omega$

Figure 68. OIP3 vs. Frequency for Various Temperatures, 0.35 GHz to 1 GHz , $V_{D D}=5 \mathrm{~V}, I_{D Q}=150 \mathrm{~mA}, R_{B I A S}=90.9 \Omega$, Pout per Tone $=5 \mathrm{dBm}$

Figure 69. OIP3 vs. Frequency for Various $V_{D D}$ and $I_{D Q}$ Values, 0.3 GHz to $1 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}$, Pout per Tone $=5 \mathrm{dBm}$

Figure 70. OIP3 vs. Frequency for Various Pout per Tone, $V_{D D}=5 \mathrm{~V}, R_{B A S}=90.9 \Omega$, $I_{D Q}=150 \mathrm{~mA}$

Figure 71. OIP3 vs. Frequency for Various Temperatures, 1 GHz to 10 GHz, $V_{D D}=5 \mathrm{~V}, I_{D Q}=150 \mathrm{~mA}, R_{B I A S}=90.9 \Omega$, POUT Per Tone $=5 \mathrm{dBm}$

Figure 72. OIP3 vs. Frequency for Various $V_{D D}$ and $I_{D Q}$ Values, 1 GHz to $10 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}$, Pout per Tone $=5 \mathrm{dBm}$

Figure 73. OIP3 vs. Frequency for Various $R_{B I A S}$ and $I_{D Q}$ Values, 0.3 GHz to $1 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}$, Pout per Tone $=5 \mathrm{dBm}$

Figure 74. Third-Order Intermodulation Distortion Relative to Carrier (IMD3) vs. Frequency for Various Pout per Tone, $V_{D D}=5 \mathrm{~V}, I_{D Q}=150 \mathrm{~mA}, R_{B A S}=90.9 \Omega$

Figure 75. OIP2 vs. Frequency for Various Temperatures, 0.35 GHz to 1 GHz , $V_{D D}=5 \mathrm{~V}, I_{D Q}=150 \mathrm{~mA}, R_{B I A S}=90.9 \Omega$, Pout per Tone $=5 \mathrm{dBm}$

Figure 76. OIP3 vs. Frequency for Various $R_{B A A}$ and $I_{D Q}$ Values, 1 GHz to $10 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}$, Pout per Tone $=5 \mathrm{dBm}$

Figure 77. OIP2 vs. Frequency for Various Pout per Tone, VDD $=5 \mathrm{~V}$, $I_{D Q}=150 \mathrm{~mA}, R_{B I A S}=90.9 \Omega$

Figure 78. OIP2 vs. Frequency for Various Temperatures, 1 GHz to 10 GHz , $V_{D D}=5 \mathrm{~V}, I_{D Q}=150 \mathrm{~mA}, R_{B A A S}=90.9 \Omega$, P OUT per Tone $=5 \mathrm{dBm}$

Figure 79. OIP2 vs. Frequency for Various $V_{D D}$ and $I_{D Q}$ Values, 0.35 GHz to $1 \mathrm{GHz}, R_{\text {BIAS }}=90.9 \Omega$, Pout per Tone $=5 \mathrm{dBm}$

Figure 80. OIP2 vs. Frequency for Various RBIAS and IDQ Values, 0.3 GHz to $1 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}$, Pout per Tone $=5 \mathrm{dBm}$

Figure 81. IDQ Vs. Input Power for Various Frequencies, $V_{D D}=5 \mathrm{~V}, R_{B A A}=90.9 \Omega$

Figure 82. OIP2 vs. Frequency for Various VDD and $I_{D O}$ Values, 1 GHz to $10 \mathrm{GHz}, R_{\text {BIAS }}=90.9 \Omega$, POUT per Tone $=5 \mathrm{dBm}$

Figure 83. OIP2 vs. Frequency for Various $R_{B A A}$ and $I_{D Q}$ Values, 1 GHz to $10 \mathrm{GHz}, V_{D D}=5 \mathrm{~V}$, Pоит per Tone $=5 \mathrm{dBm}$

Figure 84. $I_{D Q}$ vs. Supply Voltage, $R_{B B A S}=90.9 \Omega$

Figure 85. IDQ vs. Bias Resistor Value, VDD $=5 \mathrm{~V}$

THEORY OF OPERATION

The ADL8104 is a GaAs, MMIC, pHEMT, low noise wideband amplifier with integrated ac-coupling capacitors and a bias inductor. Figure 86 shows a simplified schematic.
The ADL8104 has ac-coupled, single-ended input and output ports with impedances that are nominally equal to 50Ω over the 0.4 GHz to 7.5 GHz frequency range. No external matching
components are required. To adjust the quiescent current, connect an external resistor between the RBIAS and VDD pins.

APPLICATIONS INFORMATION

The basic connections for operating the ADL8104 over the specified frequency range are shown in Figure 87. No external biasing inductor is required, allowing the 5 V supply to be connected to the V_{DD} pin. The $1 \mu \mathrm{~F}$ and 1000 pF power supply decoupling capacitors are recommended. The power supply decoupling capacitors shown in Figure 87 represent the configuration used to characterize and qualify the ADL8104.
To set I_{DQ}, connect a resistor, R 1 , between the $\mathrm{R}_{\text {BIA }}$ and V_{DD} pins. A default value of 90.9Ω is recommended, which results in a nominal $I_{D Q}$ of 150 mA . Table 9 shows how the $I_{D Q}$ and $I_{D D}$ varies vs. the bias resistor value. The $\mathrm{R}_{\text {bias }}$ pin also draws a current that varies with the value of $\mathrm{R}_{\text {BIAS }}$ (see Table 9). Do not leave the $R_{\text {bias }}$ pin open.

RECOMMENDED BIAS SEQUENCING

See the ADL8104-EVALZ user guide for the recommended bias sequencing information.

Table 9. Recommended Bias Resistor Values

RBAAS $\boldsymbol{(\Omega)}$	IDQ $(\mathbf{m A})$	IDD $(\mathbf{m A})$	IRBIAS $^{(m A)}$
0	165	157.3	7.7
90	150	144	6
440	125	120	5
1180	100	97	3

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-220-WEED-2

Figure 88. 16-Lead Lead Frame Chip Scale Package [LFCSP]
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Body and 0.75 mm Package Height (CP-16-35)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1,2	Temperature Range $^{\text {² }}$	MSL Rating		
ADL8104ACPZN	Package Description 4	Package Option		
ADL8104ACPZN-R7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MSL3	16 -Lead Lead Frame Chip Scale Package [LFCSP]
ADL8104-EVALZ			16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-35

${ }^{1}$ The ADL8104ACPZN, ADL8104ACPZN-R7, and ADL8104-EVALZ are RoHS compliant parts.
${ }^{2}$ When ordering the evaluation board only, reference the model number, ADL8104-EVALZ.
${ }^{3}$ See the Absolute Maximum Ratings section for additional information.
${ }^{4}$ The lead finish of the ADL8104ACPZN and ADL8104ACPZN-R7 is nickel palladium gold (NiPdAu).

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Development Tools category:
Click to view products by Analog Devices manufacturer:

Other Similar products are found below :
MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT\# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT\# MAX2692EVKIT\# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 119197HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB

