FEATURES

Operates with 3.3 V supply
Interoperable with 5 V logic
EIA RS-422 and RS-485 compliant over full CM range
Data rate: $\mathbf{2 5 0}$ kbps
Half duplex transceiver
Reduced slew rates for low EMI
2 nA supply current in shutdown mode
Up to 256 transceivers on a bus
-7 V to +12 V bus common-mode range
Specified over $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range
8 ns skew
Available in 8-lead SOIC

APPLICATIONS

Low power RS-485 applications
EMI sensitive systems
DTE-DCE interfaces
Industrial control
Packet switching
Local area networks
Level translators

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

GENERAL DESCRIPTION

The ADM3493 is a low power, differential line transceiver designed to operate using a single 3.3 V power supply. Low power consumption, coupled with a shutdown mode, makes it ideal for power-sensitive applications. The ADM3493 is suitable for communication on multipoint bus transmission lines.

The device contains one driver and one receiver. Designed for half-duplex communication, the ADM3493 features a slew rate limited driver that minimizes EMI and reduces reflections caused by improperly terminated cables, allowing error-free data transmission at data rates up to 250 kbps.

The receiver input impedance is $96 \mathrm{k} \Omega$, allowing up to 256 transceivers to be connected on the bus. A thermal shutdown circuit prevents excessive power dissipation caused by bus contention or by output shorting. If a significant temperature increase is detected in the internal driver circuitry during fault conditions then the thermal shutdown circuit forces the driver output into a high impedance state. The receiver contains a failsafe feature that results in a logic high output state, if the inputs are unconnected (floating).

The ADM3493 is fully specified over the commercial and industrial temperature ranges and is available in an 8-lead SOIC.

Rev. 0

ADM3493

TABLE OF CONTENTS

\qquad
Applications. 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Timing Specifications 4
Absolute Maximum Ratings 5
ESD Caution 5
Pin Configurations and Function Descriptions 6
Test Circuits. 7
Switching Characteristics 8
Typical Performance Characteristics 9
Circuit Description 11
Reduced EMI and Reflections 11
Low Power Shutdown Mode 11
Driver Output Protection. 11
Propagation Delay 11
Typical Applications 11
Outline Dimensions 12
Ordering Guide 12

REVISION HISTORY

10/05—Rev. 0: Initial Version

SPECIFICATIONS

$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.
Table 1.

[^0]
ADM3493

TIMING SPECIFICATIONS

$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 2.

Parameter	Min	Typ	Max	Units	Test Conditions/Comments
DRIVER					
Differential Output Delay, $\mathrm{t}_{\text {D }}$	600	900	1400	ns	$\mathrm{R}_{\mathrm{L}}=60 \Omega$ (see Figure 6 and Figure 12)
Differential Output Transition Time, $\mathrm{t}_{\text {TD }}$	400	700	1200	ns	$\mathrm{R}_{\mathrm{L}}=60 \Omega$ (see Figure 6 and Figure 12)
Propagation Delay, Low-to-High Level, $\mathrm{tpLH}^{\text {L }}$	700	1000	1500	ns	$\mathrm{R}_{\mathrm{L}}=27 \Omega$ (see Figure 7 and Figure 13)
Propagation Delay, High-to-Low Level, tphl	700	1000	1500	ns	$\mathrm{R}_{\mathrm{L}}=27 \Omega$ (see Figure 7 and Figure 13)
$\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|$ Propagation Delay Skew ${ }^{1}$, tPDS		100		ns	$\mathrm{R}_{\mathrm{L}}=27 \Omega$ (see Figure 7 and Figure 13)
DRIVER OUTPUT ENABLE/DISABLE TIMES					
Output Enable Time to Low Level, tpzl		900	1300	ns	$\mathrm{R}_{\mathrm{L}}=110 \Omega$ (see Figure 9 and Figure 15)
Output Enable Time to High Level, tpzH		600	800	ns	$\mathrm{R}_{L}=110 \Omega$ (see Figure 8 and Figure 14)
Output Disable Time from High Level, $\mathrm{t}_{\text {PHz }}$		50	80	ns	$R \mathrm{LL}=110 \Omega$ (see Figure 8 and Figure 14)
Output Disable Time from Low Level, tplz		50	80	ns	$\mathrm{RL}_{\mathrm{L}}=110 \Omega$ (see Figure 9 and Figure 15)
Output Enable Time from Shutdown to Low Level, tpsL		1.9	2.7	$\mu \mathrm{s}$	$\mathrm{R}_{L}=110 \Omega$ (see Figure 9 and Figure 15)
Output Enable Time from Shutdown to High Level, tpsH		2.2	3.0	$\mu \mathrm{s}$	$\mathrm{R}_{\mathrm{L}}=110 \Omega$ (see Figure 8 and Figure 14)
RECEIVER					
Time to Shutdown ${ }^{2}$, tshin	80	190	300	ns	
Propagation Delay, Low-to-High Level, terpLH	25	75	180	ns	$\mathrm{V}_{\mathrm{ID}}=0 \mathrm{~V}$ to $3.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (see Figure 10 and Figure 16)
Propagation Delay, High-to-Low Level, trPHL	25	75	180	ns	$\mathrm{V}_{\text {ID }}=0 \mathrm{~V}$ to $3.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (see Figure 10 and Figure 16)
$\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|$ Propagation Delay Skew, $\mathrm{t}_{\text {RPDS }}$			50	ns	$\mathrm{V}_{\mathrm{ID}}=0 \mathrm{~V}$ to $3.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (see Figure 10 and Figure 16)
RECEIVER OUTPUT ENABLE/DISABLE TIMES					
Output Enable Time to Low Level, tprzL		25	50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (see Figure 11 and Figure 17)
Output Enable Time to High Level, $\mathrm{t}_{\text {PRzH }}$		25	50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (see Figure 11 and Figure 17)
Output Disable Time from High Level, $\mathrm{t}_{\text {PRHz }}$		25	45	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (see Figure 11 and Figure 17)
Output Disable Time from Low Level, trpLz		25	45	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (see Figure 11 and Figure 17)
Output Enable Time from Shutdown to Low Level, tppsL		720	1400	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (see Figure 11 and Figure 17)
Output Enable Time from Shutdown to High Level, tPRSH		720	1400	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (see Figure 11 and Figure 17)

[^1]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 3.

Parameter	Rating
V $_{\mathrm{cc}}$ to GND	7 V
Digital I/O Voltage (DE, $\overline{\mathrm{EE}, ~ D I) ~}$	-0.3 V to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$
Digital I/O Voltage (RouT)	$\mathrm{V}_{\mathrm{cc}}-0.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V}$
Driver Output/Receiver Input Voltage	-7.5 V to +12.5 V
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
OJA Thermal Impedance \quad	
\quad 8-Lead SOIC	$121^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature	
\quad Soldering (10 seconds)	$300^{\circ} \mathrm{C}$
\quad Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$
\quad Infrared (15 seconds)	$220^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ADM3493

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration

Table 4. . Pin Function Descriptions

Pin No.	Mnemonic	Description
1	RO	Receiver Output. When enabled, if $\mathrm{A}>\mathrm{B}$ by 200 mV , then $\mathrm{RO}=$ high. If $A<B$ by 200 mV , then $R O=$ low.
2	$\overline{\mathrm{RE}}$	Receiver Output Enable. A low level enables the receiver output, RO. A high level places it in a high impedance state. If $\overline{\mathrm{RE}}$ is high and DE is low, the device enters a low power shutdown mode.
3	DE	Driver Output Enable. A high level enables the driver differential Outputs A and B. A low level places it in a high impedance state. If $\overline{\mathrm{RE}}$ is high and $D E$ is low, the device enters a low power shutdown mode.
4	DI	Driver Input. When the driver is enabled, a logic low on DI forces A low and B high while a logic high on DI forces A high and B low.
5	GND	Ground.
6	A	Noninverting Receiver Input A and Noninverting Driver Output A.
7	B	Inverted Receiver Input B and Inverted Driver Output B.
8	V cc	Power Supply, $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$.

TEST CIRCUITS

Figure 3. Driver VOD and VOC

Figure 4. Driver VOD with Varying Common-Mode Voltage

Figure 5. Receiver $V_{O H}$ and $V_{O L}$

${ }^{1}$ PPR $=250 \mathrm{kHz}, 50 \%$ DUTY CYCLE, $\mathrm{t}_{\mathrm{R}} \leq 6.0 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$.
${ }^{2} \mathrm{C}_{\mathrm{L}}$ INCLUDES PROBE AND STRAY CAPACITANCE.
Figure 6. Driver Differential Output Delay and Transition Times

${ }^{1} \mathrm{PPR}=250 \mathrm{kHz}, 50 \%$ DUTY CYCLE, $\mathrm{t}_{\mathrm{R}} \leq 6.0 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$. ${ }^{2} \mathrm{C}_{\mathrm{L}}$ INCLUDES PROBE AND STRAY CAPACITANCE.

Figure 7. Driver Propagation Delays

${ }^{1} \mathrm{PPR}=250 \mathrm{kHz}, 50 \%$ DUTY CYCLE, $\mathrm{t}_{\mathrm{R}} \leq 6.0 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$. ${ }^{2} C_{L}$ INCLUDES PROBE AND STRAY CAPACITANCE.

Figure 8. Driver Enable and Disable Times (tpzH, $t_{\text {PSH, }} t_{\text {PHz }}$)

${ }^{1}{ }^{1}$ PPR $=250 \mathrm{kHz}, 50 \%$ DUTY CYCLE, $\mathrm{t}_{\mathrm{R}} \leq 6.0 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$. ${ }^{2} \mathrm{C}_{\mathrm{L}}$ INCLUDES PROBE AND STRAY CAPACITANCE.

Figure 9. Driver Enable and Disable Times (PFLL $, t_{P S L}, t_{P L Z}$)

${ }^{1} \mathrm{PPR}=250 \mathrm{kHz}, 50 \%$ DUTY CYCLE, $\mathrm{t}_{\mathrm{R}} \leq 6.0 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$. ${ }^{2} \mathrm{C}_{\mathrm{L}}$ INCLUDES PROBE AND STRAY CAPACITANCE.

Figure 10. Receiver Propagation Delay

${ }^{1} \mathrm{PPR}=250 \mathrm{kHz}, 50 \%$ DUTY CYCLE, $\mathrm{t}_{\mathrm{R}} \leq 6.0 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$. ${ }^{2} \mathrm{C}_{\mathrm{L}}$ INCLUDES PROBE AND STRAY CAPACITANCE.

Figure 11. Receiver Enable and Disable Times

ADM3493

SWITCHING CHARACTERISTICS

Figure 12. Driver Differential Output Delay and Transition Times

Figure 13. Driver Propagation Delays

Figure 14. Driver Enable and Disable Times ($t_{\text {PZH, }}, t_{\text {PSH }}, t_{\text {PHZ }}$)

Figure 15. Driver Enable and Disable Times ($\left.t_{\text {PLL }}, t_{\text {PSL }}, t_{P L Z}\right)$

Figure 16. Receiver Propagation Delay

Figure 17. Receiver Enable and Disable Times

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 18. Output Current vs. Receiver Output Low Voltage

Figure 19. Output Current vs. Receiver Output High Voltage

Figure 20. Receiver Output High Voltage vs. Temperature, $10=1.5 \mathrm{~mA}$

Figure 21. Receiver Output Low Voltage vs. Temperature, $I_{0}=2.5 \mathrm{~mA}$

Figure 22. Driver Output Current vs. Differential Output Voltage

Figure 23. Driver Differential Output Voltage vs. Temperature, $R I=54 \Omega$

ADM3493

Figure 24. Output Current vs. Driver Output Low Voltage

Figure 25. Output Current vs. Driver Output High Voltage

Figure 26. Supply Current vs. Temperature

Figure 27. Shutdown Current vs. Temperature, $V_{\subset C}=3.3 \mathrm{~V}$

CIRCUIT DESCRIPTION

The ADM3493 is a low power transceiver for RS-485 and RS-422 communications. The ADM3493 can transmit and receive at data rates up to 250 kbps in a half duplex configuration. Driver Enable (DE) and Receiver Enable ($\overline{\mathrm{RE}}$) pins are included when disabled; the driver and receiver outputs are high impedance.
Table 5. Transmitting Truth Table

Transmitting Inputs			Transmitting Outputs		Mode
$\overline{\mathbf{R E}}$	DE	DI	\mathbf{B}	\mathbf{A}	
X^{1}	1	1	0	1	Normal
X^{1}	1	0	1	0	Normal
0	0	X^{1}	High-Z ${ }^{2}$	High- Z^{2}	Normal
1	0	X^{1}	High-Z 2	High- Z^{2}	Shutdown

[^2]Table 6. Receiving Truth Table

Receiving Inputs			Receiving Outputs	Mode
$\overline{\mathbf{R E}}$	DE	A - B	RO	
0	0	$\geq+0.2 \mathrm{~V}$	1	Normal
0	0	$\leq-0.2 \mathrm{~V}$	0	Normal
0	0	Inputs Open	1	Normal
1	0	X^{1}	High-Z 2	Shutdown

${ }^{1} \mathrm{X}=$ Don't care.
${ }^{2}$ High-Z = High Impedance

REDUCED EMI AND REFLECTIONS

The ADM3493 is a slew rate limited transceiver, minimizing EMI and reducing reflections caused by improperly terminated cables.

LOW POWER SHUTDOWN MODE

A low power shutdown mode is initiated by bringing both $\overline{\mathrm{RE}}$ high and DE low. The ADM3493 does not shut down unless both the driver and receiver are disabled (high impedance). In shutdown, the ADM3493 typically draws only 2 nA of supply current. For the ADM3493, the tpsh and tpsL enable times assume the part was in the low power shutdown mode; the $t_{\text {PZH }}$ and $t_{\text {PzL }}$ enable times assume the receiver or driver was disabled, but the part was not shut down.

DRIVER OUTPUT PROTECTION

Two methods are implemented to prevent excessive output current and power dissipation caused by faults or by bus contention. Current limit protection on the output stage provides immediate protection against short circuits over the whole common-mode voltage range (see Typical Performance Characteristics). In addition, a thermal shutdown circuit forces the driver outputs into a high impedance state if the die temperature rises excessively.

PROPAGATION DELAY

Skew time is simply the difference between the low-to-high and high-to-low propagation delay. Small driver/receiver skew times help maintain a symmetrical mark-space ratio (50% duty cycle). The receiver skew time, $\left|\mathrm{t}_{\text {PRLH }}-\mathrm{t}_{\text {PRHL }}\right|$, is 20 ns for the ADM3493. The driver skew time is typically under 100 ns.

TYPICAL APPLICATIONS

The ADM3493 transceiver is designed for bidirectional data communications on multipoint bus transmission lines. Figure 22 shows a typical network application's circuits. To minimize reflections, the line should be terminated at both ends in its characteristic impedance, and stub lengths off the main line should be kept as short as possible. The slew rate limited ADM3493 is tolerant of imperfect termination.

ADM3493

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-012-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

Figure 29. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8)
Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Options	Ordering Quantity
ADM3493ARZ 1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead Standard Small Outline Package [SOIC_N]	R-8	
ADM3493ARZ-REEL7 1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead Standard Small Outline Package [SOIC_N]	R-8	1,000

${ }^{1} \mathrm{Z}=\mathrm{Pb}$-free part.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RS-422/RS-485 Interface IC category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
WS3088EESA-GEC ADM2687EBRIZ-RL7 MAX489CPD+ MAX491EPD+ MAX488EEPA+ MAX3080CPD+ MXL1535EEWI+ SN65LBC173DR MAX490ESA+T LT1791CN\#PBF LTM2881CY-3\#PBF LTC2857IMS8-2\#PBF LT1791ACN\#PBF MAX1487CUA+T XR3074XID-F XR3082XID-F SP1481EEN-L SN75ALS173NSR ADM3491ARZ-REEL ADM485JN ADM1485ANZ ADM1485ARMZ ADM1485JNZ ADM2682EBRIZ ADM489ABRZ ADM3070EYRZ ADM4850ACPZ-REEL7 ADM4850ARMZ-REEL7 ADM485ANZ ADM485ARMZ ADM485JNZ ADM488ANZ ADM489ANZ ADM489ARUZ ADM3485ARZ-REEL7 ADM3486EARZ-REEL7 ADM3488EARZ-REEL7 ADM3490ARZ ADM3493ARZ ADM4856ARZ-REEL7 ADM487EARZ-REEL7 ADM488ABRZ ADM1486ARZ ADM1490EBRZ-REEL7 ADM3485ARZ ADM3490ARZ-REEL7 ADM3490EARZ-REEL7 ADM4850ARZ ADM3074EYRZ ADM3078EYRZ

[^0]: ${ }^{1} \Delta V_{O D}$ and $\Delta V_{O C}$ are the changes in $V_{O D}$ and $V_{O C}$, respectively, when $D I$ input changes state.

[^1]: ${ }^{1}$ Measured on $\left|t_{\text {PLH }}(A)-t_{\text {PHL }}(A)\right|$ and $\left|t_{\text {PLH }}(B)-t_{\text {PHL }}(B)\right|$
 ${ }^{2}$ The transceivers are put into shutdown by bringing $\overline{R E}$ high and DE low. If the inputs are in this state for less than 80 ns, the parts are guaranteed not to enter shutdown. If the inputs are in this state for at least 300 ns , the parts are guaranteed to enter shutdown.

[^2]: ${ }^{1} \mathrm{X}=$ Don't care.
 ${ }^{2}$ High-Z = High Impedance.

