Microprocessor Supervisory Circuits

FEATURES
Superior Upgrade for ADM698/ADM699, MAX698/MAX699
Guaranteed $\overline{\text { RESET }}$ Assertion with $\mathrm{V}_{\mathrm{cC}}=1 \mathrm{~V}$
Low $70 \mu \mathrm{~A}$ Supply Current
Precision 4.65 V Voltage Monitor
Power OK/ Reset Time Delay
Watchdog Timer
Minimum Component Count
Performance Specified over Temperature
APPLICATIONS
Microprocessor Systems

Computers

Controllers
Intelligent Instruments
Automotive Systems
Critical μ P Power Monitoring

GENERAL DESCRIPTION

The AD M 8698/AD M 8699 supervisory circuits provide power supply monitoring and watchdog timing for microprocessor systems.
The ADM 8698 monitors the $5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ power supply and generates a RESET pulse during power up, power down and during low voltage "Brown Out" conditions. The $\overline{\text { RESET }}$ output is guaranteed to be functional (logic low) with V_{CC} as low as 1 V .
The ADM 8699 features an identical monitoring circuit as in the ADM 8698, plus an additional watchdog timer input to monitor microprocessor activity. The RESET output is forced low if the watchdog input is not toggled within the 1 second watchdog timeout period.
Both parts are available in 8 -pin plastic DIP/SOIC and 16-lead SOIC packages. The 16-lead SOIC contains additional outputs $\overline{\text { RESET (without inversion) and W atchdog Output WDO }}$ (ADM 8699 only).

REV. 0

[^0]FUNCTIONAL BLOCK DIAGRAM

*WDI (ADM8699 ONLY)
RESET (SOIC ONLY)
WDO (ADM8699 SOIC ONLY)

TYPICAL APPLICATION CIRCUIT

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 617/329-4700 Fax: 617/326-8703

Parameter	Min	Typ	Max	Units	Test Conditions/Comments
V_{CC} Operating Voltage Range Supply C urrent	3.0	70	$\begin{aligned} & \hline 5.5 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mu \mathrm{~A} \end{aligned}$	
Power-D own Reset Assertion Power-U p Reset D eassertion Reset T hreshold Hysteresis Reset Active Time	$\begin{aligned} & 4.5 \\ & 140 \end{aligned}$	$\begin{aligned} & 4.65 \\ & 40 \\ & 200 \end{aligned}$	$\begin{aligned} & 4.75 \\ & 280 \end{aligned}$	V mV ms	
Watchdog T imeout Period (ADM 8699) M inimum WDI Input Pulse Width	$\begin{aligned} & 1.0 \\ & 50 \end{aligned}$	1.6	2.25	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~ns} \end{aligned}$	$\mathrm{V}_{\text {IL }}=0.4, \mathrm{~V}_{\text {IH }}=0.8\left(\mathrm{~V}_{\text {CC }}\right)$
$\overline{\text { RESET }}$ Output Voltage $\overline{\text { RESET }}$ Output Voltage ($\mathrm{V}_{\mathrm{CC}}=1 \mathrm{~V}$) RESET and $\overline{\mathrm{WDO}}$ Output Voltage $\overline{\text { RESET }}$ Output Short C ircuit C urrent	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	12 45	$\begin{aligned} & 0.4 \\ & 200 \\ & 0.4 \end{aligned}$	V mV V V V mA	$\begin{aligned} & \mathrm{I}_{\text {SINK }}=3.2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.4 \mathrm{~V} \\ & \mathrm{I}_{\text {SINK }}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=1.0 \mathrm{~V} \\ & \mathrm{I}_{\text {SOURCE }}=500 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{I}_{\text {SINK }}=3.2 \mathrm{~mA}, \mathrm{~V}_{\text {CC }}=5 \mathrm{~V} \\ & \text { SOURCE }=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=4.4 \mathrm{~V} \\ & \text { O utput Sink } \text { urrent } \end{aligned}$
WDI Input T hreshold (AD M 8699) Logic Low Logic High WD I Input Current	$\begin{aligned} & 3.5 \\ & -10 \end{aligned}$	$\begin{aligned} & +1 \\ & -1 \end{aligned}$	$\begin{aligned} & 0.8 \\ & +10 \end{aligned}$	V V $\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{aligned} & W D I=V_{C C} \\ & W D I=0 V \end{aligned}$

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS*

*Stresses above those listed under A bsolute M aximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in theoperational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods of time may affect device reliability.

ORDERING GUIDE

Model	Temperature Range	Package Options*
ADM 8698AN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-8$
ADM 8698ARW	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	R-16
ADM 8698ARN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	R-8
ADM 8699AN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-8$
ADM 8699ARW	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	R-16
ADM 8699ARN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	R-8

[^1]
PIN FUNCTION DESCRIPTIONS

Mnemonic	Function
$V_{C C}$	+5 V Power Supply Input.
GND	0 V . Ground reference for all signals.
$\overline{\text { RESET }}$	L ogic Output. $\overline{\text { RESET goes low whenever } V_{c c}}$ falls below the reset voltage threshold (4.65 V typ). $\overline{\text { RESET }}$ remains low for a minimum of 140 ms after V_{CC} returns to 5 V . $\overline{\text { RESET }}$ also goes low for a minimum of 140 ms if the watchdog timer is enabled but not serviced within its timeout period.
WDI	Watchdog Input. WDI is a three level input. If WDI remains either high or low for longer than the watchdog timeout period, $\overline{\text { RESET }}$ pulses low and $\overline{\text { WDO }}$ goes low. The timer resets with each transition on the WDI line. The watchdog timer may be disabled if WDI is left floating or is driven to midsupply.
RESET	(SOIC packages only) Logic Output. RESET is an active high output. It is the inverse of RESET.
$\overline{\text { WDO }}$	(SOIC AD M 8699 only) Logic Output. The Watchdog Output, WDO, goes low if WDI remains either high or low for Ionger than the watchdog timeout period. WDO is set high by the next transition at WDI. If WDI is unconnected or at midsupply, the watchdog timer is disabled and WDO remains high.

PIN CONFIGURATIONS

8-Lead DIP \& SOIC

16-Lead SOIC

*() ADM8699 ONLY NC = NO CONNECT

TYPICAL PERFORMANCE CURVES

Figure 1. RESET Output Voltage vs. $V_{C C}$

Figure 2. RESET Timeout Delay vs. Temperature

Figure 3. RESET Voltage Threshold vs. Temperature

ADM8698／ADM8699

CIRCUIT INFORMATION

Power Fail RESET

A precision voltage detector monitors V_{CC} and generates a RESET output to hold the microprocessor＇s Reset line low when V_{CC} falls below the reset threshold 4.65 V （see Figure 4）．The reset voltage threshold is set to accommodate a 5% variation on V_{cc} ．The voltage detector has 40 mV hysteresis to ensure that glitches on V_{CC} do not activate the $\overline{\text { RESET }}$ output．
On power－up，an internal monostable holds $\overline{\text { RESET }}$ low for 140 ms after V_{cc} rises above the reset threshold．This allows the power supply to stabilize on power－up and also prevents repeated toggling of RESET even if the 5 V power drops out and recovers with each power line cycle．In order to prevent mistriggering due to transient voltage spikes，it is recommended that a $0.1 \mu \mathrm{~F}$ capacitor be connected at the V_{cc} pin．
The $\overline{\text { RESET }}$ output is guaranteed to remain low with V_{Cc} ，as low as 1 V ．T his holds the microprocessor in a stable shutdown condition as the power supply comes up．
On the 16－lead SOIC package，an active high RESET output is also provided．This is the complement of $\overline{\text { RESET }}$ and is in－ tended for microprocessors requiring an active high signal．

Figure 4．Watchdog Timeout Period vs．Temperature

Watchdog Timer（ADM8699 Only）

The watchdog timer input（WDI）monitors an I／O line from the $\mu \mathrm{P}$ system．The $\mu \mathrm{P}$ must toggle this input once every 1.6 sec－ onds to verify correct software execution．Failure to toggle the line indicates that the $\mu \mathrm{P}$ system is not correctly executing its program and may be tied up in an endless loop．If this happens， a reset pulse is generated to initial ize the processor．
The WDI input is a three level input and will recognize a low－ to－high or high－to－low transition on its input．The watchdog timer is reset by each WDI transition and then begins its timeout period．If the WDI pin remains either high or low，reset pulses will be issued every 1.6 seconds typically．If the watchdog timer is not needed，the WDI input should be left floating．
The Watchdog Output（ $\overline{\mathrm{WDO}}$ ）（SOIC package Only）provides watchdog status information．It is driven low if WDI is not toggled within the watchdog timeout period．It goes high at the next WDI transition．It is also set high when V_{Cc} falls below the reset threshold．

$\mathrm{t}_{1}=$ RESET TIME
$\mathbf{t}_{\mathbf{2}}=\mathbf{W A T C H D O G}$ TIME OUT PERIOD
Figure 5．Watchdog Timeout Period and Reset Active Time

OUTLINE DIMENSIONS

Dimensions shown in inches and（mm）．

8－Pin Plastic DIP（N－8）

8－Pin SOIC（R－8）

16－Lead SOIC（R－16）

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Supervisory Circuits category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
CAT1161LI-25-G CAT853STBI-T3 CAT1026LI-30-G CAT1320LI-25-G TC54VN2402EMB713 MCP1316T-44NE/OT MCP1316MT45GE/OT MCP1316MT-23LI/OT MAX8997EWW+ MAX6725AKASYD3-LF-T DS1232L NCV302HSN45T1G PT7M6130NLTA3EX PT7M7811STBEX-2017 S-1000N28-I4T1U CAT1161LI-28-G MCP1321T-29AE/OT MCP1319MT-47QE/OT S-1000N23-I4T1U S-1000N19-I4T1U CAT824UTDI-GT3 TC54VC2502ECB713 PT7M6133NLTA3EX PT7M6127NLTA3EX VDA2510NTA AP0809ES3-r HG811RM4/TR MD7030C MD7033C MD7019 MD7020 MD7021 MD7023 MD7024 MD7027 MD7030 MD7033 MD7035 MD7036 MD7039 MD7040 MD7044 MD7050 MD7015 MD7028 MD7031 MD7042 MD7043 MD7047 MD7060

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

[^1]: *N = Plastic DIP; R = Small Outline.

