

Microprocessor **Supervisory Circuit**

ADM1232A

FEATURES

Precision 5 V voltage monitor with 5% or 10% tolerance options Adjustable STROBE monitor with 150 ms, 600 ms, or 1.2 sec options Fast (20 ns) STROBE pulse width

No external components required Packaged in 8-Lead SOIC Specified from -40°C to +85°C

APPLICATIONS

Microprocessor systems Portable equipment Computers Controllers **Intelligent instruments Automotive systems** Protection against damage caused by microprocessor failure

GENERAL DESCRIPTION

The ADM1232A is pin-compatible to the MAX1232, DS1232LP, and DS1232. The ADM1232A can detect strobe pulse widths as narrow as 20 ns, making it compatible with high speed microprocessors. The Analog Devices, Inc., ADM1232A is a microprocessor monitoring circuit that monitors microprocessor supply voltage. It can also detect if a microprocessor has locked up or an external interrupt has been issued. The ADM1232A is available in an 8-lead narrow body SOIC and is specified over the -40°C to +85°C temperature range.

FUNCTIONAL BLOCK DIAGRAM

Figure 2. Typical Supply Monitoring Application

Rev. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ADM1232A

TABLE OF CONTENTS

Features	. 1
Applications	. 1
Functional Block Diagram	. 1
General Description	. 1
Revision History	. 2
Specifications	. 3
Absolute Maximum Ratings	. 4
ESD Caution	. 4

Pin Configuration and Function Descriptions	5
Circuit Information	6
PB RESET	6
STROBE Timeout Selection	6
TOLERANCE	6
RESET and RESET Outputs	6
Outline Dimensions	7
Ordering Guide	7

REVISION HISTORY

1/09—Rev. 0 to Rev. A

Updated Format	.Universal
Deleted RM-8, N-8, R-16 Packages	.Universal
Changes to Features and General Description Sections	s 1
Changes to Table 3	5
Changes to Tolerance Section	6
Changes to Ordering Guide	8
7/00 Devision 0. Initial Version	

7/99—Revision 0: Initial Version

SPECIFICATIONS

 $V_{\rm CC}$ = full operating range, $T_{\rm A}$ = $T_{\rm MIN}$ to $T_{\rm MAX}$, unless otherwise noted.

Table 1.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
TEMPERATURE RANGE	-40		+85	°C	$T_A = T_{MIN}$ to T_{MAX} .
POWER SUPPLY					
Voltage	4.5	5.0	5.5	v	
Current		20	50	μA	V_{IL} , V_{IH} = CMOS levels.
		200	500	μΑ	V_{IL} , V_{IH} = TTL levels.
STROBE AND PB RESET INPUTS					
Input High Level	2.0		V _{cc} + 0.3	v	
Input Low Level	-0.3		+0.8	v	
INPUT LEAKAGE CURRENT					
(STROBE, TOLERANCE)	-1.0		+1.0	μΑ	
TD		1.6		μΑ	
OUTPUT CURRENT					
RESET	8	10		mA	When V_{cc} is at 4.5 V to 5.5 V.
RESET, RESET	-8	-12		mA	When V_{CC} is at 4.5 V to 5.5 V.
OUTPUT VOLTAGE					
RESET/RESET	$V_{CC} - 0.5$	$V_{CC} - 0.1$		V	While sourcing less than 500 μ A, RESET remains within
					0.5 V of V _{cc} on power-down until V _{cc} drops below 2.0 V.
					of GND on nower-down until Vec drops below 2.0.V
RESET/RESET High Level			0.4	V	
RESET/RESET Low/Level	24		0.4	v	
	2.4			v	
RESET Output Voltage		V 01		V	While sourcing loss than 50 uA
RESET Output Voltage		V _{CC} – 0.1		v	While sourcing less than 50 µA.
		0.1		V	while sinking less than 50 µA.
	15	4.62	171	V	
10%	4.J 1 25	4.02	4.74 1/10	v	TOLERANCE – V_{cc}
	ч.25	ч.57	יד.ד	v	
			F	ъĘ	T 25°C
Output ($BESET$ \overline{BESET})			5	μ	$T_{A} = 25 \text{ C}.$
			1	рг	TA = 25 C.
	20			100.0	
lime Delay	20	4	20	ms	PB RESET must be held low for a minimum of 20 ms to
	1	4	1000	1115	
	250	010	1000	ms	
STRUBE	20				
Puise width	20	150	250	ns	
Timeout Period	02.5	150	250	ms	ID = 0V.
	250	1200	2000	ms	TD = 10atting.
	300	1200	2000	1115	
Fall Time	10			116	Guarantood by docign
Rise Time	0			μs	Guaranteed by design
	0			μ3	
OUTPUT DELAY					
RESET and RESET Are					
Logically Correct			50	μs	After V_{CC} falls below the set tolerance voltage (see Figure 7).
	250	610	1000	ms	After V _{CC} rises above the set tolerance voltage.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}$ C, unless otherwise noted.

Table 2.

Parameter	Rating
Vcc	5.5 V
Logic Inputs	-0.3 V to V $_{\text{CC}}$ + 0.3 V
Storage Temperature Range	-65°C to +150°C
Lead Temperature (Soldering, 10 sec)	300°C
Vapor Phase (60 sec)	215°C
Infrared (15 sec)	220°C
Power Dissipation	900 μW
Derate by 12 mW/°C Above 25°C	
θ_{JA} Thermal Impedance (Still Air)	153°C/W

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	PB RESET	Push Button Reset Input. This debounced input ignores pulses of less than 1 ms and is guaranteed to respond to pulses greater than 20 ms.
2	TD	Time Delay Set. This pin allows the user to select the maximum amount of time the ADM1232A allows the STROBE input to remain inactive (that is, STROBE is not receiving any high-to-low transitions), without forcing the ADM1232A to generate a RESET pulse. (See Table 1, the strobe timeout settings in Table 4, and Figure 6.)
3	TOLERANCE	Tolerance Input. This input determines how much the supply voltage will be allowed to decrease (as a percentage tolerance) before a RESET is asserted. Connect to V _{CC} for 10% tolerance and GND for 5% tolerance.
4	GND	0 V ground reference for all signals.
5	RESET	Active High Logic Out <u>put. This pin</u> is asserted when V _{CC} decreases below the amount specified by the TOLERANCE input, or PB RESET is forced low, or if there are no high-to-low transitions within the limits set by TD at STROBE, or during power-up.
6	RESET	Open Drain, Active Low Logic Output. The inverse of RESET.
7	STROBE	The STROBE input is used to monitor the activity of a microprocessor. If there are no high-to-low transitions within the time specified by TD, a reset is asserted.
8	Vcc	Power Supply Input +5 V.

ADM1232A

CIRCUIT INFORMATION PB RESET

The $\overline{\text{PB}\text{ RESET}}$ input makes it possible to manually reset a system using either a standard push-button switch or a logic low input. An internal debounce circuit provides glitch immunity when used with a switch, reducing the effects of glitches on the line. The debounce circuit is guaranteed to cause the ADM1232A to assert a reset if $\overline{\text{PB}\text{ RESET}}$ is brought low for more than 20 ms and is guaranteed to ignore low inputs of less than 1 ms.

Figure 4. Typical Push-Button Reset Application

STROBE TIMEOUT SELECTION

TD or time delay set is used to set the strobe timeout period. The strobe timeout period is defined as being the maximum time between high-to-low transitions that STROBE accepts before a reset is asserted (see Figure 6). The strobe timeout settings are listed in Table 4.

Table 4. Strobe Timeout Settings

Condition	Min	Тур	Max	Unit
TD = 0 V	62.5	150	250	ms
TD = floating	250	600	1000	ms
$TD = V_{CC}$	500	1200	2000	ms

Figure 7. Reset Output Delay

TOLERANCE

The TOLERANCE input is used to determine the level V_{CC} can vary below 5 V without the ADM1232A asserting a reset. Connecting TOLERANCE to ground selects a -5% tolerance level and causes the ADM1232A to generate a reset if V_{CC} falls below 4.75 V. If TOLERANCE is connected to V_{CC}, a -10% tolerance level is selected and causes the ADM1232A to generate a reset if V_{CC} falls below 4.5 V. Check the parameters for the V_{CC} trip point in the Specifications section for more information.

RESET AND RESET OUTPUTS

 $\frac{\text{While RESET is capable of sourcing and sinking current,}}{\text{RESET is an open drain MOSFET which sinks current only.}}$ Therefore, it is necessary to pull RESET output high.

OUTLINE DIMENSIONS

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADM1232AARNZ ¹	-40°C to +85°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8
ADM1232AARNZ-REEL ¹	-40°C to +85°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8

 1 Z = RoHS Compliant Part.

ADM1232A

NOTES

www.analog.com

©1999–2009 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D00061-0-1/09(A)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Supervisory Circuits category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

CAT1161LI-25-G CAT853STBI-T3 CAT1026LI-30-G CAT1320LI-25-G TC54VN2402EMB713 MCP1316T-44NE/OT MCP1316MT-45GE/OT MCP1316MT-23LI/OT MAX8997EWW+ MAX6725AKASYD3-LF-T DS1232L NCV302HSN45T1G PT7M6130NLTA3EX PT7M7811STBEX-2017 S-1000N28-I4T1U CAT1161LI-28-G MCP1321T-29AE/OT MCP1319MT-47QE/OT S-1000N23-I4T1U S-1000N19-I4T1U CAT824UTDI-GT3 TC54VC2502ECB713 PT7M6133NLTA3EX PT7M6127NLTA3EX AP0809ES3-r HG811RM4/TR MD7030C MD7033C MD7019 MD7020 MD7021 MD7023 MD7024 MD7027 MD7030 MD7033 MD7035 MD7036 MD7039 MD7040 MD7044 MD7050 MD7015 MD7028 MD7031 MD7042 MD7043 MD7047 MD7060 MD7027C