± 15 kV ESD Protected, Dual RS-422 Transceiver

Data Sheet

FEATURES

Dual RS-422 transceiver for
ESD protection on bus input/output pins ± 15 kV HBM ± 8 kV IEC 61000-4-2, contact discharge ± 8 kV IEC 61000-4-2, air discharge
Complies with TIA/EIA-422-B and ITU-T recommendation V. 11
Open circuit fail-safe
Suitable for 5 V power supply applications
Low supply current operation: 9 mA maximum
Low driver output skew
Receiver line input resistance: $\mathbf{3 0} \mathbf{k} \Omega$ typical
Receiver common-mode range: -7 V to +7 V
Power-up/power-down without glitches
16-lead TSSOP package
Operating temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

APPLICATIONS

RS-422 interfaces

High data rate motor control
Single-ended to differential signal conversion
Point to point and multidrop transmission systems

GENERAL DESCRIPTION

The ADM4168E is a dual RS-422 transceiver suitable for high speed communication on point to point and multidrop transmission lines. The ADM4168E is designed for balanced transmission lines and complies with TIA/EIA-422-B.

The differential driver outputs and receiver inputs feature electrostatic discharge (ESD) circuitry that provides protection up to $\pm 15 \mathrm{kV}$ human body model (HBM) and $\pm 8 \mathrm{kV}$ IEC 61000-4-2 (contact and air discharge).

The ADM4168E operates from a single 5 V power supply.
Excessive power dissipation caused by bus contention or output shorting is prevented by short-circuit protection circuitry. Shortcircuit protection circuits limit the maximum output current to -150 mA during fault conditions.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

The receivers of the ADM4168E contain a fail-safe feature that results in a logic high output state if the inputs are unconnected (floating).

The ADM4168E is fully specified over the commercial and industrial temperature ranges and is available in a 16-lead TSSOP package.

Rev, B

ADM4168E

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Timing Specifications 4
Absolute Maximum Ratings 5
Thermal Resistance 5
ESD Caution 5
Pin Configuration and Function Descriptions. 6
REVISION HISTORY
6/2019—Rev. A to Rev. B
Changes to Table 3. 5
9/2017—Rev. 0 to Rev. A
Changes to Features Section and General Description Section... 1
Changes to Table 1 3
Added Maximum Data Rate Parameter, Table 2 4
Typical Performance Characteristics7
Test Circuits and Switching Characteristics. 9
Driver Measurements 9
Receiver Measurements 9
Theory of Operation 10
Truth Tables 10
Applications Information 11
Outline Dimensions 12
Ordering Guide 12
Changes to Thermal Resistance Section and Table 4 5
Changes to Figure 9 and Figure 10 8
Changes to Figure 13 9
Added Applications Information Section, Figure 17; Renumbered Sequentially, Figure 18, and Figure 19. 11
9/2012—Revision 0: Initial Version

SPECIFICATIONS

$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$; all minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, unless otherwise noted.

Table 1.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments	
LOW SUPPLY CURRENT Total Package	Icc		$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 6 \\ & 9 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	No load, drivers enabled Input voltage $\left(\mathrm{V}_{\mathrm{I}}\right)=\mathrm{V}_{\mathrm{cc}}$ or GND $\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$ or $0.5 \mathrm{~V}^{1}$	
DRIVER							
Differential Outputs (Y1, Z1, Y2, Z2 Pins)							
Input Clamp Voltage	$\mathrm{V}_{\text {IK }}$			-1.5	V	$\mathrm{l}_{1}=-18 \mathrm{~mA}$	
Output Voltage High	$\mathrm{V}_{\text {OH }}$	2.4	3.5		V	$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}$, output high voltage (loн) $=-20 \mathrm{~mA}$	
Output Voltage Low	Vol		0.2	0.4	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \text {, output low } \\ & \text { voltage }(\text { loL })=20 \mathrm{~mA} \end{aligned}$	
Differential Output Voltage							
No Load	\|VODI		2.0		6.0	V	$\mathrm{l}_{0}=0 \mathrm{~mA}$
Outputs Loaded ${ }^{2}$	\|VoD2		2.0	3.7		V	Load resistance $\left(\mathrm{R}_{\mathrm{L}}\right)=100 \Omega$ (see Figure 11)
$\Delta\left\|V_{\text {ool }}\right\|$ for Complementary Output States	$\Delta\left\|V_{\text {oo }}\right\|$			± 0.4	V	$\mathrm{R}_{L}=100 \Omega$ (see Figure 11)	
Common-Mode Output Voltage	V oc			± 3.0	V	$\mathrm{R}_{L}=100 \Omega$ (see Figure 11)	
$\Delta \mid$ Voc \mid for Complementary Output States	$\Delta\|V o c\|$			± 0.4	V	$\mathrm{R}_{L}=100 \Omega$ (see Figure 11)	
Output Leakage Current	lo			100	$\mu \mathrm{A}$	$\mathrm{DEx}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}=0 \mathrm{~V}$ or 5 V , output voltage $\left(\mathrm{V}_{0}\right)=6 \mathrm{~V}$	
		-100			$\mu \mathrm{A}$	$\mathrm{DEx}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}=0 \mathrm{~V}$ or $5 \mathrm{~V}, \mathrm{~V}_{\mathrm{o}}=-0.25 \mathrm{~V}$	
Output Current (Short Circuit) ${ }^{3}$	los	-30		-150	mA	$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\text {cc }}$ or GND	
Input Capacitance	Cl_{1}		6		pF		
Logic Inputs (DIx, DEx Pins)							
Input Voltage High	$\mathrm{V}_{\text {IH }}$	2.0			V		
Input Voltage Low	$\mathrm{V}_{\text {IL }}$			0.8	V		
Input Current High	I_{H}			1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {cc }}$ or V_{IH}	
Input Current Low	ILL			-1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=$ GND or V_{LL}	
RECEIVER							
Differential Inputs (A1, B1, A2, B2 Pins)							
Differential Input Threshold Voltage ${ }^{2}$	$\mathrm{V}_{\text {TH }}$	-200		+200	mV		
Input Voltage Hysteresis	$\mathrm{V}_{\text {HYS }}$		60		mV		
Input Current	$1 /$			1.5	mA	$\mathrm{V}_{1}=7 \mathrm{~V}$, other input at 0 V	
				-2.5	mA	$\mathrm{V}_{1}=-7 \mathrm{~V}$, other input at 0 V	
Line Input Resistance	Rin	12	30		$\mathrm{k} \Omega$	$\mathrm{Vic}{ }^{4}=-7 \mathrm{~V}$ to +7 V , other input at 0 V	
Logic Outputs (RO1, RO2 Pins)							
Output Voltage High	$\mathrm{V}_{\text {OH }}$	3.8	4.2		V	$\mathrm{V}_{1 \mathrm{D}^{5}}=200 \mathrm{mV}$, $\mathrm{IOH}=-6 \mathrm{~mA}$	
Output Voltage Low	Voı		0.1	0.3	V	$\mathrm{V}_{\text {ID }}=-200 \mathrm{mV}$, loL $=6 \mathrm{~mA}$	

[^0]
ADM4168E

TIMING SPECIFICATIONS

$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$; all minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, unless otherwise noted.

Table 2.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
DRIVER						
Maximum Data Rate	$\mathrm{D}_{\text {rate }}$	30			Mbps	$\mathrm{R} 1, \mathrm{R} 2=50 \Omega ; \mathrm{R} 3=500 \Omega ; \mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3=40 \mathrm{pF}$
Propagation Delay	$\mathrm{t}_{\text {PPLH, }} \mathrm{t}_{\text {DPHL }}$		8	16	ns	S1 open (see Figure 12 and Figure 13)
Driver Output Skew	$\mathrm{t}_{\text {sk }}$		1.5	4	ns	S1 open (see Figure 12 and Figure 13)
Rise Time/Fall Time	tDR, $\mathrm{t}_{\text {DF }}$		5	10	ns	S1 open (see Figure 12 and Figure 13)
Enable Time	$\mathrm{t}_{\text {zH }}, \mathrm{t}_{\mathrm{zL}}$		10	19	ns	S1 closed (see Figure 13 and Figure 14)
Disable Time	$\mathrm{t}_{\mathrm{Hz}}, \mathrm{t}_{\text {Lz }}$		7	16	ns	S1 closed (see Figure 13 and Figure 14)
RECEIVER ${ }^{1}$						
Propagation Delay	$\mathrm{t}_{\text {RPLH, }}, \mathrm{t}_{\text {RPHL }}$	9		27	ns	Load capacitance $\left(\mathrm{C}_{\mathrm{L}}\right)=50 \mathrm{pF}$ (see Figure 15 and Figure 16)
Transition Time	$\mathrm{t}_{\text {TLH, }} \mathrm{t}_{\text {THL }}$		4	9	ns	$\mathrm{V}_{\mathrm{LC}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (see Figure 15 and Figure 16)

[^1]
ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
Vcc	-0.3 V to +7 V
Digital Input Voltage (DE1, DE2)	-0.3 V to +7 V
Driver Input Voltage (DI1, DI2)	-0.3 V to +7 V
Receiver Output Voltage (RO1, RO2)	-0.3 V to Vcc +0.3 V
Driver Output Voltage (Y1, Z1, Y2, Z2)	-0.3 V to +7 V
Receiver Input Voltage (A1, B1, A2, B2)	-14 V to +14 V
Digital Input/Output (I/O) (DI1, DI2,	-2 V to +8 V for 10 ms
\quad DE1, DE2, RO1, RO2) Voltage	
\quad Transient to GND	
Driver Output (Y1, Z1, Y2, Z2) Voltage	-2 V to +8 V for 10 ms
Transient to GND	
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ESD Protection on Ax, Bx, Yx, and Zx	
\quad HBM	$\pm 15 \mathrm{kV}$
IEC 61000-4-2, Contact Discharge	$\pm 8 \mathrm{kV}$
IEC 61000-4-2, Air Discharge	$\pm 8 \mathrm{kV}$

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal performance is directly linked to PCB design and operating environment. Careful attention to PCB thermal design is required.

Table 4. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}$	Unit
$\mathrm{RU}-16$	113	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration
Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	B1	Inverting Receiver Input B, Transceiver 1.
2	A1	Noninverting Receiver Input A, Transceiver 1.
3	RO1	Receiver Output, Transceiver 1.
4	DE1	Driver Output Enable, Transceiver 1. A logic high enables the differential driver outputs, Y1 and Z1; a logic low places the differential driver outputs in a high impedance state.
5	RO2	Receiver Output, Transceiver 2.
6	A2	Noninverting Receiver Input A, Transceiver 2.
7	B2	Inverting Receiver Input B, Transceiver 2.
8	GND	Ground.
9	DI2	Driver Input, Transceiver 2. When the driver is enabled, a logic low on DI 2 forces Y 2 low and Z 2 high, whereas a logic high on DI2 forces Y 2 high and Z 2 low.
10	Y2	Noninverting Driver Output Y, Transceiver 2.
11	Z2	Inverting Driver Output Z, Transceiver 2.
12	DE2	Driver Output Enable, Transceiver 2. A logic high enables the differential driver outputs, Y2 and Z2; a logic low places the differential driver outputs in a high impedance state.
13	Z1	Inverting Driver Output Z, Transceiver 1.
14	Y1	Noninverting Driver Output Y, Transceiver 1.
15	DI1	Driver Input, Transceiver 1. When the driver is enabled, a logic low on DI1 forces Y1 low and Z1 high, whereas a logic high on DI1 forces Y 1 high and Z 1 low.
16	$\mathrm{V}_{\text {cc }}$	Power Supply ($5 \mathrm{~V} \pm 10 \%$).

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. Supply Current vs. Temperature, Data Rate $=10 \mathrm{Mbps}$

Figure 4. Driver Differential Output Voltage vs. Temperature

Figure 5. Receiver Output Voltage High vs. Temperature

Figure 6. Supply Current vs. Data Rate

Figure 7. Driver Differential Output Voltage vs. Supply Voltage

Figure 8. Receiver Output Voltage Low vs. Temperature

Figure 9. Driver Output

Figure 10. Receiver Output

TEST CIRCUITS AND SWITCHING CHARACTERISTICS

DRIVER MEASUREMENTS

Figure 11. Driver Voltage Measurements

NOTES

1. INPUT PULSE GENERATOR: PPR $1 \mathrm{MHz} ; 50 \%$ DUTY CYCLE; $\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}} \leq \mathbf{6 n s}$.

NOTES

1. C1, C2, C3 INCLUDE PROBE/INSTRUMENT CAPACITANCE.

Figure 13. Driver Timing Circuit

NOTES

1. INPUT PULSE GENERATOR: PPR $1 \mathrm{MHz} ; \mathbf{5 0 \%}$ DUTY CYCLE; $\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}} \leq \mathbf{6 n s}$.

Figure 14. Driver Enable/Disable Timing

Figure 12. Driver Propagation Delay and Rise/Fall Timing
RECEIVER MEASUREMENTS

NOTES
NOTES CLINCLUDES PROBEINSTRUMENT CAPACITANCE. 免
Figure 16. Receiver Timing Circuit

THEORY OF OPERATION

The ADM4168E is a dual RS-422 transceiver that operates from a single $5 \mathrm{~V} \pm 10 \%$ power supply. The ADM4168E is intended for balanced data transmission and complies with TIA/EIA-422-B and ITU-T recommendation V.11. Each device contains two differential line drivers and two differential line receivers and is suitable for full duplex data transmission.
The receivers contain a fail-safe feature that results in a logic high output state if the inputs are unconnected (floating).
The ADM4168E features a low propagation delay, ensuring maximum baud rate operation. The balanced driver ensures distortion free transmission.
Another important specification is a measure of the skew between the complementary outputs. Low skew enhances the noise immunity of the system and decreases the amount of electromagnetic interference (EMI).

TRUTH TABLES

Table 6. Abbreviations in Truth Tables

Letter	Description
H	High level
I	Indeterminate
L	Low level
X	Irrelevant
Z	High impedance (off)

Table 7. Transmitting (Each Driver)

Inputs		Outputs	
DEx	Dlx	Zx	Yx
H	H	L	H
H	L	H	L
L	X	Z	Z

Table 8. Receiving (Each Receiver)

Inputs	Output
$\mathbf{A x}-\mathbf{B x}$	ROx
$\geq+0.2 \mathrm{~V}$	H
$\leq-0.2 \mathrm{~V}$	L
$-0.2 \mathrm{~V}<\mathrm{A}-\mathrm{B}<+0.2 \mathrm{~V}$	I
Inputs open	H

APPLICATIONS INFORMATION

The ADM4168E dual RS-422 transceiver was tested in a two node network over 100 meters of Category 5e T568B shielded cable, with a 100Ω termination resistor inserted at the receiving ADM4168E. Both of the ADM4168E devices are powered at 5 V Vcc. The transmitting ADM4168E sends data at 20 Mbps to the receiving ADM4168E. Figure 17 shows an example test setup.

Figure 17. Test Setup for the ADM4168E Quality of Signal
Figure 18 and Figure 19 show quality of signal (eye pattern) oscilloscope plots for data transmission and receive quality using pseudo random binary sequence Base 7 (PRBS-7) and clock data patterns, respectively. Figure 18 and Figure 19 show the DI1 signal measured at the transmitting ADM4168E, the input differential voltage at the receiving ADM4168E (math A1-B1 signal), and the receiver output RO1 at the receiving ADM4168E.
Signal attenuation due to adding 100 meters of cabling does not lead to data errors at the RO1 output at the receiving node. The eye diagrams in Figure 18 and Figure 19 show some distortion due to cable effects; however, this does not lead to data errors on the RO1 output.
Figure 18 with PRBS-7 is representative of RS-422 data channels in a motor control encoder application. Figure 19 shows an RS-422 clock data, also commonly found in a motor control encoder interface.

Figure 18. ADM4168E Quality of Signal Eye Diagram for PRBS-7

Figure 19. ADM4168E Quality of Signal Eye Diagram for Clock Data

OUTLINE DIMENSIONS

Figure 20. 16-Lead Thin Shrink Small Outline Package [TSSOP] ($R U-16$)
Dimensions shown in millimeters
ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADM4168EBRUZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADM4168EBRUZ-RL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead Thin Shrink Small Outline Package $[$ TSSOP $]$	RU-16
EVAL-ADM4168EEBZ		Evaluation Board	

[^2]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RS-422 Interface IC category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
022470R 066913D 065310H AM26C32IDR MAX3033EESE+ MAX3033ECSE+ MAX3031ECSE+T MAX3033ECUE+ 633428X 065309E AM26C32CNE4 SN75ALS193NE4 AM26C31CD AM26C31IDR AM26C31IPWR AM26C31QDR AM26C32CD 750573X AM26C32CN AM26C32IPWR AM26LS31CD AM26LS31CDBR AM26LS31CDR AM26LS31CN AM26LS32ACD AM26LS32ACDR AM26LS32ACN AM26LS33ACDR AM26LV32EIDR AM26LV32EMDREP AM26LV32IDR DS26C31TMX/NOPB DS26LV31TMX/NOPB DS8921AMX/NOPB DS8921M/NOPB MC3486D MC3486DR MC3486N MC3486NE4 MC3487D MC3487DR MC3487N MC3487NSR SN65C1167EPWR SN65C1167ERGYR SN75158P SN75159N SN75ALS192N SN75ALS193N SN75ALS194DR

[^0]: ${ }^{1}$ Measured per input with other inputs at V_{cc} or GND.
 ${ }^{2}$ For exact conditions, see TIA/EIA-422-B.
 ${ }^{3}$ No more than one output shorted at any time, with the duration of the short not to exceed 1 second.
 ${ }^{4} \mathrm{~V}_{\text {IC }}$ is the receiver input common mode voltage.
 ${ }^{5} \mathrm{~V}_{\text {ID }}$ is the receiver input differential voltage.

[^1]: ${ }^{1}$ Measured per input with other inputs at $V_{\text {cc }}$ or GND.

[^2]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

