

Quad Voltage Microprocessor Supervisory Circuit

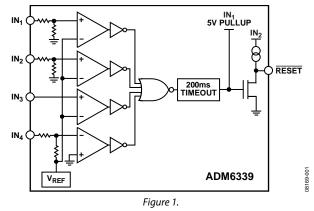
ADM6339

FEATURES

Accurate monitoring of up to four power supply voltages 6 factory-set threshold options: -5.0 V, +1.8 V, +2.5 V, +3.0 V, +3.3 V, and +5.0 VAdjustable input threshold options: $-0.5 \text{ V} (\pm 2.0\% \text{ accuracy})$, $+0.62 \text{ V} (\pm 0.8\% \text{ accuracy})$, and +1.23 V200 ms typical reset timeout Open-drain RESET output (10 µA internal pull-up) Reset output stage: active low, valid to IN₁ = 1 V or IN₂ = 1 V Low power consumption (55 µA) Glitch immunity Specified from -40° C to $+85^{\circ}$ C 6-lead SOT-23 package

APPLICATIONS

Telecommunications Microprocessor systems Data storage equipment Servers/workstations


GENERAL DESCRIPTION

The ADM6339 is a high accuracy supervisory circuit capable of monitoring up to four system supply voltages.

The ADM6339 incorporates a variety of internally pretrimmed undervoltage threshold options for monitoring -5.0 V, +1.8 V, +2.5 V, +3.0 V, +3.3 V, and +5.0 V supply voltages. Tolerance levels of $\pm 5\%$ and $\pm 10\%$ are available. The device is also available with one to three adjustable threshold options. The adjustable voltage threshold options are +1.23 V, +0.62 V, and -0.5 V. See the Ordering Guide section for a list and description of all available options.

If a monitored power supply voltage decreases below the minimum voltage threshold (or rises above the maximum voltage threshold for the -0.5 V and -5.0 V input options), a single

FUNCTIONAL BLOCK DIAGRAM

active low output asserts, triggering a system reset. The output is open drain with a weak internal pull-up to the monitored IN_2 supply of typically 10 μ A. After all voltages exceed the selected threshold level, the reset signal remains low for the reset timeout period (200 ms typical).

The ADM6339 output remains valid as long as IN_1 or IN_2 exceeds 1 V. Unused monitored inputs should not be allowed to float or to be grounded; instead, they should be connected to a supply voltage greater than their specified threshold voltages.

The ADM6339 is available in a 6-lead SOT-23 package. The device operates over the extended temperature range of -40° C to $+85^{\circ}$ C.

Rev. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features	1
Applications	1
Functional Block Diagram	1
General Description	1
Revision History	2
Specifications	3
Absolute Maximum Ratings	4
ESD Caution	4
Pin Configuration and Function Descriptions	5

Typical Performance Characteristics	6
Theory of Operation	8
Input Configuration	8
Monitoring Negative Voltages < -5.0 V	8
User Adjustable Threshold Options	8
RESET Output Configuration	9
Outline Dimensions	10
Ordering Guide	10

REVISION HISTORY

10/10—Rev. 0 to Rev. A	
Added Figure 19	10

6/09—Revision 0: Initial Version

SPECIFICATIONS

 $V_{IN2} = 1.0$ V to 5.5 V, $T_A = -40^{\circ}$ C to +85°C, unless otherwise noted. Typical values are $V_{IN2} = 3.0$ V to 3.3 V, $T_A = 25^{\circ}$ C.

Parameter	Min	Тур	Max	Units	Test Conditions/Comments
OPERATING VOLTAGE RANGE (VIN2) ^{1, 2}	1.0		5.5	V	
INPUT CURRENT					
IN _x Input Current		25	40	μA	V_{INx} = nominal input voltage for 1.8 V, 2.5 V, and 5.0 V supplies.
		55	115	μA	V_{IN2} = nominal input voltage for 3.0 V and 3.3 V supplies. V_{IN2} is
					also the device power supply. The supply splits into 25 μA for the resistor divider and 30 μA for other circuits.
	-0.1		+0.1	μA	$V_{INx} = 0$ V to V_{IN2} (input threshold voltage = 1.23 V).
		0.4	1.5	μA	$V_{IN1} = 1.5 V$ (ADM6339K and ADM6639L models only).
		-15	-20	μA	$V_{INx} = -5.0 \text{ V}$ (IN _x input threshold voltage = -5.0 V).
	-0.1		+0.1	μA	$V_{INx} = 0.62 \text{ V}$ (IN _x input threshold voltage = 0.62 V).
	-1	-3	-5	μA	$V_{INx} = -0.5 \text{ V}$ (IN _x input threshold voltage = -0.5 V).
THRESHOLD VOLTAGE					
Fixed Threshold Voltage (V_{TH})	4.50	4.63	4.75	V	5.0 V (–5% tolerance) threshold.
V _{INx} Decreasing	4.25	4.38	4.50	V	5.0 V (–10% tolerance) threshold.
	3.00	3.08	3.15	V	3.3 V (–5% tolerance) threshold.
	2.85	2.93	3.00	V	3.3 V (–10% tolerance) threshold.
	2.70	2.78	2.85	V	3.0 V (–5% tolerance) threshold.
	2.55	2.63	2.70	V	3.0 V (–10% tolerance) threshold.
	2.13	2.19	2.25	V	2.5 V (–10% tolerance) threshold.
	1.53	1.58	1.62	V	1.8 V (–10% tolerance) threshold.
V _{INx} Increasing	-4.75	-4.63	-4.50	V	-5.0 V (+5% tolerance) threshold.
	-4.50	-4.38	-4.25	V	-5.0 V (+10% tolerance) threshold.
Adjustable Threshold Voltage (V_{TH})					
V _{INx} Decreasing	1.20	1.23	1.26	V	
	0.615	0.620	0.625	V	
V _{INx} Increasing	-0.497	-0.487	-0.477	V	–0.5 V threshold.
RESET THRESHOLD HYSTERESIS (V _{HYST})		0.3		% V _{TH}	
		0.47		% V _{TH}	IN₄, ADM6339Q model.
RESET THRESHOLD TEMPERATURE COEFFICIENT (TCV _{TH})		60		ppm/°C	
IN _x to RESET DELAY (t_{RD})		30		μs	$V_{INx} = V_{TH}$ to $(V_{TH} - 50 \text{ mV})$ for all inputs except -0.5 V and -5.0 V ; $V_{INx} = V_{TH}$ to $(V_{TH} + 50 \text{ mV})$ for -5.0 V and -0.5 V inputs only.
RESET TIMEOUT PERIOD (t _{rp})	140	200	280	ms	
RESET OUTPUT LOW (Vol)			0.4	V	$V_{IN2} = 5.0 \text{ V}, I_{SINK} = 2 \text{ mA}.$
			0.4	v	$V_{IN2} = 2.5 \text{ V}, I_{SINK} = 1.2 \text{ mA}.$
			0.4	V	$V_{IN2} = V_{IN1} = 1 \text{ V}, \text{I}_{\text{SINK}} = 50 \mu\text{A}.$
			0.4	V	$V_{IN1} = 1V, V_{IN2} = 0 V, I_{SINK} = 20 \mu A$
			0.4	V	$V_{IN1} = 0 V, V_{IN2} = 1 V, I_{SINK} = 20 \mu A$
RESET OUTPUT HIGH (VOH)	$0.8 \times V_{IN2}$			V	$V_{IN2} \ge 2.55$ V, $I_{SOURCE} = 6 \mu A$, RESET not asserted.
RESET OUTPUT HIGH SOURCE CURRENT (I _{OH})		10		μΑ	$V_{IN2} \ge 2.55 \text{ V}, \text{RESET} \text{ not asserted.}$

 1 The device is powered by Input IN2. 2 The $\stackrel{\rm RESET}{RESET}$ output is guaranteed to be in the correct state for IN1 or IN2 down to 1 V.

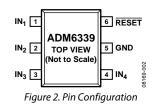
ABSOLUTE MAXIMUM RATINGS

Table 2.

14010 21	
Parameter	Rating
Vcc, RESET, GND	–0.3 V to +6 V
Continuous RESET Current	20 mA
IN _x (Positive Reset Threshold)	–0.3 V to +6 V
IN₄ (Negative Reset Threshold, −5 V)	–6 V to +0.3 V
IN₄ ADM6339Q Model (Negative Reset Threshold, –0.5 V)	–2 V to +0.3 V
Storage Temperature Range	−65°C to +125°C
Operating Temperature Range	-40°C to +85°C
Lead Temperature (10 sec)	300°C
Junction Temperature	135°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 3. Thermal Resistance


Package Type	Αιθ	Unit	
6-Lead SOT-23	169.5	°C/W	

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	IN ₁	Monitored Input Voltage 1.
2	IN ₂	Monitored Input Voltage 2. IN ₂ is the power supply input for the ADM6339.
3	IN ₃	Monitored Input Voltage 3.
4	IN ₄	Monitored Input Voltage 4.
5	GND	Ground.
6	RESET	Active Low RESET Output. RESET goes low when an input drops below the specified threshold (or above in the case of the –0.5 V and –5.0 V input options). After all inputs rise above the threshold voltage, RESET remains low for 200 ms (typical) before going high. RESET is open drain with a weak internal pull-up to IN ₂ , typically 10 μA.

-0.20

40

-20

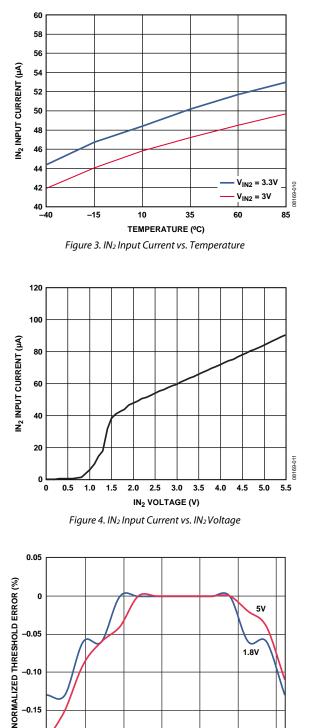
0

20

Figure 5. Normalized Threshold Error vs. Temperature

TEMPERATURE (°C)

40


60

80

08169-007

TYPICAL PERFORMANCE CHARACTERISTICS

 $V_{IN2} = V_{CC} = 3.0$ V, $T_A = 25^{\circ}$ C, unless otherwise noted.

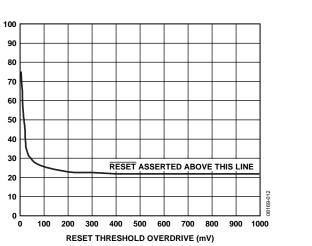


Figure 6. Maximum IN_x Transient Duration vs. Reset Threshold Overdrive

MAXIMUM INX TRANSIENT DURATION (µs)

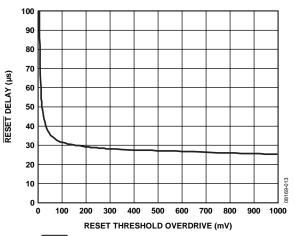


Figure 7. $\overline{\text{RESET}}$ Delay vs. Reset Threshold Overdrive (IN_x Decreasing)

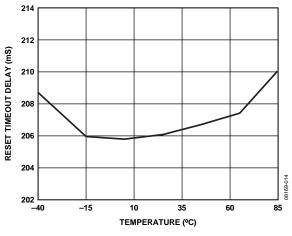
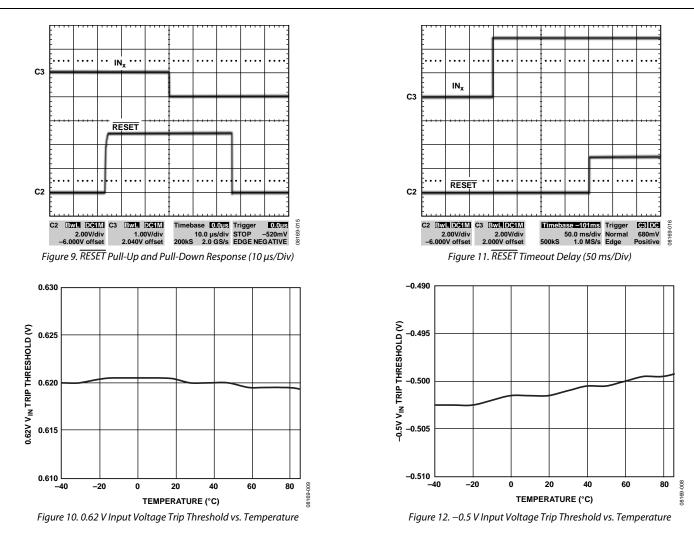



Figure 8. Reset Timeout Delay vs. Temperature

Rev. A | Page 6 of 12

THEORY OF OPERATION

The ADM6339 is a compact, low power supervisory circuit that is capable of monitoring up to four voltages in a multisupply application.

The device includes several factory-set voltage threshold options for monitoring -5.0 V, +1.8 V, +2.5 V, +3.0 V, +3.3 V, and +5.0 V supplies. The ADM6339 is available with one to three adjustable threshold options. The adjustable voltage threshold options available are +1.23 V, +0.62 V, and -0.5 V. See the Ordering Guide section for a list and description of all available options.

INPUT CONFIGURATION

Built-in hysteresis improves the ADM6339's immunity to short input transients, without noticeably reducing the threshold accuracy. The internal comparators each have a hysteresis of 0.3% with respect to the reset threshold voltage. (The IN₄ input of the ADM6339Q model has a hysteresis of 0.47% with respect to its reset threshold voltage of -0.487 V.)

Monitored inputs are resistant to short power supply glitches. Figure 6 depicts the ADM6339 glitch immunity data. To increase noise immunity in noisy applications, place a 0.1 μ F capacitor between the IN₂ input and ground. Adding capacitance to IN₁, IN₃, and IN₄ also improves noise immunity.

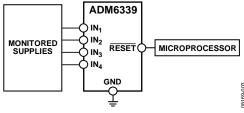


Figure 13. Typical Applications Circuit

IN₂ must always be used for normal operation because it is the device's power supply input. Do not allow unused monitor inputs to float or to be grounded. Unused IN₃ or IN₄ inputs with positive thresholds can be connected directly to the IN₂ input. Unused IN₄ options with negative thresholds must be tied to a more negative supply.

MONITORING NEGATIVE VOLTAGES < -5.0 V

A number of ADM6339 models include a pretrimmed threshold option to monitor -5.0 V voltage levels. Use a low impedance resistor divider network similar to that shown in Figure 14 to monitor supplies more negative than -5.0 V.

The current through the external resistor divider should be greater than the input current for the -5.0 V monitor options.

For an input monitor current error of <1%, the resistor network current should be greater than or equal to 2 mA (for $I_{IN4} = 20 \ \mu A$ maximum). Set $R_2 = 2.5 \ k\Omega$. Calculate R_1 based on the desired V_{INTH} reset threshold voltage, using the following equation:

 $R_1 = R_2((V_{\rm INTH}/V_{\rm TH}) - 1)$

where: $R_2 \le 2.49 \text{ k}\Omega$. V_{INTH} is the desired threshold voltage. V_{TH} is the internal threshold voltage.

For example, when monitoring a nominal voltage of -12 V, $V_{\rm INTH} = -11.1$ V, $V_{TH} = -4.63$ V, and $R_2 = 2.49$ k Ω . Therefore, using the previous equation, $R_1 = 3.48$ k Ω .

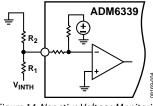


Figure 14. Negative Voltage Monitoring

USER ADJUSTABLE THRESHOLD OPTIONS

The ADM6339 offers the choice of three adjustable IN_x input threshold voltages: +1.23 V, +0.62 V, or -0.5 V.

When using an adjustable threshold of 1.23 V (typical), to monitor a voltage greater than 1.23 V, connect a resistor divider network to the device as shown in Figure 15. V_{INTH} , the desired threshold voltage, can be expressed as

 $V_{INTH} = 1.23 V((R_1 + R_2)/(R_2))$

The ADM6339 has a guaranteed input current of $\pm 0.1~\mu A$ on its 1.23 V adjustable input. Resistor values up to 100 k Ω can be used for R_2 with <1% error.

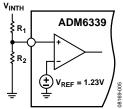


Figure 15. Setting the 1.23 V Adjustable Monitor

The same approach is taken when using the 0.62 V (typical) adjustable threshold input. Use the following equation to solve for the values of R_1 and R_2 :

 $V_{INTH} = 0.62 V((R_1 + R_2)/(R_2))$

The 0.62 V (typical) adjustable threshold input offers high threshold accuracy of $\pm 0.8\%$.

When monitoring a voltage more negative than -0.5 V, a scheme similar to that previously described in the Monitoring Negative Voltages < -5.0 V section is used. For an input monitor current error of <1%, the resistor network current should be \geq 500 μ A (for I_{IN4} = 5 μ A maximum). Calculate R₁ based on the desired V_{INTH} reset threshold voltage, using the following equation:

 $R_1 = R_2((V_{INTH}/V_{TH}) - 1)$

where $V_{\rm INTH}$ is the desired threshold voltage and $V_{\rm TH}$ is the internal threshold voltage, -0.487 V (typical).

RESET OUTPUT CONFIGURATION

The RESET output asserts low if a monitored INx voltage drops below its voltage threshold (or goes above its associated threshold in the case of the -0.5 V and -5.0 V input options). After all voltages exceed their associated threshold level, the reset signal remains low for the reset timeout period, t_{RP} (200 ms typical).

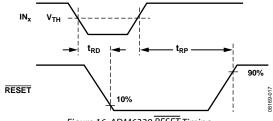


Figure 16. ADM6339 RESET Timing

RESET is open drain with a weak internal pull-up to IN_2 of 10 μ A (typical). Many applications that interface with other logic devices do not require an external pull-up resistor. However, if an external pull-up resistor is required and it is connected to a voltage ranging from 0 V to 5.5 V, the resistor overdrives the internal pull-up. Reverse current flow from the external pull-up voltage to IN_2 is prevented by the internal circuitry.

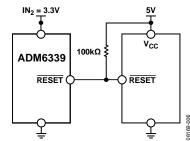
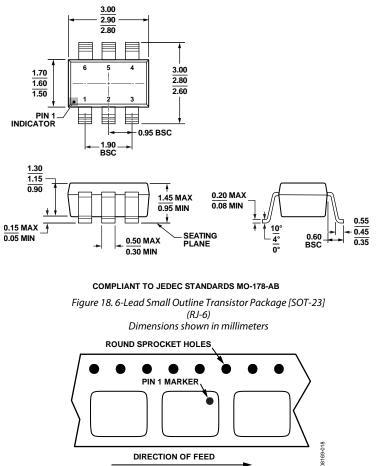



Figure 17. Interfacing with a Different Logic Supply Voltage

OUTLINE DIMENSIONS

121608-A

Figure 19. ADM6339 Reel Orientation

ORDERING GUIDE

	Nominal Input Voltage (V)			Tolerance	Temperature	Package	Package		
Model ^{1, 2}	IN ₁	IN ₂	IN ₃	IN4	(%)	Range	Description	Option	Branding
ADM6339AARJZ-RL7	5.0	3.3	2.5	Adj (1.23)	10	-40°C to +85°C	6-Lead SOT-23	RJ-6	MBF
ADM6339BARJZ-RL7	5.0	3.3	2.5	Adj (1.23)	5	-40°C to +85°C	6-Lead SOT-23	RJ-6	MBH
ADM6339CARJZ-RL7	5.0	3.3	1.8	Adj (1.23)	10	-40°C to +85°C	6-Lead SOT-23	RJ-6	MBJ
ADM6339DARJZ-RL7	5.0	3.3	1.8	Adj (1.23)	5	-40°C to +85°C	6-Lead SOT-23	RJ-6	MBK
ADM6339EARJZ-RL7	5.0	3.0	2.5	Adj (1.23)	10	-40°C to +85°C	6-Lead SOT-23	RJ-6	MBL
ADM6339FARJZ-RL7	5.0	3.0	2.5	Adj (1.23)	5	-40°C to +85°C	6-Lead SOT-23	RJ-6	MBM
ADM6339GARJZ-RL7	5.0	3.0	1.8	Adj (1.23)	10	-40°C to +85°C	6-Lead SOT-23	RJ-6	MBN
ADM6339HARJZ-RL7	5.0	3.0	1.8	Adj (1.23)	5	-40°C to +85°C	6-Lead SOT-23	RJ-6	MBP
ADM6339IARJZ-RL7	5.0	3.3	2.5	1.8	10	-40°C to +85°C	6-Lead SOT-23	RJ-6	MBQ
ADM6339JARJZ-RL7	5.0	3.3	2.5	1.8	5	-40°C to +85°C	6-Lead SOT-23	RJ-6	MBR
ADM6339KARJZ-RL7	Adj (1.23)	3.3	2.5	Adj (1.23)	10	-40°C to +85°C	6-Lead SOT-23	RJ-6	MBS
ADM6339LARJZ-RL7	Adj (1.23)	3.3	2.5	Adj (1.23)	5	-40°C to +85°C	6-Lead SOT-23	RJ-6	MBU
ADM6339MARJZ-RL7	5.0	3.0	Adj (1.23)	-5.0	10	-40°C to +85°C	6-Lead SOT-23	RJ-6	MB6
ADM6339NARJZ-RL7	5.0	3.0	Adj (1.23)	-5.0	5	-40°C to +85°C	6-Lead SOT-23	RJ-6	MB7
ADM6339OARJZ-RL7	5.0	3.3	Adj (1.23)	-5.0	10	-40°C to +85°C	6-Lead SOT-23	RJ-6	MB8
ADM6339PARJZ-RL7	5.0	3.3	Adj (1.23)	-5.0	5	-40°C to +85°C	6-Lead SOT-23	RJ-6	MB5
ADM6339QARJZ-RL7	Adj (0.62)	3.3	Adj (0.62)	Adj (–0.5)	10	-40°C to +85°C	6-Lead SOT-23	RJ-6	MBX

 1 Z = RoHS Compliant Part.

² Nominal input voltage is specified with 10% tolerance.

NOTES

NOTES

www.analog.com

©2009–2010 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D08169-0-10/10(A)

Rev. A | Page 12 of 12

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Supervisory Circuits category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

CAT1161LI-25-G CAT853STBI-T3 CAT1026LI-30-G CAT1320LI-25-G TC54VN2402EMB713 MCP1316T-44NE/OT MCP1316MT-45GE/OT MCP1316MT-23LI/OT MAX8997EWW+ MAX6725AKASYD3-LF-T DS1232L NCV302HSN45T1G PT7M6130NLTA3EX PT7M7811STBEX-2017 S-1000N28-I4T1U CAT1161LI-28-G MCP1321T-29AE/OT MCP1319MT-47QE/OT S-1000N23-I4T1U S-1000N19-I4T1U CAT824UTDI-GT3 TC54VC2502ECB713 PT7M6133NLTA3EX PT7M6127NLTA3EX VDA2510NTA AP0809ES3-r HG811RM4/TR MD7030C MD7033C MD7019 MD7020 MD7021 MD7023 MD7024 MD7027 MD7030 MD7033 MD7035 MD7036 MD7039 MD7040 MD7044 MD7050 MD7015 MD7028 MD7031 MD7042 MD7043 MD7047 MD7060