Data Sheet

FEATURES

RF input frequency range: 17.5 GHz to 24 GHz
IF output frequency range: 2.5 GHz to 3.5 GHz
LO input frequency range: 7 GHz to 13.5 GHz
Conversion gain (with hybrid): $\mathbf{1 5 ~ d B}$ typical
SSB noise figure: $\mathbf{2 . 5} \mathbf{~ d B}$ typical
Input IP3: 3 dBm typical
Input P1dB: -5 dBm typical
25 dB of image rejection
Single-ended, 50Ω RF and LO input ports
Exposed pad, $4.9 \mathrm{~mm} \times 4.9 \mathrm{~mm}$, 32 -terminal LCC

Figure 1.

APPLICATIONS

Point to point microwave radios
Radars and electronic warfare systems
Instrumentation, automatic test equipment (ATE)
Satellite communications

GENERAL DESCRIPTION

The ADMV1012 is a compact, gallium arsenide (GaAs) design, monolithic microwave integrated circuit (MMIC), in phase/quadrature (I/Q) downconverter in a RoHS compliant package optimized for point to point microwave radio designs that operate in the 17.5 GHz to 24 GHz input frequency range.
The ADMV1012 provides 15 dB of conversion gain with 25 dB of image rejection, and 2.5 dB noise figure. The ADMV1012 uses a radio frequency (RF) low noise amplifier (LNA) followed by an I/Q, double balanced mixer, where a driver amplifier drives the local oscillator (LO) with a $\times 2$ multiplier. IF1 and IF2 mixer quadrature outputs are provided, and an external 90° hybrid is required to select the required sideband.

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 4
Thermal Resistance 4
ESD Caution 4
Pin Configuration and Function Descriptions 5
Typical Performance Characteristics 6
Upper Sideband (Low-Side LO) 6
Lower Sideband (High-Side LO) 8
IF Bandwidth 10
Leakage Performance 11
REVISION HISTORY
2/2018-Rev. 0 to Rev. A
Changes to Features Section, General Description Section, and
Figure 11
Changes to Table 1 3
Changes to Table 2 4
Added Thermal Resistance Section and Table 3; Renumbered Sequentially 4
Changes to Figure 2 and Table 4 5
Changes to Figure 3 and Figure 6 6
Changes to Figure 12 7
Changes to Figure 24, Figure 25, and Figure 26 10
Changes to Figure 27 through Figure 30 11
Return Loss Performance. 12
Spurious Performance 13
$\mathrm{M} \times \mathrm{N}$ Spurious Performance for $\mathrm{LO}=0 \mathrm{dBm}$ 13
Theory of Operation 14
LO Driver Amplifier 14
Mixer 14
LNA 14
Applications Information 15
Typical Application Circuit. 15
Evaluation Board Information 16
Bill of Materials 18
Outline Dimensions 19
Ordering Guide 19
Changed $\mathrm{M} \times \mathrm{N}$ Spurious Performance for $\mathrm{LO}=4 \mathrm{dBm}$ Sectionto $\mathrm{M} \times \mathrm{N}$ Spurious Performance for $\mathrm{LO}=0 \mathrm{dBm}$ Section 13Changes to $\mathrm{M} \times \mathrm{N}$ Spurious Performance for $\mathrm{LO}=0 \mathrm{dBm}$Section13
Changes to LO Driver Amplifier Section 14
Changes to Applications Information Section and Figure 34 15
Changes to Power-On Sequence Section 16
Changes to Figure 37 17
Changes to Table 6. 18
Changes to Ordering Guide 19

SPECIFICATIONS

Data taken at VDRF $=3 \mathrm{~V}, \mathrm{VDLO}=3 \mathrm{~V}, \mathrm{LO}=-4 \mathrm{dBm} \leq \mathrm{LO} \leq+4 \mathrm{dBm},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, with a Mini-Circuits ${ }^{\circ} \mathrm{QCN}-45+$ power splitter for both upper sideband (low-side LO) and lower sideband (high-side LO), unless otherwise noted.

Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
INPUT FREQUENCY RANGE Radio Frequency Local Oscillator	$\begin{aligned} & \text { RF } \\ & \text { LO } \end{aligned}$		$\begin{aligned} & 17.5 \\ & 7 \end{aligned}$		$\begin{aligned} & 24 \\ & 13.5 \end{aligned}$	$\begin{aligned} & \mathrm{GHz} \\ & \mathrm{GHz} \end{aligned}$
LO AMPLITUDE			-4	0	+4	dBm
OUTPUT FREQUENCY RANGE Intermediate Frequency	IF		2.5		3.5	GHz
RF PERFORMANCE Conversion Gain Single Sideband (SSB) Noise Figure Lower Sideband (High-Side LO) Upper Sideband (Low-Side LO) Input Third-Order Intercept Input 1 dB Compression Point Image Rejection Leakage LO to RF LO to IF $2 \times$ LO to IF IM3 at Input -20 dBm Input Power -25 dBm Input Power -30 dBm Input Power Return Loss RF Input IF Output LO Input	SSB NF IP3 P1dB	With hybrid At - $20 \mathrm{dBm} /$ tone -23 dBm per tone -28 dBm per tone -33 dBm per tone	$\begin{aligned} & 10.5 \\ & \\ & 0 \\ & -9 \\ & 20 \\ & \\ & \\ & \\ & 46 \\ & 52 \\ & 56 \end{aligned}$	15 2.1 2.5 3 -5 25 $\begin{aligned} & -37 \\ & -40 \\ & -40 \end{aligned}$ 52 60 70 -11 -23 -11	$\begin{aligned} & -25 \\ & -25 \\ & -25 \end{aligned}$ $\begin{aligned} & -10 \\ & -10 \\ & -10 \\ & \hline \end{aligned}$	dB dB dB dBm dBm dB dBm dBm dBm dBc dBc dBc dB dB dB
POWER INTERFACE RF LNA Bias Voltage LO Amplifier Bias Voltage RF LNA Gate Voltage RF Amplifier Bias Current LO Amplifier Bias Current RF Amplifier Gate Current Total Power	VDRF VDLO VGRF IDRF IDLO IGRF	Adjust VGRF between -1.8 V to -0.4 V to get IDRF	-1.8	$\begin{aligned} & 3 \\ & 3 \\ & \\ & 68 \\ & 170 \\ & <1 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \\ & -0.4 \\ & \\ & 0.8 \end{aligned}$	V V mA mA mA W

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage	4 V
\quad VDLO	0 V
VGRF	6 V
\quad VDRF - VGRF ${ }^{1}$	
Input Power	15 dBm
RF	15 dBm
LO	$175^{\circ} \mathrm{C}$
Maximum Junction Temperature	2 W
Maximum Power Dissipation	>1 million hours
Lifetime at Maximum Junction Temperature (TJ)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Temperature Range	$-65^{\circ} \mathrm{C}$ to +150 ${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$260^{\circ} \mathrm{C}$
Lead Temperature (Soldering 60 sec)	$\mathrm{MSL3}$
Moisture Sensitivity Level (MSL) Rating	
Electrostatic Discharge (ESD) Sensitivity	750 V
Human Body Model (HBM)	500 V
Field Induced Charged Device Model	
\quad (FICDM)	

${ }^{1}$ The maximum VDRF voltage and the minimum VGRF voltage is determined by this difference. If a maximum VDRF voltage of +4 V is required, then the minimum VGRF voltage is -2 V .
Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.
θ_{JA} is thermal resistance, junction to ambient $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$, and θ_{JC} is thermal resistance, junction to case $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$.

Table 3. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}{ }^{\mathbf{1}}$	$\boldsymbol{\theta}_{\mathrm{Jc}}$	Unit
$\mathrm{E}-32-1$	33.4	34	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ See JEDEC standard JESD51-2 for additional information on optimizing the thermal impedance (PCB with 3×3 vias).

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES

1. NIC = NOT INTERNALLY CONNECTED. IT IS RECOMMENDED TO GROUND THESE PINS ON THE PCB.
2. EXPOSED PAD. THE EXPOSED PAD MUST BE CONNECTED TO GND. GOOD RF AND THERMAL GROUNDING IS RECOMMENDED.

Figure 2. Pin Configuration

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1,5 to 9,12 to 14,16 to 19,	NIC	Not Internally Connected. It is recommended to ground these pins on the PCB.
21,23 to 26,28 to 30,32	GND	Ground.
$2,4,11$	RFIN	RF Input. This pin is ac-coupled internally and matched to 50Ω single ended.
3	LOIN	LO Input. This pin is ac-coupled internally and matched to 50Ω single ended.
10	VDLO	Power Supply Voltage for the LO Amplifier. Refer to the Applications Information section for the required external components and biasing. 15
20,22	IF2, IF1	Quadrature IF Outputs. Matched to 50Ω and ac coupled. No external dc block is required. Power Supply Voltage for the RF Amplifier. Refer to the Applications Information section for the required external components and biasing. Power Supply Gate Voltage for the RF Amplifier. Refer to the Applications Information section for the required external components and biasing.
31	VGRF	EPAD

TYPICAL PERFORMANCE CHARACTERISTICS

UPPER SIDEBAND (LOW-SIDE LO)

Data taken at VDRF $=3 \mathrm{~V}, \mathrm{VDLO}=3 \mathrm{~V}, \mathrm{IDRF}=68 \mathrm{~mA}, \mathrm{LO}=-4 \mathrm{dBm} \leq \mathrm{LO} \leq+4 \mathrm{dBm},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, with Mini-Circuits QCN-45+, power splitter as upper sideband (low-side LO), unless otherwise noted.

Figure 3. Conversion Gain vs. RF Frequency at Various Temperatures and Various IF Frequencies

Figure 4. Image Rejection vs. RF Frequency at Various Temperatures and Various IF Frequencies

Figure 5. Input IP3 vs. RF Frequency at Various Temperatures and Various IF Frequencies

Figure 6. Conversion Gain vs. RF Frequency at Various LO Powers and Various IF Frequencies

Figure 7. Image Rejection vs. RF Frequency at Various LO Powers and Various IF Frequencies

Figure 8. Input IP3 vs. RF Frequency at Various LO Powers and Various IF Frequencies

Figure 9. Input P1dB vs. RF Frequency at Various Temperatures and Various IF Frequencies

Figure 10. Noise Figure vs. RF Frequency at Various Temperatures and Various IF Frequencies

Figure 11. Input P1dB vs. RF Frequency at Various LO Powers and Various IF Frequencies

Figure 12. Noise Figure vs. RF Frequency at Various LO Powers and Various IF Frequencies

LOWER SIDEBAND (HIGH-SIDE LO)

Data taken at VDRF $=3 \mathrm{~V}, \mathrm{VDLO}=3 \mathrm{~V}, \mathrm{IDRF}=68 \mathrm{~mA}, \mathrm{LO}=-4 \mathrm{dBm} \leq \mathrm{LO} \leq+4 \mathrm{dBm},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, with Mini-Circuits QCN-45+, power splitter as lower sideband (high-side LO), unless otherwise noted.

Figure 13. Conversion Gain vs. RF Frequency at Various Temperatures and Various IF Frequencies

Figure 14. Image Rejection vs. RF Frequency at Various Temperatures and Various IF Frequencies

Figure 15. Input IP3 vs. RF Frequency at Various Temperatures and Various IF Frequencies

Figure 16. Conversion Gain vs. RF Frequency at Various LO Powers and Various IF Frequencies

Figure 17. Image Rejection vs. RF Frequency at Various LO Powers and Various IF Frequencies

Figure 18. Input IP3 vs. RF Frequency at Various LO Powers and Various IF Frequencies

Figure 19. Input P1dB vs. RF Frequency at Various Temperatures and Various IF Frequencies

Figure 20. Noise Figure vs. RF Frequency at Various Temperatures and Various IF Frequencies

Figure 21. Input P1dB vs. RF Frequency at Various LO Powers and Various IF Frequencies

Figure 22. Noise Figure vs. RF Frequency at Various LO Powers and Various IF Frequencies

ADMV1012

IF BANDWIDTH

Data taken at VDRF $=3 \mathrm{~V}, \mathrm{VDLO}=3 \mathrm{~V}, \mathrm{IDRF}=68 \mathrm{~mA}, \mathrm{LO}=-4 \mathrm{dBm} \leq \mathrm{LO} \leq+4 \mathrm{dBm}$ at $10 \mathrm{GHz},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, with Mini-Circuits QCN-45+, power splitter, unless otherwise noted.

Figure 23. Conversion Gain vs. IF Frequency at Various Temperatures and Sidebands

Figure 24. Input IP3 vs. IF Frequency at Various Temperatures and Sidebands

Figure 25. Conversion Gain vs. IF Frequency at Various LO Powers and Sidebands

Figure 26. Input IP3 vs. IF Frequency at Various LO Powers and Sidebands

LEAKAGE PERFORMANCE

Data taken at $\mathrm{VDRF}=3 \mathrm{~V}, \mathrm{VDLO}=3 \mathrm{~V}, \mathrm{LO}=-4 \mathrm{dBm} \leq \mathrm{LO} \leq+4 \mathrm{dBm},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, with Mini-Circuits QCN-45+, power splitter, unless otherwise noted.

Figure 27. LO Leakage at IF Output vs. LO Frequency at Various Temperatures and Sidebands

Figure 28. LO Leakage at RFIN vs. LO Frequency at Various Temperatures

Figure 29. LO Leakage at IF Output vs. LO Frequency at Various LO Powers and Sidebands

Figure 30. LO Leakage at RFIN vs. LO Frequency at Various LO Powers

ADMV1012

RETURN LOSS PERFORMANCE

Data taken at VDRF $=3 \mathrm{~V}, \mathrm{VDLO}=3 \mathrm{~V}, \mathrm{IDRF}=68 \mathrm{~mA}, \mathrm{LO}=-4 \mathrm{dBm} \leq \mathrm{LO} \leq+4 \mathrm{dBm},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, with Mini-Circuits QCN- $45+$, power splitter, unless otherwise noted. Measurement reference plane at connector.

Figure 31. RF Input Return Loss vs. RF Frequency at Various Temperatures

Figure 33. IF Output Return Loss vs. IF Frequency at Various Temperatures and Sidebands

Figure 32. LO Input Return Loss vs. LO Frequency at Various Temperatures

SPURIOUS PERFORMANCE

Data taken at $\mathrm{VDRF}=3 \mathrm{~V}, \mathrm{VDLO}=3 \mathrm{~V}, \mathrm{IDRF}=68 \mathrm{~mA}, \mathrm{LO}=$ 0 dBm , and $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ with a Mini-Circuits QCN-45+, power splitter, unless otherwise noted.
Table 5. LO Harmonic Leakage at IF Output

LO Frequency (MHz)	Frequency			
	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	$\mathbf{3 . 0}$	$\mathbf{4 . 0}$
7000	-48	-65	-42	-57
8500	-47	-64	-57	-64
9000	-50	-51	-51	-61
10,000	-49	-40	-52	-61
11,000	-49	-47	-61	N/A
12,000	-58	-46	-56	N/A
13,000	-54	-42	-59	N/A
13,500	-55	-40	N/A	N/A

$\mathbf{M} \times \mathbf{N}$ SPURIOUS PERFORMANCE FOR LO $=0 \mathbf{d B m}$

Mixer spurious products are measured in dBc from the IF output power level. Spurious values are measured using the following equation: $(\mathrm{M} \times \mathrm{RF})+(\mathrm{N} \times \mathrm{LO})$. N / A means not applicable. The frequencies are referred from the frequencies applied to the pin of the ADMV1012.
Lower Sideband
IF $=2.8 \mathrm{GHz}$
$\mathrm{RF}=18000 \mathrm{MHz}$ at -20 dBm and $\mathrm{LO}=10400 \mathrm{MHz}$ at 4 dBm .
All values in dBc below IF power level. N/A means not applicable.

		$\mathbf{N} \times \mathbf{L O}$					
		$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	
$\mathbf{M} \times \mathbf{R F}$	$\mathbf{- 2}$	N/A	N/A	N/A	N/A	-58.6	
	$\mathbf{- 1}$	N/A	N/A	0	-68.5	-71.1	
	$\mathbf{0}$	N/A	-42	-38.4	-52.2	-53.2	
	$\mathbf{1}$	-49.1	-70.2	-65.7	-67.9	N/A	
	$\mathbf{2}$	-66.5	-74.4	N/A	N/A	N/A	

IF $=3.3 \mathrm{GHz}$
$\mathrm{RF}=18000 \mathrm{MHz}$ at RF power of -20 dBm , and $\mathrm{LO}=10650 \mathrm{MHz}$ at LO power of 4 dBm . All values in dBc below IF power level.
N/A means not applicable.

		$\mathbf{N} \times$ LO					
		$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	
$\mathbf{M} \times \mathbf{R F} \mathbf{N F} / \mathrm{N}$	$\mathbf{- 2}$	N / A	N / A	N / A	N / A	-56	
	$\mathbf{- 1}$	$\mathrm{~N} / \mathrm{A}$	N / A	0	-72.5	-83.9	
	$\mathbf{0}$	$\mathrm{~N} / \mathrm{A}$	-42.3	-44.7	-54.1	-56.9	
	$\mathbf{1}$	-48.8	-68.3	-69.5	-63.4	$\mathrm{~N} / \mathrm{A}$	
	$\mathbf{2}$	-71.7	-65.8	$\mathrm{~N} / \mathrm{A}$	N / A	N / A	

IF $=3.5 \mathrm{GHz}$
$\mathrm{RF}=18000 \mathrm{MHz}$ at RF power of -20 dBm , and $\mathrm{LO}=10750 \mathrm{MHz}$ at LO power of 4 dBm . All values in dBc below IF power level. N/A means not applicable.

		$\mathbf{N} \times \mathbf{L O}$					
		$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	
$\mathbf{M} \times \mathbf{R F}$	$\mathbf{- 2}$	N / A	N / A	N / A	N / A	-57.5	
	$\mathbf{- 1}$	$\mathrm{~N} / \mathrm{A}$	N / A	0	-76.6	-74.2	
	$\mathbf{0}$	$\mathrm{~N} / \mathrm{A}$	-42.7	-33.4	-47.2	-46.2	
	$\mathbf{1}$	-48.2	-74.5	-83.8	$\mathrm{~N} / \mathrm{A}$	N / A	
	$\mathbf{2}$	-77.2	-59.9	$\mathrm{~N} / \mathrm{A}$	N / A	N / A	

Upper Sideband

IF $=2.8 \mathrm{GHz}$

$\mathrm{RF}=23000 \mathrm{MHz}$ at RF power of -20 dBm , and $\mathrm{LO}=10100 \mathrm{MHz}$ at LO power of 4 dBm . All values in dBc below IF power level. N/A means not applicable.

		$\mathbf{N} \times$ LO					
		$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	
$\mathbf{M} \times \mathbf{R F}$	$\mathbf{- 2}$	N / A	N / A	N / A	N / A	-56.4	
	$\mathbf{- 1}$	$\mathrm{~N} / \mathrm{A}$	N / A	0	-62.6	-72.3	
	$\mathbf{0}$	$\mathrm{~N} / \mathrm{A}$	-39.9	-40.2	-46.9	-47	
	$\mathbf{1}$	-53.2	-77.8	-64.9	$\mathrm{~N} / \mathrm{A}$	N / A	
	$\mathbf{2}$	-60.9	$\mathrm{~N} / \mathrm{A}$	N / A	N / A	N / A	

IF $=3.3 \mathrm{GHz}$
$\mathrm{RF}=23000 \mathrm{MHz}$ at RF power of -20 dBm , and $\mathrm{LO}=9850 \mathrm{MHz}$ at LO power of 4 dBm . All values in dBc below IF power level. N/A means not applicable.

		$\mathbf{N} \times$ LO					
		$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	
$\mathbf{M} \times \mathbf{R F}$	$\mathbf{- 2}$	N / A	N / A	N / A	N / A	-61.5	
	$\mathbf{- 1}$	$\mathrm{~N} / \mathrm{A}$	N / A	0	-53.8	-69	
	$\mathbf{0}$	$\mathrm{~N} / \mathrm{A}$	-40.6	-42	-44.2	-56.5	
	$\mathbf{1}$	-52.9	-99.8	-65.3	$\mathrm{~N} / \mathrm{A}$	N / A	
	$\mathbf{2}$	-74.9	$\mathrm{~N} / \mathrm{A}$	N / A	N / A	N / A	

$\mathrm{IF}=3.5 \mathrm{GHz}$
$\mathrm{RF}=23000 \mathrm{MHz}$ at RF power of -20 dBm , and $\mathrm{LO}=9750 \mathrm{MHz}$ at LO power of 4 dBm . All values in dBc below IF power level. N/A means not applicable.

		$\mathbf{N} \times \mathbf{L O}$					
		$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	
$\mathbf{M} \times \mathbf{R F}$	$\mathbf{- 2}$	N / A	N / A	N / A	N / A	-67.6	
	$\mathbf{- 1}$	$\mathrm{~N} / \mathrm{A}$	N / A	0	-50.1	-63.9	
	$\mathbf{0}$	$\mathrm{~N} / \mathrm{A}$	-41.5	-40.8	-47.4	-64.8	
	$\mathbf{1}$	-53.6	-68.7	-72.2	$\mathrm{~N} / \mathrm{A}$	N / A	
	$\mathbf{2}$	-70.7	$\mathrm{~N} / \mathrm{A}$	N / A	N / A	N / A	

THEORY OF OPERATION

The ADMV1012 is a compact GaAs, MMIC, double sideband (DSB) downconverter in a RoHS compliant package optimized for both upper sideband and lower sideband point to point microwave radio applications operating in the 17.5 GHz to 24 GHz input frequency range. The ADMV1012 supports LO input frequencies of 7 GHz to 13.5 GHz and IF output frequencies of 2.5 GHz to 3.5 GHz .
The ADMV 1012 uses a RF LNA followed by an I/Q double balanced mixer, where a driver amplifier drives the LO (see Figure 1). This combination of design, process, and packaging technology allows the functions of these subsystems to be integrated into a single die, using mature packaging and interconnection technologies to provide a high performance, low cost design with excellent electrical, mechanical, and thermal properties. In addition, the need for external components is minimized, optimizing cost and size.

LO DRIVER AMPLIFIER

The LO driver amplifier takes a single LO input and doubles the frequency and amplifies it to the desired LO signal level for the mixer to operate optimally. The LO driver amplifier is self biased, and it requires only a single dc bias voltage (VDLO), which draws approximately 170 mA at 3 V under the LO drive. The LO amplitude range of -4 dBm to +4 dBm makes it compatible with the Analog Devices, Inc., wideband synthesizer portfolio without the need for an external LO driver amplifier.

MIXER

The mixer is an I/Q double balanced mixer, and this mixer topology reduces the need for filtering unwanted sideband. An external 90° hybrid is required to select the upper sideband of operation. The ADMV1012 has been optimized to work with the Mini-Circuits QCN-45+ RF 90° hybrid.

LNA

The LNA requires a single dc bias voltage (VDRF) and a single dc gate bias (VGRF) to operate. Starting at -1.8 V at the gate supply (VGRF), the LNA is biased at +3 V (VDRF). Then, the gate bias (VGRF) is varied until the desired LNA bias current (IDRF) is achieved. The desired LNA bias current is 68 mA at 3 V under small signal conditions.

The typical application circuit (see Figure 34) shows the necessary external components on the bias lines to eliminate any undesired stability problems for the RF amplifier and the LO amplifier.
The ADMV1012 is a much smaller alternative to hybrid style image reject converter assemblies, and it eliminates the need for wire bonding by allowing the use of surface-mount manufacturing assemblies.

The ADMV1012 downconverter comes in a compact, thermally enhanced, $4.9 \mathrm{~mm} \times 4.9 \mathrm{~mm}$, 32-terminal ceramic leadless chip carrier (LCC) package. The ADMV1012 operates over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

APPLICATIONS INFORMATION

The evaluation board and typical application circuit are optimized for low-side LO (upper sideband) performance with the Mini-Circuit QCN-45+ RF 90° hybrid. Because the I/Q mixers are double balanced, the ADMV1012 can support IF frequencies from 3.5 GHz to low frequency.

TYPICAL APPLICATION CIRCUIT

The typical applications circuit is shown in Figure 34. The application circuit shown has been replicated for the evaluation board circuit.

EVALUATION BOARD INFORMATION

The circuit board used in the application must use RF circuit design techniques. Signal lines must have 50Ω impedance, and the package ground leads and exposed pad must be connected directly to the ground plane similarly to that shown in Figure 35 and Figure 36. Use a sufficient number of via holes to connect the top and bottom ground planes. The evaluation circuit board shown in Figure 34 is available from Analog Devices upon request.

Layout

Solder the exposed pad on the underside of the ADMV1012 to a low thermal and electrical impedance ground plane. This pad is typically soldered to an exposed opening in the solder mask on the evaluation board. Connect these ground vias to all other ground layers on the evaluation board to maximize heat dissipation from the device package. Figure 35 shows the PCB land pattern footprint for the ADMV1012-EVALZ, and Figure 36 shows the solder paste stencil for the ADMV1012-EVALZ evaluation board.

Power-On Sequence

To set up the ADMV1012-EVALZ, take the following steps:

1. Power up the VGRF with a -1.8 V supply.
2. Power up the VDRF with a 3 V supply.
3. Power up the VDLO with a 3 V supply.
4. Adjust the VGRF supply between -1.8 V to -0.4 V until IDRF $=68 \mathrm{~mA}$.
5. Connect LOIN to the LO signal generator with an LO power of between -4 dBm to +4 dBm .
6. For the upper sideband, add a 50Ω termination to the IF_OUTPUT_LSB connector. For the lower sideband, add a 50Ω termination to the IF_OUTPUT_USB connector.
7. Apply a RF signal to the RF_INPUT and LO_INPUT ports.

Power-Off Sequence

To turn off the ADMV1012-EVALZ, take the following steps:

1. Turn off the LO and RF signals.
2. Set VGRF to -1.8 V .
3. Set the VDRF supply to 0 V and then turn off the VDRF supply.
4. Set the VDLO supply to 0 V and then turn off the VDLO supply.
5. Turn off the VGRF supply.

Figure 35. PCB Land Pattern Footprint of the ADMV1012-EVALZ

Figure 36. Solder Paste Stencil of the ADMV1012-EVALZ

NOTES

1. NOT ALL COMPONENTS OR BIAS LINES ARE USED ON THE EVALUATION BOARD.

ADMV1012

BILL OF MATERIALS

Table 6.

Qty.	Component	Description	Manufacturer/Part No.
1	Evaluation board	PCB	Analog Devices, Supplied/042365
4	C5, C7, C12	100 pF , high temperature, multilayer ceramic capacitors, NPO, 0402	TDK/C1005NP01H101J050BA
4	C8, C10, C11	$0.01 \mu \mathrm{~F}$ ceramic capacitors, X7R, 0402	Murata Manufacturing/GRM155R71E103KA01D
4	C3, C9, C13	$1 \mu \mathrm{~F}$ ceramic capacitors, $\mathrm{X} 5 \mathrm{R}, 0603$	Murata Manufacturing/GRM188R61E105KA12D
7	GND, VDLO, VDRF, VGRF	CONN-PCB test points, compact mini, CNKEY5019	Keystone Electronics Corporation/5019.00
4	LO_INPUT, RF_INPUT,IF_OUTPUT_LSB, IF_OUTPUT_USB	CONN-PCB, SMA K_SRI-NS, CNSMAL460W295H156	SRI CONNECTOR GAGE/25-146-1000-92
2	R1, R4	0Ω resistor chips, SMD, JMPR, 0402	Panasonic/ERJ-2GEOR00X
1	X1	XFMR, power splitter/combiner, 2500 MHz to 4500 MHz , TSML126W63H42	Mini-Circuits/QCN-45+
1	Device under test (DUT)	17.5 GHz to 24 GHz , GaAs, MMIC, I/Q downconverter	Analog Devices Supplied/ADMV1012AEZ
1	Heatsink	Heatsink	Analog Devices Supplied/104365

OUTLINE DIMENSIONS

Figure 38. 32-Terminal Ceramic Leadless Chip Carrier [LCC]
(E-32-1)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Package Body Material	Lead Finish	Temperature Range	Package Description	Package Option
ADMV1012AEZ	Alumina Ceramic	Gold Over Nickel	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 -Terminal LCC	$\mathrm{E}-32-1$
ADMV1012AEZ-R7	Alumina Ceramic	Gold Over Nickel	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 -Terminal LCC	$\mathrm{E}-32-1$
ADMV1012-EVALZ				Evaluation Board	

${ }^{1} Z=$ RoHS Compliant Part.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT\# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT\# MAX2692EVKIT\# SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB SKY13380-350LF-EVB

