FEATURES

Meets EIA RS-485 standard
5 Mbps data rate
Single 5 V supply
-7 V to +12 V bus common-mode range
High speed, low power BiCMOS
Thermal shutdown protection
Short-circuit protection
Driver propagation delay: 10 ns typical
Receiver propagation delay: 15 ns typical
High-Z outputs with power off
Superior upgrade for LTC485

APPLICATIONS

Low power RS-485 systems

DTE/DCE interface
Packet switching
Local area networks (LNAs)

Data concentration

Data multiplexers
Integrated services digital network (ISDN)

GENERAL DESCRIPTION

The ADM485 is a differential line transceiver suitable for high speed bidirectional data communication on multipoint bus transmission lines. It is designed for balanced data transmission and complies with EIA standards RS-485 and RS-422. The part contains a differential line driver and a differential line receiver. Both the driver and the receiver can be enabled independently. When disabled, the outputs are three-stated.

The ADM485 operates from a single 5 V power supply. Excessive power dissipation caused by bus contention or by output shorting is prevented by a thermal shutdown circuit. If during fault conditions, a significant temperature increase is detected in the internal driver circuitry, this feature forces the driver output into a high impedance state.

Up to 32 transceivers can be connected simultaneously on a bus, but only one driver should be enabled at any time. It is important, therefore, that the remaining disabled drivers do not load the bus. To ensure this, the ADM485 driver features high output impedance when disabled and when powered down, which minimizes the loading effect when the transceiver is not being used. The high impedance driver output is maintained over the common-mode voltage range of -7 V to +12 V .

Rev. F

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

The receiver contains a fail-safe feature that results in a logic high output state if the inputs are unconnected (floating).

The ADM485 is fabricated on BiCMOS, an advanced mixed technology process combining low power CMOS with fast switching bipolar technology. All inputs and outputs contain protection against ESD; all driver outputs feature high source and sink current capability. An epitaxial layer is used to guard against latch-up.
The ADM485 features extremely fast switching speeds. Minimal driver propagation delays permit transmission at data rates up to 5 Mbps while low skew minimizes EMI interference.

The part is fully specified over the commercial and industrial temperature range and is available in 8-lead PDIP, 8-lead SOIC, and small footprint, 8-lead MSOP packages.

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Timing Specifications 4
Absolute Maximum Ratings 5
ESD Caution 5
Pin Configuration and Function Descriptions. 6
Typical Performance Characteristics 7
REVISION HISTORY
04/08—Rev. E to Rev. F
Updated Format Universal
Changes to Table 2 4
Updated Outline Dimension 13
Changes to Ordering Guide 14
10/03-Rev. D to Rev. E
Changes to Timing Specifications 2
Updated Ordering Guide 3
7/03—Rev. C to Rev. D
Changes to Absolute Maximum Ratings 3
Changes to Ordering Guide 3
Update to Outline Dimensions. 9
Test Circuits 10
Switching Characteristics 11
Applications Information 12
Differential Data Transmission 12
Cable and Data Rate. 12
Thermal Shutdown 12
Propagation Delay 12
Receiver Open Circuit, Fail-Safe 12
Outline Dimensions 13
Ordering Guide 14
1/03-Rev. B to Rev. C.
Change to Specifications 2
Change to Ordering Guide
12/02-Rev. A to Rev. B.
Deleted Q-8 Package Universal
Edits to Features.1
Edits to General Description 1
Edits, additions to Specifications. 2
Edits, additions to Absolute Maximum Ratings 3
Additions to Ordering Guide 3
TPCs Updated and Reformatted 5
Addition of 8-Lead MSOP Package 9
Update to Outline Dimensions 9

SPECIFICATIONS

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, all specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.
Table 1.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
DRIVER					
Differential Output Voltage, Vod			5.0	V	$\mathrm{R}=\infty$, see Figure 20
	2.0		5.0	V	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{R}=50 \Omega$ (RS-422), see Figure 20
	1.5		5.0	V	$R=27 \Omega$ (RS-485), see Figure 20
$V_{\text {OD3 }}$	1.5		5.0	V	$\mathrm{V}_{\text {TST }}=-7 \mathrm{~V}$ to +12 V , see Figure 21
$\Delta\left\|V_{\text {ool }}\right\|$ for Complementary Output States			0.2	V	$\mathrm{R}=27 \Omega$ or 50Ω, see Figure 20
Common-Mode Output Voltage, Voc			3	V	$R=27 \Omega$ or 50Ω, see Figure 20
$\Delta\left\|V_{\text {oo }}\right\|$ for Complementary Output States			0.2	V	$\mathrm{R}=27 \Omega$ or 50Ω
Output Short-Circuit Current, Vout = High	35		250	mA	$-7 \mathrm{~V} \leq \mathrm{V}_{0} \leq+12 \mathrm{~V}$
Output Short-Circuit Current, Vout = Low	35		250	mA	$-7 \mathrm{~V} \leq \mathrm{V}_{0} \leq+12 \mathrm{~V}$
CMOS Input Logic Threshold Low, VINL			0.8	V	
CMOS Input Logic Threshold High, $\mathrm{V}_{\text {INH }}$	2.0			V	
Logic Input Current (DE, DI)			± 1.0	$\mu \mathrm{A}$	
RECEIVER					
Differential Input Threshold Voltage, $\mathrm{V}_{\text {TH }}$	-0.2		$+0.2$	V	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq+12 \mathrm{~V}$
Input Voltage Hysteresis, $\Delta \mathrm{V}_{\mathrm{TH}}$		70		mV	$\mathrm{V}_{\text {cm }}=0 \mathrm{~V}$
Input Resistance	12			$\mathrm{k} \Omega$	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {cm }} \leq+12 \mathrm{~V}$
Input Current (A, B)			1	mA	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$
			-0.8	mA	$\mathrm{V}_{\mathrm{IN}}=-7 \mathrm{~V}$
CMOS Input Logic Threshold Low, $\mathrm{V}_{\text {INL }}$			0.8	V	
CMOS Input Logic Threshold High, ViNH	2.0			V	
Logic Enable Input Current ($\overline{\mathrm{RE}})$			± 1	$\mu \mathrm{A}$	
CMOS Output Voltage Low, Vol			0.4	V	lout $=4.0 \mathrm{~mA}$
CMOS Output Voltage High, V он $^{\text {¢ }}$	4.0			V	lout $=-4.0 \mathrm{~mA}$
Short-Circuit Output Current	7		85	mA	$\mathrm{V}_{\text {OUt }}=\mathrm{GND}$ or $\mathrm{V}_{\text {cc }}$
Three-State Output Leakage Current			± 1.0	$\mu \mathrm{A}$	$0.4 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 2.4 \mathrm{~V}$
POWER SUPPLY CURRENT					
Icc, Outputs Enabled		1.0	2.2	mA	Digital inputs $=$ GND or $V_{\text {cc }}$
Icc, Outputs Disabled		0.6	1	mA	Digital inputs $=$ GND or $V_{c c}$

ADM485

TIMING SPECIFICATIONS

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, all specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.
Table 2.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments	
DRIVER						
Propagation Delay Input to Output, $\mathrm{t}_{\text {PLH, }} \mathrm{t}_{\text {PHL }}$	2	10	15	ns	$R_{\text {LDIFF }}=54 \Omega, C_{L 1}=C_{L 2}=100 \mathrm{pF}$, see Figure 22	
Driver Output to OUTPUT, $\mathrm{t}_{\text {skew }}$		1	5	ns	$R_{\text {LDIFF }}=54 \Omega, C_{L 1}=C_{L 2}=100 \mathrm{pF}$, see Figure 22	
Driver Rise/Fall Time, $\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\text {F }}$		8	15	ns	RLIIFF $=54 \Omega, \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF}$, see Figure 22	
Driver Enable to Output Valid		10	25	ns	$R_{L}=110 \Omega, C_{L}=50 \mathrm{pF}$, see Figure 23	
Driver Disable Timing		10	25	ns	$R_{L}=110 \Omega, C_{L}=50 \mathrm{pF}$, see Figure 23	
Matched Enable Switching $\left\|\mathrm{tzH}_{\text {z }}-\mathrm{t}_{\mathrm{z}}\right\|$		0	2	ns	$R_{L}=110 \Omega, C_{L}=50 \mathrm{pF}$, see Figure $23{ }^{1}$	
Matched Disable Switching \|ttrz - tız			0	2	ns	$R_{L}=110 \Omega, C_{L}=50 \mathrm{pF}$, see Figure $23{ }^{1}$
RECEIVER						
Propagation Delay Input to Output, $\mathrm{t}_{\text {PLL, }} \mathrm{t}_{\text {PHL }}$	8	15	30	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, see Figure 24	
Skew \|tplu - $\mathrm{t}_{\text {PHL }}$ \|			5	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, see Figure 24	
Receiver Enable, $\mathrm{tzH}_{\text {\% }}$, $\mathrm{tzL}^{\text {L }}$		5	20	ns	$C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$, see Figure 25	
Receiver Disable, $\mathrm{t}_{\mathrm{Hz}}, \mathrm{t}_{\mathrm{z}}$		5	20	ns	$C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$, see Figure 25	
Tx Pulse Width Distortion		1		ns		
Rx Pulse Width Distortion		1		ns		

[^0]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Rating
$\mathrm{V}_{\text {cc }}$	-0.3 V to +7 V
Inputs	
Driver Input (DI)	-0.3 V to $\mathrm{V}_{c c}+0.3 \mathrm{~V}$
Control Inputs ($\mathrm{DE}, \overline{\mathrm{RE}}$)	-0.3 V to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$
Receiver Inputs (A, B)	-9 V to +14 V
Outputs	
Driver Outputs (A, B)	-9 V to +14 V
Receiver Output	-0.5 V to $\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V}$
Power Dissipation 8-Lead MSOP	900 mW
θ_{JA}, Thermal Impedance	$206^{\circ} \mathrm{C} / \mathrm{W}$
Power Dissipation 8-Lead PDIP	500 mW
θ_{JA}, Thermal Impedance	$130^{\circ} \mathrm{C} / \mathrm{W}$
Power Dissipation 8-Lead SOIC	450 mW
θ_{jA}, Thermal Impedance	$170^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range	
Commercial Range (J Version)	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Industrial Range (A Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$
Vapor Phase (60 sec)	$215^{\circ} \mathrm{C}$
Infrared (15 sec)	$220^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 4. Transmitting

Inputs		Outputs	
DE	DI	B	A
1	1	0	1
1	0	1	0
0	X^{1}	Z^{2}	Z^{2}

${ }^{1} \mathrm{X}=$ don't care.
${ }^{2} Z=$ high impedance.
Table 5. Receiving

$\overline{\mathbf{R E}}$	Input $\mathbf{A}-$ Input B	Output RO
0	$\geq+0.2 \mathrm{~V}$	1
0	$\leq-0.2 \mathrm{~V}$	0
0	Inputs open	1
1	X^{1}	Z^{2}
$\mathrm{X}=$ don't care.		
${ }^{2} \mathrm{Z}=$ high impedance.		
ESD CAUTION		

(\quad ESD (electrostatic discharge) sensitive device.

Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ADM485

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

RO 1	ADM485 TOP VIEW (Not to Scale)	$8 \mathrm{v}_{\mathrm{c}}$
$\overline{\text { RE }} 2$		7 B
DE ${ }^{3}$		6 A
DI 4		5

Table 6. Pin Function Descriptions

Pin No.	Mnemonic	Function
1	RO	Receiver Output. When enabled, if A is greater than B by $200 \mathrm{mV}, \mathrm{RO}$ is high. If A is less than B by $200 \mathrm{mV}, \mathrm{RO}$ is low.
2	$\overline{\mathrm{RE}}$	Receiver Output Enable. A low level enables the receiver output, RO. A high level places it in a high impedance state.
3	DE	Driver Output Enable. A high level enables the driver differential outputs, A and B. A low level places it in a high impedance state.
4	DI	Driver Input. When the driver is enabled, a logic low on DI forces A low and B high, while a logic high on DI forces A high and B low.
5	GND	Ground Connection, 0 V.
6	A	Noninverting Receiver Input A/Driver Output A.
7	B	Inverting Receiver Input B/Driver Output B.
8	V cc	Power Supply, $5 \mathrm{~V} \pm 5 \%$.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. Output Current vs. Receiver Output Low Voltage

Figure 4. Output Current vs. Receiver Output High Voltage

Figure 5. Receiver Output High Voltage vs. Temperature

Figure 6. Receiver Output Low Voltage vs. Temperature

Figure 7. Output Current vs. Driver Differential Output Voltage

Figure 8. Driver Differential Output Voltage vs. Temperature

ADM485

Figure 9. Output Current vs. Driver Output Low Voltage

Figure 10. Output Current vs. Driver Output High Voltage

Figure 11. Supply Current vs. Temperature

Figure 12. Receiver Skew vs. Temperature

Figure 13. Driver Skew vs. Temperature

Figure 14. Driver Pulse Width Distortion (PWD) vs. Temperature

Figure 15. Unloaded Driver Differential Outputs

Figure 16. Loaded Driver Differential Outputs

Figure 17. Driver/Receiver Propagation Delays, Low to High

Figure 18. Driver/Receiver Propagation Delays, High to Low

Figure 19. Driver Output at 30 Mbps

TEST CIRCUITS

Figure 20. Driver Voltage Measurement

Figure 21. Driver Voltage Measurement

Figure 22. Driver Propagation Delay

Figure 23. Driver Enable/Disable

Figure 24. Receiver Propagation Delay

Figure 25. Receiver Enable/Disable

SWITCHING CHARACTERISTICS

Figure 26. Driver Propagation Delay, Rise/Fall Timing

Figure 27. Driver Enable/Disable Timing

Figure 28. Receiver Propagation Delay

Figure 29. Receiver Enable/Disable Timing

APPLICATIONS INFORMATION

DIFFERENTIAL DATA TRANSMISSION

Differential data transmission is used to reliably transmit data at high rates over long distances and through noisy environments. Differential transmission nullifies the effects of ground shifts and noise signals that appear as common-mode voltages on the line. There are two main standards approved by the EIA that specify the electrical characteristics of transceivers used in differential data transmission.

The RS-422 standard specifies data rates up to 10 MBaud and line lengths up to 4000 ft . A single driver can drive a transmission line with up to 10 receivers.
To cater to true multipoint communications, the RS-485 standard was defined. This standard meets or exceeds all the requirements of RS- 422 but also allows for up to 32 drivers and 32 receivers to be connected to a single bus. An extended commonmode range of -7 V to +12 V is defined. The most significant difference between the RS-422 standard and the RS-485 standard is the fact that the drivers can be disabled, thereby allowing more than one (32 in fact) to be connected to a single line. Only one driver should be enabled at a time, but the RS-485 standard contains additional specifications to guarantee device safety in the event of line contention.

Table 7. Comparison of RS-422 and RS-485 Interface Standards

Specification	RS-422	RS-485
Transmission Type	Differential	Differential
Maximum Cable Length	4000 ft.	4000 ft.
Minimum Driver Output Voltage	$\pm 2 \mathrm{~V}$	$\pm 1.5 \mathrm{~V}$
Driver Load Impedance	100Ω	54Ω
Receiver Input Resistance	$4 \mathrm{k} \Omega \mathrm{min}$	$12 \mathrm{k} \Omega \mathrm{min}$
Receiver Input Sensitivity	$\pm 200 \mathrm{mV}$	$\pm 200 \mathrm{mV}$
Receiver Input Voltage Range	-7 V to +7 V	-7 V to +12 V
No. of Drivers/Receivers per Line	$1 / 10$	$32 / 32$

CABLE AND DATA RATE

The transmission line of choice for RS-485 communications is a twisted pair. Twisted pair cable tends to cancel common-mode noise and causes cancellation of the magnetic fields generated by the current flowing through each wire, thereby reducing the effective inductance of the pair.

The ADM485 is designed for bidirectional data communications on multipoint transmission lines. A typical application showing a multipoint transmission network is illustrated in Figure 30. An RS-485 transmission line can have as many as 32 transceivers on the bus. Only one driver can transmit at a particular time, but multiple receivers can be enabled simultaneously.

Figure 30. Typical RS-485 Network
As with any transmission line, it is important that reflections be minimized. This can be achieved by terminating the extreme ends of the line using resistors equal to the characteristic impedance of the line. Stub lengths of the main line should also be kept as short as possible. A properly terminated transmission line appears purely resistive to the driver.

THERMAL SHUTDOWN

The ADM485 contains thermal shutdown circuitry that protects the part from excessive power dissipation during fault conditions. Shorting the driver outputs to a low impedance source can result in high driver currents. The thermal sensing circuitry detects the increase in die temperature and disables the driver outputs. The thermal sensing circuitry is designed to disable the driver outputs when a die temperature of $150^{\circ} \mathrm{C}$ is reached. As the device cools, the drivers are re-enabled at $140^{\circ} \mathrm{C}$.

PROPAGATION DELAY

The ADM485 features very low propagation delay, ensuring maximum baud rate operation. The driver is well balanced, ensuring distortion free transmission.
Another important specification is a measure of the skew between the complementary outputs. Excessive skew impairs the noise immunity of the system and increases the amount of electromagnetic interference (EMI).

RECEIVER OPEN CIRCUIT, FAIL-SAFE

The receiver input includes a fail-safe feature that guarantees a logic high on the receiver when the inputs are open circuit or floating.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-012-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FO

Figure 31. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8)
Dimensions shown in millimeters and (inches)

Figure 32. 8-Lead Mini Small Outline Package [MSOP] (RM-8)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MS-001
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.

Figure 33. 8-Lead Plastic Dual In-Line Package [PDIP] Narrow Body (N-8)
Dimensions shown in inches and (millimeters)

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
ADM485AN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead PDIP	N-8	
ADM485ANZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead PDIP	N-8	
ADM485AR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8	
ADM485AR-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8	
ADM485ARZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8	
ADM485ARZ-REEL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8	
ADM485ARM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead MSOP	RM-8	M41
ADM485ARM-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead MSOP	RM-8	M41
ADM485ARM-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead MSOP	RM-8	M41
ADM485ARMZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead MSOP	RM-8	M41\#
ADM485ARMZ-REEL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead MSOP	RM-8	M41\#
ADM485ARMZ-REEL7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead MSOP	RM-8	M41\#
ADM485JN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8-Lead PDIP	N-8	
ADM485JNZ ${ }^{1}$	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8-Lead PDIP	N-8	
ADM485JR	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8	
ADM485JR-REEL	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8	
ADM485JR-REEL7	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8	
ADM485JRZ ${ }^{1}$	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8	
ADM485JRZ-REEL ${ }^{1}$	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8	
ADM485JRZ-REEL71	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8	

[^1]\square ADM485

NOTES

ADM485

NOTES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RS-422/RS-485 Interface IC category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
WS3088EESA-GEC ADM2687EBRIZ-RL7 MAX489CPD+ MAX491EPD+ MAX488EEPA+ MAX3080CPD+ MXL1535EEWI+ SN65LBC173DR MAX490ESA+T LT1791CN\#PBF LTM2881CY-3\#PBF LTC2857IMS8-2\#PBF LT1791ACN\#PBF MAX1487CUA+T XR3074XID-F XR3082XID-F SP1481EEN-L SN75ALS173NSR ADM3491ARZ-REEL ADM485JN ADM1485ANZ ADM1485ARMZ ADM1485JNZ ADM2682EBRIZ ADM489ABRZ ADM3070EYRZ ADM4850ACPZ-REEL7 ADM4850ARMZ-REEL7 ADM485ANZ ADM485ARMZ ADM485JNZ ADM488ANZ ADM489ANZ ADM489ARUZ ADM3485ARZ-REEL7 ADM3486EARZ-REEL7 ADM3488EARZ-REEL7 ADM3490ARZ ADM3493ARZ ADM4856ARZ-REEL7 ADM487EARZ-REEL7 ADM488ABRZ ADM1486ARZ ADM1490EBRZ-REEL7 ADM3485ARZ ADM3490ARZ-REEL7 ADM3490EARZ-REEL7 ADM4850ARZ ADM3074EYRZ ADM3078EYRZ

[^0]: ${ }^{1}$ Guaranteed by characterization.

[^1]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part, \# denotes RoHS compliant product may be top or bottom marked.

