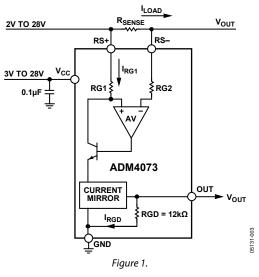


Low Cost, Voltage Output, High-Side, Current-Sense Amplifier

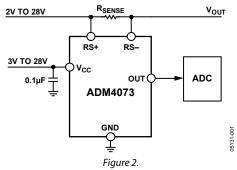
ADM4073

FEATURES

Low cost, compact, current-sense solution 3 available gain versions 20 V/V (ADM4073T) 50 V/V (ADM4073F) 100 V/V (ADM4073H) Typical ±1.0% full-scale accuracy Supply current: 500 µA Wide bandwidth: 1.8 MHz Operating supply: 3 V to 28 V Wide common-mode range: 2 V to 28 V Independent of supply voltage Operating temperature range: -40°C to +125°C Available in a 6-lead SOT-23 package Pin-to-pin compatibility with the MAX4073


APPLICATIONS

Cell phones PDAs Notebook computers Portable, battery-powered systems Smart battery packs and chargers Automotive Power management systems PA bias control General system-level, board-level current monitoring Precision current sources


GENERAL DESCRIPTION

The ADM4073 is a low cost, high-side, current-sense amplifier ideal for small portable applications, such as cell phones, notebook computers, PDAs, and other systems where current monitoring is required. The device is available in three different gain models, eliminating the need for gain-setting resistors. Because the ground path is not interrupted, the ADM4073 is particularly useful in rechargeable battery-powered systems, while its wide 1.8 MHz bandwidth makes it suitable for use inside battery-charger control loops. The input common-mode range of 2 V to 28 V is independent of the supply voltage.

FUNCTIONAL BLOCK DIAGRAM

APPLICATION DIAGRAM

The voltage on the output pin is determined by the current flowing through the selectable external sense resistor and the gain of the version selected. The operating range is 3 V to 28 V with a typical supply current of 500 μ A.

The ADM4073 is available in a 6-lead SOT-23 package and is specified over the automotive operating temperature range $(-40^{\circ}C \text{ to } +125^{\circ}C)$.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features	1
Applications	1
Functional Block Diagram	1
Application Diagram	1
General Description	1
Revision History	2
Specifications	3
Absolute Maximum Ratings	4
Thermal Characteristics	4

ESD Caution	4
Pin Configuration and Function Descriptions	5
Typical Performance Characteristics	6
Theory of Operation	
R _{sense}	
Output (OUT)	
Outline Dimensions	
Ordering Guide	

REVISION HISTORY

10/08—Rev. 0 to Rev. A	
Changes to Theory of Operation Section and Output (OUT)	
Section1	0
Changes to Ordering Guide1	1

7/06—Revision 0: Initial Version

SPECIFICATIONS

 $V_{RS+} = 2 V$ to 28 V, $V_{SENSE} = (V_{RS+} - V_{RS-}) = 0 V$, $V_{CC} = 3 V$ to 28 V, $T_A = -40^{\circ}$ C to $+125^{\circ}$ C, unless otherwise noted. Typical values are at $T_A = 25^{\circ}$ C.¹

Table 1. Parameter	Min	Тур	Мах	Unit	Conditions	
POWER SUPPLY	Null I	тур	IVIAX	Unit		
Operating Voltage Range, Vcc	3		28	v	Inferred from PSRR test	
Common-Mode Input Range, VCMR	2		28	v	Inferred OUT voltage error test	
Common-Mode Input Rejection, CMR	2	90	20	v dB		
		90 0.5	1.2		$V_{\text{SENSE}} = 100 \text{ mV}, V_{\text{CC}} = 12 \text{ V}$	
Supply Current, I _{cc}		0.5	1.2 2	mA	$V_{CC} = 28 V$	
Leakage Current, I _{RS+} /I _{RS-}				μA	$V_{CC} = 0 V, V_{RS+} = 28 V, T_A = 85^{\circ}C$	
Input Bias Current, I _{RS+}		20	60 120	μA		
Input Bias Current, I _{RS-}		40	120	μA	$\gamma = \gamma \gamma \gamma$	
Full-Scale Sense Voltage, V _{SENSE}		150		mV	$V_{\text{SENSE}} = (V_{\text{RS+}} - V_{\text{RS-}})$	
Total Output Voltage Error ²		±1		%	$V_{\text{SENSE}} = 100 \text{ mV}, V_{\text{CC}} = 12 \text{ V}, V_{\text{RS+}} = 2 \text{ V}$	
		±1.0	±5.0	%	$V_{\text{SENSE}} = 100 \text{ mV}, V_{\text{CC}} = 12 \text{ V}, V_{\text{RS+}} = 12 \text{ V}, T_{\text{A}} = +25^{\circ}\text{C}$	
			±5.0	%	$V_{\text{SENSE}} = 100 \text{ mV}, V_{\text{CC}} = 12 \text{ V}, V_{\text{RS}} = 12 \text{ V}, T_{\text{A}} = -40^{\circ}\text{C} \text{ to} + 125^{\circ}\text{C}$	
		±1.0	±5.0	%	$V_{\text{SENSE}} = 100 \text{ mV}, V_{\text{CC}} = 28 \text{ V}, V_{\text{RS}} = 28 \text{ V}, T_{\text{A}} = +25^{\circ}\text{C}$	
			±5.0	%	$V_{\text{SENSE}} = 100 \text{ mV}, V_{\text{CC}} = 28 \text{ V}, V_{\text{RS}} = 28 \text{ V}, T_{\text{A}} = -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}$	
		±7.5		%	$V_{\text{SENSE}} = 6.25 \text{ mV}, {}^{3} \text{ V}_{\text{CC}} = 12 \text{ V}, \text{ V}_{\text{RS}} = 12 \text{ V}$	
Extrapolated Input Offset Voltage, Vos		1.0		mV	$V_{CC} = V_{RS+} = 12 \text{ V}, V_{SENSE} > 10 \text{ mV}$	
Output High Voltage ($V_{CC} - V_{OH}$)		0.8	1.2	V	$V_{CC} = 3 V, V_{SENSE} = 150 mV (ADM4073T)$	
		0.8	1.2	V	$V_{CC} = 7.5 \text{ V}, V_{SENSE} = 150 \text{ mV} (ADM4073F)$	
		0.8	1.2	V	V _{CC} = 15 V, V _{SENSE} = 150 mV (ADM4073H), T _A = 25°C	
DYNAMIC CHARACTERISTICS						
Bandwidth, BW		1.8		MHz	$V_{SENSE} = 100 \text{ mV}, V_{CC} = 12 \text{ V}, V_{RS+} = 12 \text{ V}, C_{LOAD} = 5 \text{ pF} (ADM4073T)$	
		1.7		MHz	$V_{SENSE} = 100 \text{ mV}, V_{CC} = 12 \text{ V}, V_{RS+} = 12 \text{ V}, C_{LOAD} = 5 \text{ pF} (ADM4073F)$	
		1.6		MHz	$V_{SENSE} = 100 \text{ mV}, V_{CC} = 12 \text{ V}, V_{RS+} = 12 \text{ V}, C_{LOAD} = 5 \text{ pF} (ADM4073H)$	
		600		kHz	$V_{SENSE} = 6.25 \text{ mV}$, $^{3}V_{CC} = 12 \text{ V}$, $V_{RS+} = 12 \text{ V}$, $C_{LOAD} = 5 \text{ pF}$ (ADM4073T/F/H)	
Gain, A _v		20		V/V	ADM4073T	
		50		V/V	ADM4073F	
		100		V/V	ADM4073H	
Gain Accuracy		±1.0	±2.0	%	$ V_{SENSE} = 10 \text{ mV to } 150 \text{ mV}, V_{CC} = 12 \text{ V}, V_{RS+} = 12 \text{ V}, \\ T_A = +25^{\circ}\text{C} \text{ (ADM4073T/F)} $	
			±2.0	%	$V_{SENSE} = 10 \text{ mV}$ to 150 mV, $V_{CC} = 12 \text{ V}$, $V_{RS+} = 12 \text{ V}$, $T_A = -40^{\circ}\text{C}$ to $+125^{\circ}\text{C}$ (ADM4073T/F)	
		±1.0	±1.5	%	$V_{SENSE} = 10 \text{ mV to } 100 \text{ mV}, V_{CC} = 12 \text{ V}, V_{RS+} = 12 \text{ V}, T_A = +25^{\circ}\text{C} \text{ (ADM4073H)}$	
			±3.0	%	$V_{SENSE} = 10 \text{ mV}$ to 100 mV, $V_{CC} = 12 \text{ V}$, $V_{RS+} = 12 \text{ V}$, $T_A = -40^{\circ}\text{C}$ to $+125^{\circ}\text{C}$ (ADM4073H)	
OUT Settling Time to 1% of Final Value		400		ns	$V_{\text{SENSE}} = 6.25 \text{ mV to } 100 \text{ mV}, V_{\text{CC}} = 12 \text{ V}, V_{\text{RS+}} = 12 \text{ V}, C_{\text{LOAD}} = 5 \text{ pF}$	
		800		ns	$V_{\text{SENSE}} = 100 \text{ mV to } 6.25 \text{ mV}, V_{\text{CC}} = 12 \text{ V}, V_{\text{RS}+} = 12 \text{ V}, C_{\text{LOAD}} = 5 \text{ pF}$	
Output Resistance, Rout		12		kΩ		
Power Supply Rejection Ratio, PSRR		78		dB	$V_{\text{SENSE}} = 60 \text{ mV}, V_{\text{CC}} = 3 \text{ V} \text{ to } 28 \text{ V} (\text{ADM4073T})$	
i owei ouppiy nejection natio, ronn		78 85		dB	$V_{\text{SENSE}} = 26 \text{ mV}, V_{\text{CC}} = 3 \text{ V}$ to 28 V (ADM40731) $V_{\text{SENSE}} = 24 \text{ mV}, V_{\text{CC}} = 3 \text{ V}$ to 28 V (ADM4073F)	
		85 90		dB	$V_{SENSE} = 24 \text{ mV}, V_{CC} = 3 \text{ V}$ (0.28 V (ADM4073F) $V_{SENSE} = 12 \text{ mV}, V_{CC} = 3 \text{ V}$ to 28 V (ADM4073H)	
Power Up Time ⁴					$V_{SENSE} = 12 \text{ mV}, V_{CC} = 3 \text{ V} (0.28 \text{ V} (AD) \text{V} 4073 \text{ H})$ $C_{LOAD} = 5 \text{ pF}, V_{SENSE} = 100 \text{ mV}$	
Power-Up Time ⁴		5		μs		
Saturation Recovery Time ⁵	1	5		μs	$C_{LOAD} = 5 \text{ pF}, V_{CC} = 12 \text{ V}, V_{RS+} = 12 \text{ V}$	

 1 100% production tested at T_A = 25°C. Specifications over temperature limit are guaranteed by design. 2 The sum of the gain and offset errors is the total OUT voltage error. 3 6.25 mV = 1/16th of 100 mV full-scale sense voltage.

⁴ Output settles to within 1% of final value.

⁵ When overdriven, this device does not experience phase reversal.

ABSOLUTE MAXIMUM RATINGS

Table 2.

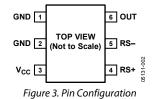
Parameter	Rating
V _{cc} to GND	–0.3 V to +30 V
RS+, RS– to GND	–0.3 V to +30 V
OUT to GND	-0.3 V to (V _{CC} + 0.3 V)
OUT Short-Circuit to GND	Continuous
Differential Input Voltage (V _{RS+} – V _{RS-})	±5 V
Current into Any Pin	±20 mA
Storage Temperature Range	–65°C to +125°C
Operating Temperature Range	-40°C to +125°C
Lead Temperature, Soldering (10 sec)	300°C
Junction Temperature	150°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL CHARACTERISTICS

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 3. Thermal Resistance


Package Type	θ _{JA}	Unit
6-Lead SOT-23	169.5	°C/W

ESD CAUTION

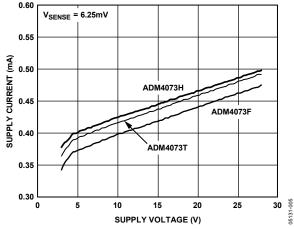
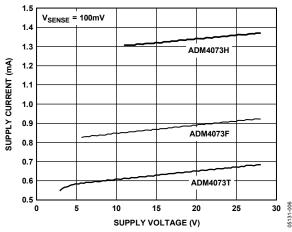
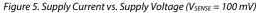
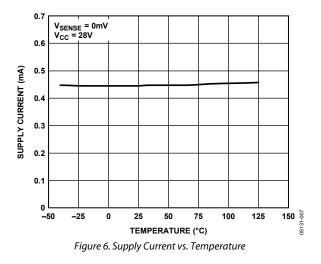
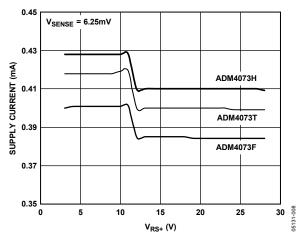
ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

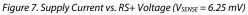
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

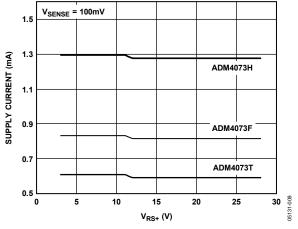
Table 4. Pin Function Descriptions

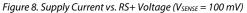
Pin No.	Mnemonic	Description
1	GND	Chip Ground Pin.
2	GND	Chip Ground Pin.
3	Vcc	Chip Power Supply. Requires a 0.1 µF capacitor to ground.
4	RS+	Power-Side Connection to the External Sense Resistor.
5	RS–	Load-Side Connection to the External Sense Resistor.
6	OUT	Voltage Output. V _{OUT} is proportional to V _{SENSE} . Output impedance is approximately 12 k Ω .

TYPICAL PERFORMANCE CHARACTERISTICS


Figure 4. Supply Current vs. Supply Voltage (Vsense = 6.25 mV)





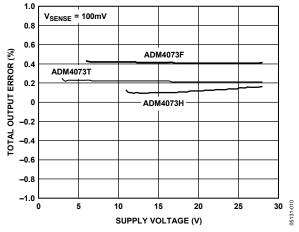
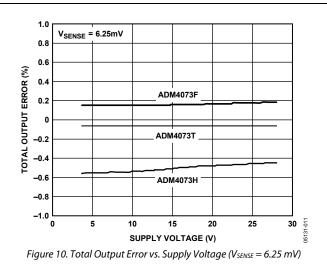
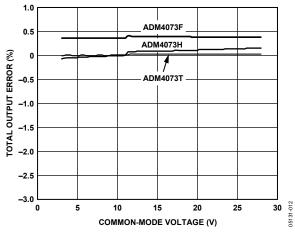
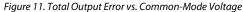
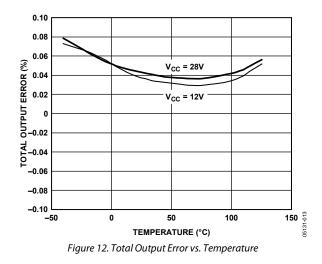






Figure 9. Total Output Error vs. Supply Voltage ($V_{SENSE} = 100 \text{ mV}$)

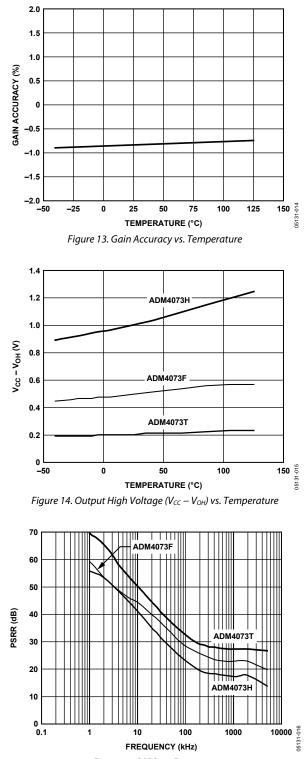
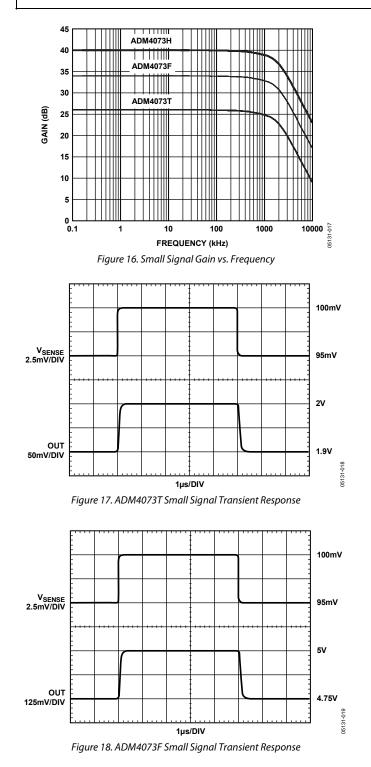



Figure 15. PSRR vs. Frequency

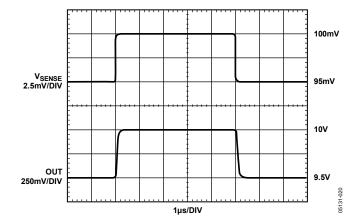
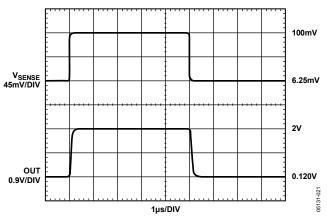
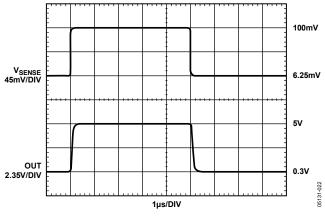




Figure 19. ADM4073H Small Signal Transient Response

Rev. A | Page 8 of 12

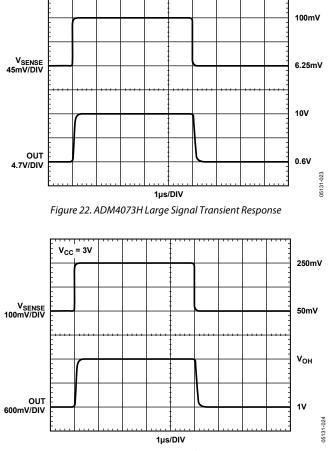
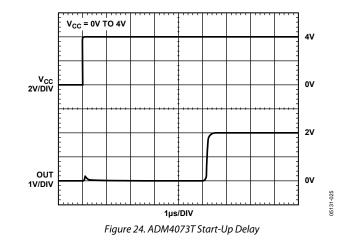
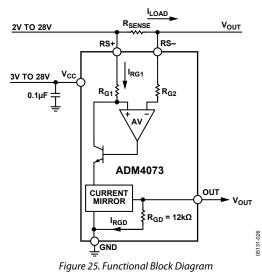



Figure 23. ADM4073T Overdrive Response

THEORY OF OPERATION

The current from the source flows through R_{SENSE}, which generates a voltage drop, V_{SENSE}, across the RS+ and RS- terminals of the sense amplifier. The Input Stage Amplifier A1 regulates its inputs to be equal, thereby shunting a current proportional to V_{SENSE}/R_{G1} to the output current mirror. This current is then multiplied by a gain factor of b in the output stage current mirror and flows through R_{GD} to generate V_{OUT}. Therefore, V_{OUT} is related to V_{SENSE} by the ratio of R_{G1} to R_{GD} and the current gain of b.


 $V_{OUT} = A_V \times V_{SENSE}$

where:

 $A_V = R_{GD}/R_{G1} \times b$

 A_{ν} is equal to different voltages depending upon the model of the device.

- 20 V/V for ADM4073T.
- 50 V/V for ADM4073F.
- 100 V/V for ADM4073H.

RSENSE

The ADM4073 has the ability to sense a wide variety of currents by selecting a particular sense resistor. Select a suitable output voltage for full-scale current, such as 10 V for 10 A. Then, select a gain model that gives the most efficient use of the sense voltage range (150 mV max).

In the example above, using the ADM4073H (gain of 100) gives an output voltage of 10 V when the sense voltage is 100 mV. Use the following equation to determine what value of sense resistor gives 100 mV with 10 A flowing through it:

 $R_{SENSE} = 100 \text{ mV}/10 \text{ A}$ $R_{SENSE} = 10 \text{ m}\Omega$ $V_{OUT} = (I_{LOAD} \times R_{SENSE}) \times A_V$ To measure lower currents accurately, use as large a sense resistor as possible to utilize the higher end of the sense voltage range. This reduces the effects of the offset voltage errors in the internal amplifier.

When currents are very large, it is important to take the I²R power losses across the sense resistor into account. If the sense resistor's rated power dissipation is not sufficient, its value can drift, giving an inaccurate output voltage or it could fail altogether. This, in turn, causes the voltage across the RS+ and RS- pins to exceed the absolute maximum ratings.

If the monitored supply rail has a large amplitude high frequency component, choose a sense resistor with low inductance.

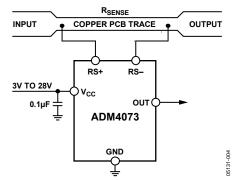
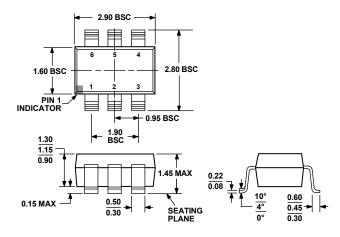


Figure 26. Using PCB Trace for Current Sensing

OUTPUT (OUT)

The output stage of the ADM4073 is a current source driving a pull-down resistance. To ensure optimum accuracy, care must be taken not to load this output externally. To minimize output errors, ensure OUT is connected to a high impedance input stage. If this is not possible, output buffering is recommended.


The percent error introduced by output loading is determined with the following formula:

% Error = 100
$$\left(1 - R_{LOAD} / \left(R_{OUT} + R_{LOAD}\right)\right)$$

where:

 R_{LOAD} is the external load applied to OUT. R_{OUT_INT} is the internal output resistance (12 k Ω).

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-178-AB Figure 27. 6-Lead Small Outline Transistor Package [SOT-23]

(RJ-6) Dimensions shown in millimeters

ORDERING GUIDE

Model	Gain	Temperature Range	Package Description	Package Option	Branding
ADM4073TWRJZ-REEL71	20	-40°C to +125°C	6-Lead SOT-23	RJ-6	M2E
ADM4073FWRJZ-REEL71	50	–40°C to +125°C	6-Lead SOT-23	RJ-6	M2C
ADM4073HWRJZ-REEL71	100	–40°C to +125°C	6-Lead SOT-23	RJ-6	M2D
ADM4073WFWRJZ-RL7 ^{1, 2}	50	–40°C to +125°C	6-Lead SOT-23	RJ-6	M2C

 1 Z = RoHS Compliant Part.

² Automotive Grade.

NOTES

www.analog.com

©2006–2008 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05131-0-10/08(A)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Analog Devices manufacturer:

Other Similar products are found below :

AD8664ARUZ-REEL EVAL-ADT7411EBZ AD650JN OP400GP ADG707BRU ADSP-21469BBC-3 AD843JN ADM694SQ AD8001AR HMC444LP4ETR HMC505LP4ETR 5962-8686101XA 5962-8851301PA 5962-89710013X 5962-9169003MXA 5962-9176404M3A 5962-9316401MXA 5962-9452101M2A EV1HMC1160LP5 EV1HMC305SLP4 EV1HMC306AMS10 EV1HMC544A EV1HMC557ALC4 EV1HMC6146BLC5A EV1HMC6832ALP5L EV1HMC7912LP5 EV1HMC7992LP3D EV1HMC951BLP4 EV-AD5443/46/53SDZ EV-ADF70301-433AZ EV-ADF70301-868BZ EV-ADUCM322IQSPZ EV-ADUCM322QSPZ EVAL01-HMC1048LC3B EVAL01-HMC1055LP2C EVAL01-HMC1063LP3 EVAL01-HMC197B EVAL01-HMC760LC4B EVAL01-HMC829LP6GE EVAL01-HMC833LP6GE EVAL01-HMC835LP6G EVAL01-HMC985LP4KE EVAL01-HMC987LP5E EVAL01-HMC988LP3E EVAL01-HMC995LP5GE EVAL02-HMC1034LP6G EVAL-3CH4CHSOICEBZ EVAL-AD1871EBZ EVAL-AD5063EBZ EVAL-AD5171DBZ