FEATURES

Eight Single Ended Line Drivers in One Package Meets EIA Standard RS-232E, RS-423A and CCITT V.10/X. 26
Resistor Programmable Slew Rate
Wide Supply Voltage Range
Low Power CMOS
3-State Outputs
TTL/CMOS Compatible Inputs
Output Short Circuit Protection
Available in 28-Lead PLCC
Low Power Replacement for UC5170C

APPLICATIONS

High Speed Communication
Computer I-O Ports Peripherals
High Speed Modems
Printers
Logic Level Translation

GENERAL DESCRIPTION

The AD M 5170 is an octal line driver suitable for digital communication systems with data rates up to $116 \mathrm{kB} / \mathrm{s}$. Input TTL or CM OS signal levels are inverted and translated into either EIA RS-232E or RS-423A signal levels depending on the status of the M ode Select inputs M S+ and M S-. With both M ode Select inputs at GND, RS-423 operation is selected while with M S+ connected to $\mathrm{V}_{D D}$ and M S- connected to $\mathrm{V}_{S S}, \mathrm{RS}$-232 operation is selected.
The output slew rates may be controlled using an external resistor connected between the SRA (Slew Rate Adjust) pin and GND. Resistor values between $2 \mathrm{k} \Omega$ and $10 \mathrm{k} \Omega$ may be selected giving a slew rate which can be adjusted from $10 \mathrm{~V} / \mu \mathrm{s}$ to $2.2 \mathrm{~V} / \mu \mathrm{s}$. This adjustment of the slew rate allows tailoring of the output characteristics to suit the interface cable being used.

The outputs may be disabled using the $\overline{E N}$ (Enable Input). This feature permits sharing of a common output line.
The ADM 5170 is fabricated on an advanced CM OS process featuring low power consumption. In the disabled state the power consumption reduces from 500 mW to 40 mW . The ADM 5170 is available in a 28 -lead PLCC package.

FUNCTIONAL BLOCK DIAGRAM

Truth Table

Inputs EN	Data	Outputs EIA RS-232E ${ }^{\mathbf{1}}$	RS-423A
0	0	$\left(\mathrm{~V}_{\mathrm{DD}}-3 \mathrm{~V}\right)$	5 V to 6 V
0	1	$\left(\mathrm{~V}_{S S}-3 \mathrm{~V}\right)$	-5 V to -6 V
1	X	High Z	High Z

${ }^{1}$ M inimum Output Level

ADM5170-SPEC|F|CATIONS $\begin{aligned} & \left(V_{D 0}=+10 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{5 s}=-10 \mathrm{~V} \pm 10 \% \mathrm{~V}, \mathrm{MS}+=\mathrm{MS}-=0 \mathrm{~V}, \mathrm{R}_{\mathrm{SRA}}=\right. \\ & \left.10 \mathrm{k} \Omega \text {. All Specifications } \mathrm{T}_{\text {ms }} \text { to } \mathrm{T}_{\text {mus }} \text { unless otherwise noted. }\right)\end{aligned}$

Specifications subject to change without notice.

Parameter	Min	Typ	Max	Units	Test Conditions/Comments
Output Slew Rate	6.65	10	14	$\mathrm{V} / \mu \mathrm{s}$	Fig 1, Fig 2. $\mathrm{R}_{\text {SRA }}=2 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=450 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ Rising/F alling Edge, t_{R}, t_{F}
Output Slew Rate	1.33	2.0	3	$\mathrm{V} / \mu \mathrm{s}$	Fig 1, Fig 2. $\mathrm{R}_{\text {SRA }}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=450 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ Rising/F alling Edge, t_{R}, t_{F}
Output to Hi-Z Propagation Delay (D isable)		$\begin{aligned} & 0.3 \\ & 0.5 \end{aligned}$	1.0 1.0	$\mu \mathrm{S}$ HS	Fig 1, Fig 3. $\mathrm{R}_{\text {SRA }}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=450 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ t_{Hz} t_{17}
$\mathrm{Hi}-\mathrm{Z}$ to Valid Output Propagation D elay (Enable)		$\begin{aligned} & 6.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\mu \mathrm{S}$ $\mu \mathrm{S}$	Fig 1, Fig 3. $\mathrm{R}_{\text {SRA }}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=450 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ $\mathrm{t}_{\text {zH }}$ t_{zL}

[^0]
ABSOLUTE MAXIMUM RATINGS*

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
$V_{D D}^{A}$. +15 V
V Vs 15 V
Input Voltages
$\mathrm{V}_{\text {IN }}$. -0.3 to ($\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$)

Ouput Voltages

O utput Short Circuit D uration C . . ontinuous
Power Dissipation PLCC 1000 mW
(Derate at $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+50^{\circ} \mathrm{C}$)
$\theta_{\text {JA }}$, Thermal Impedance . $80^{\circ} \mathrm{C} / \mathrm{W}$
O perating Temperature Range
Industrial (A Version) . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec) $+300^{\circ} \mathrm{C}$
Vapour Phase (60 sec) . $+215^{\circ} \mathrm{C}$
Infrared (15 sec) . $+220^{\circ} \mathrm{C}$
*T his is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolutemaximum rating conditions for extended periods of time may affect reliability.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADM 5170 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Figure 1. Timing Test Circuit

Figure 2. Rise/Fall Timing Waveforms

Figure 3. Enable/Disable Timing Waveforms

PIN CONFIGURATION

NC = NO CONNECT

PIN FUNCTION DESCRIPTION

Mnemonic	Function
$V_{\text {D }}$	Power Supply Input, $+10 \mathrm{~V} \pm 10 \%$.
$\mathrm{V}_{\text {SS }}$	Power Supply Input, -10 V $\pm 10 \%$.
GND	Ground Pin. M ust be connected to 0 V .
$A_{1} \ldots . . H_{1}$	Digital Input to Drivers A to H.
$\mathrm{A}_{0} \ldots \mathrm{H}_{0}$	RS-232/RS-423 O utput from D rivers A to H.
EN	Enable Pin. When high, all outputs are 3-stated.
M S+, M S-	M ode Select Inputs. U sed to control the output level swing. With M S+ \& M S- connected to GND, RS-423A output levels are selected. With M S+ connected to $\mathrm{V}_{\text {DD }}$ and M S- connected to $\mathrm{V}_{S S}$, RS-232 output levels are developed.
SRA	Slew Rate Adjust Input. An external resistor ($2 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$) connected between this pin and GND is used to control the Output Slew Rate ($10 \mathrm{~V} / \mu \mathrm{s}$ to $2.2 \mathrm{~V} / \mu \mathrm{s}$).

Slew Rate Programming

The slew rate for the AD M 5170 is controlled by a single resistor connected between the SRA pin and GND. The slew rate is approximately.

$$
\text { Slew Rate }(\mathrm{V} / \mu \mathrm{S})=20 / \mathrm{R}_{\text {SRA }}(\mathrm{k} \Omega)
$$

Resistors between $2 \mathrm{k} \Omega$ and $10 \mathrm{k} \Omega$ may be used providing a slew rate which may be varied from $10 \mathrm{~V} / \mu \mathrm{s}$ to $2.2 \mathrm{~V} / \mu \mathrm{s}$. Figure 5 in the T ypical Performance C haracteristics section shows how the slew rate varies with $R_{\text {SRA }}$ while F igure 8 shows how the transition time (10% to 90%) varies with $R_{\text {SRA }}$. Waveshaping of the output allows the user to control the level of interference (near-end crosstalk) which may be coupled to adjacent circuits in an interconnection. The recommended output characteristics for cable length and data rate are given in the EIA RS-423A specifications.

M aximum D ata Rate (kB/s) =300/t (for rates from $1 \mathrm{kB} / \mathrm{s}$ to $100 \mathrm{kB} / \mathrm{s}$).

$$
\text { Cable Length (feet) }=100 \times \mathrm{t} \text { (} \mathrm{M} \text { ax Length }=4000 \mathrm{ft} .)
$$

where t is the transition time (in $\mu \mathrm{S}$) for the output to swing from 10% to 90% of its steady state values. The absolute maximum data rate is $100 \mathrm{kB} / \mathrm{s}$ and the maximum cable length is limited to 4000 ft .

Output Mode Programming

The AD M 5170 has two programmable output modes which provide different output voltage levels. The low output mode meets the specifications of EIA standards RS-423A while the high output mode meets the RS-232 specifications. The high output mode provides greater output swings and is suitable for driving lines where higher attenuation levels must be tolerated. This mode is selected by connecting the mode select pins to the supplies, M S+ to $\mathrm{V}_{D D}$ and M S - to $\mathrm{V}_{S S}$. The low output mode is selected by connecting both mode select pins M S+ and M S- to GND. T his mode provides a controlled output swing with lower output levels.

Inputs				Outputs
MS+	MS-	$\overline{\text { EN }}$	Data	Output
GND	GND	0	0	$5 V$ to 6 V (RS-423)
GND	GND	0	1	$-5 V$ to $-6 V(R S-423)$
$V_{D D}$	$V_{S S}$	0	0	$\left(V_{D D}-3 V\right)(R S-232)^{1}$
$V_{D D}$	$V_{S S}$	0	1	$\left(V_{S S}+3 V\right)(R S-232)^{1}$
X	X	1	X	High Z

${ }^{1}$ M inimum Output Level.

Typical Application Circuit

A typical application circuit using a single driver in the AD M 5170 is shown in Figure 4. This circuit is suitable for either RS-232 or RS-423 communication. An AD M 5180 octal receiver is used to translate the signal back to CM OS logic level at the receiving end.

Figure 4. RS-232/RS-423A Typical Application Circuit

Typical Performance Characteristics- ADM5170

Figure 5. Typical Slew Rate vs. $R_{\text {SRA }}$

Figure 6. Slew Rate $\left(R_{S R A}=2 k \Omega\right)$

Figure 7. $V_{O H} N_{O L}$ vs. $V_{D D} N_{S S}(R S-232$ Mode)

Figure 8. Typical Rise/Fall Times (RS-423A Mode) vs. $R_{\text {SRA }}$

Figure 9. Slew Rate $\left(R_{S R A}=10 \mathrm{k} \Omega\right)$

Figure 10. $V_{O H} N_{O L}$ vs. $V_{D D} N_{S S}(R S-423$ Mode)

Figure 11. Driver Output Voltage vs. Output Current (RS-232 Mode)

Figure 12. Driver Output Voltage vs. Output Current (RS-423 Mode)

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-047-AB
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 13. 28-Lead Plastic Leaded Chip Carrier [PLCC]
(P-28)
Dimensions shown in inches and (millimeters)
ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADM5170APZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 -Lead Plastic Leaded Chip Carrier $[P L C C]$	P-28
ADM5170APZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Lead Plastic Leaded Chip Carrier $[P L C C], 13^{\prime \prime}$ Reel	P- 28

${ }^{1} Z=$ RoHS Compliant Part.

REVISION HISTORY

9/2017—Rev. 0 to Rev. A
Deleted 28-Lead Plastic DIP Package \qquad Universal Changes to Features Section and General Description Section.. 1 Changes to Absolute Maximum Ratings Table 3
Deleted DIP Pin Configuration Figure 4
Moved Ordering Guide 7
Updated Outline Dimensions 7
Changes to Ordering Guide 7

10/1993-Revision 0: Initial Version

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RS-232 Interface IC category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
062191EB CH438L LT1039CN LTC1327CNW LTC1327CSW MAX3386ECPWR TRS222IDWR MAX232INE4 MAX3232CPW MAX204CWE + TRS3243EIDWR TRS3232EIDWR SN65C3232EDWR ADM208ARZ-REEL LT1780CSW\#PBF LT1237CSW\#PBF LT1281AISW\#PBF LTC1337CSW\#PBF LT1180ACN\#PBF LT1237CNW\#PBF LT1039CN\#PBF LT1032CSW\#PBF LT1130ACSW\#PBF LTC1349ISW\#PBF LT1032ISW\#PBF LTM2882IY-3\#PBF LT1140ACN\#PBF LTC1384IG\#PBF ADM211EARUZ-REEL7 LTC1383CS\#PBF LT1280AIN\#PBF LT1080ISW\#PBF LTC2845IG\#PBF LTC1383CN\#PBF LTC2845CG\#PBF LTC2846CG\#PBF LTC1384CG\#PBF LT1781IS\#PBF LT1081IN\#PBF LT1131ACNW LT1131ACSW SN75188DE4 LTC1350CNW MAX3209EEUU+T ADM3222ARUZ-REEL AD7306AR AD7306ARZ AD7306JNZ AD7306JRZ ADM3311EARSZ-REEL

[^0]: Specifications subject to change without notice.

