SMT GaAs HBT MMIC Divide-by-4, 0.05-4 GHz

Typical Applications

Prescaler for DC to C Band PLL Applications:

- UNII, Point-to-Point \& VSAT Radios
- 802.11a \& HiperLAN WLAN
- Fiber Optic
- Wireless infrastracture (W-CDMA, TD-SCDMA, WiMax, GSM, PCS, DCS, DECT)
- Cellular Infrastructure
- Satellites / VSATs
- Test Equipment/Instrumentation

Functional Diagram

Features

Ultra Low SSB Phase Noise: - $150 \mathrm{dBc} / \mathrm{Hz}$
Single-Ended I/O's
Output Power: -2 dBm
Single DC Supply: +3V @ 53 mA

General Description

The ADMV2101 is a low noise Divide-by-4 Static Divider utilizing InGaP GaAs HBT technology in ultra small surface mount MSOP8 plastic package. This device operates from DC (with a square wave input) to 4 GHz input frequency with a single +3 V DC supply. Single-ended inputs and outputs reduce component count and cost. The low additive SSB phase noise of $-150 \mathrm{dBc} / \mathrm{Hz}$ at 100 kHz offset helps the user maintain good system noise performance.

Electrical Specifications, $T_{A}=+25^{\circ}$ C, 50 Ohm System, Vcc $=+3 V d c \pm 5 \%$

Parameter	Conditions	Min.	Typ.	Max.
Units				
Input Frequency ${ }^{[1],[2]}$	Sinewave	0.05		4
Input Power Range	Fin $=1 \mathrm{GHz}-4 \mathrm{GHz}$	-10		10
Output Power	Fin $=4 \mathrm{GHz}$	-5.0	-2.8	
Reverse Leakage	RF Output Terminated, Fin=2 GHz, Pin $=0 \mathrm{dBm}$		-20	
SSB Phase Noise (100 kHz offset)	Pin $=0 \mathrm{dBm}$, Fin $=4 \mathrm{GHz}$	dBm		
Output Transition Time	Pin $=0 \mathrm{dBm}$, Fout $=882 \mathrm{MHz}$		-150	
Supply Current (Icc)	Vcc= +3.0 V		120	$\mathrm{dBc} / \mathrm{Hz}$

1 Divider will operate down to DC levels. Square-wave input required below 200 MHz .
2 For stable operation without an input sgnal, refer to Analog Devices Application Note, "Frequency Divider Operation \& Compensation with No linput Signal."

RoHS $\sqrt{ }$

Input Sensitivity Window, $\mathrm{T}=25^{\circ} \mathrm{C}$

Output Power vs. Temperature, Pin = 0 dBm

Output Harmonic
Content, Pin $=0 \mathrm{dBm}, \mathrm{T}=25^{\circ} \mathrm{C}$

SMT GaAs HBT MMIC Divide-by-4, 0.05-4 GHz
Input Sensitivity Window vs. Temperature

SSB Phase Noise
Performance, Pin $=0 \mathrm{dBm}$, Fin $=4 \mathrm{GHz}$

Reverse Leakage, $\operatorname{Pin}=0 \mathrm{dBm}, \mathrm{T}=25^{\circ} \mathrm{C}$

SMT GaAs HBT MMIC Divide-by-4, 0.05-4 GHz

Output Voltage Waveform,

 Pin= 0 dBm , Fout $=882 \mathrm{MHz}, \mathrm{T}=25^{\circ} \mathrm{C}$

Absolute Maximum Ratings

RF Input Power $(\mathrm{Vcc}=+3 \mathrm{~V})$	15 dBm
Nominal +3 V Supply to GND	-0.3 V to +3.5 V
Max Peak Flow Temperature	$260^{\circ} \mathrm{C}$
Storage Temperature	-65 to $+125^{\circ} \mathrm{C}$
ESD Rating	FICDM - Class IV, HBM - Class 0

Reliability Information

Junction Temperature to Maintain 1 Million Hour MTTF	$135^{\circ} \mathrm{C}$
Nominal Junction Temperature $\left(\mathrm{T}=85^{\circ} \mathrm{C}\right)$	$99^{\circ} \mathrm{C}$
Thermal Resistance (Junction to GND Paddle, 3V Supply)	$83^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature	-40 to $+85^{\circ} \mathrm{C}$

Typical Supply Current vs. Vcc

Vcc (V)	Icc (mA)
2.70	45
3.0	55
3.30	66

Note: Divider will operate over full voltage range shown above

SMT GaAs HBT MMIC Divide-by-4, 0.05-4 GHz

Outline Drawing

8-Lead Mini Small Outline Package with Exposed Pad [MINI_SO_EP] (RH-8-2)
Dimensions shown in millimeters

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking
ADMV2101	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL3 $^{[1]}$	\#V
			$1 B$	

[1] Max peak reflow temperature of $260^{\circ} \mathrm{C}$

SMT GaAs HBT MMIC Divide-by-4, 0.05-4 GHz

Pin Description

Pin Number	Function	Description	Interface Schematic
1	VCC	Main supply voltage, 3.0Vdc $\pm 0.3 \mathrm{~V}$	
2	IN	RF input; must use external DC block	
3, 6, 8	NC	No connection or ground. No internal bond.	
4, 5	GND	Ground. Must be connected to RF and DC ground.	$\underbrace{\text { OGND }}$
7	OUT	RF output; must use external DC block	
Exposed Paddle	GND	Ground. Must be connected to RF and DC ground.	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Prescaler category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
UXD20P UXN14M9P MX1DS10P UXN14M32K HMC492LP3TR HMC434TR HMC433TR HMC394LP4TR MC12093MNR4G NB7N017MMNG HMC437MS8GTR HMC434SRJZ-EP-PT HMC365S8G HMC362S8G ADF5000BCPZ ADF5001BCPZ ADF5002BCPZ HMC988LP3ETR HMC361G8 HMC361S8G HMC361S8GETR HMC363G8 HMC363S8G HMC363S8GETR HMC365G8

HMC365S8GETR HMC394LP4ETR HMC437MS8G HMC447LC3 HMC447LC3TR HMC492LP3ETR HMC492LP3 HMC493LP3E HMC433 HMC432ETR HMC434ETR HMC434E HMC432 HMC432E HMC794LP3E HMC859LC3 HMC983LP5E HMC438MS8GTR ADMV2101BRHZ UXM15P HMC437MS8GETR HMC438MS8G HMC438MS8GE HMC438MS8GETR MC12026ADG

