E-Band Low Noise Downconverter SiP, 71 GHz to 76 GHz

Data Sheet

FEATURES

Conversion gain: 13 dB typical
Image rejection: $\mathbf{3 0} \mathbf{d B c}$ typical
Noise figure: 5 dB typical
Input IP3: 1 dBm typical
Input IP2: $\mathbf{2 8} \mathbf{d B m}$ typical
Input P1dB: $\mathbf{- 8}$ dBm typical
$6 \times$ LO leakage at RFIN: <-55 dBm typical
I/Q amplitude imbalance: 0.2 dB typical
I/Q phase imbalance: 5° typical
Fully integrated, surface-mount, 34-terminal, $11 \mathrm{~mm} \times$ 13 mm LGA_CAV package

APPLICATIONS

E-band communication systems

High capacity wireless backhauls
Test and measurement
Aerospace and defense

FUNCTIONAL BLOCK DIAGRAM

outputs are provided for direct conversion applications. Alternatively, the outputs can be combined using an external 90° hybrid and two external 180° hybrids for single-ended applications.

The ADMV7410 comes in a fully integrated, surface-mount, 34-terminal, $11 \mathrm{~mm} \times 13 \mathrm{~mm}$, chip array small outline no lead cavity (LGA_CAV) package. The ADMV7410 operates over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ case temperature range.

ADMV7410

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 4
Thermal Resistance 4
ESD Caution 4
Pin Configuration and Function Descriptions 5
Interface Schematics 6
Typical Performance Characteristics 7
REVISION HISTORY
10/2021—Rev. A to Rev. B
Updated Outline Dimensions 25
Return Loss and $6 \times$ LO Leakage 19
Spurious Performance 20
Theory of Operation 21
Applications Information 22
Power-Up Bias Sequence 22
Power-Down Sequence 22
Layout 22
Typical Application Circuit 24
Outline Dimensions 25
Ordering Guide 25

7/2019—Revision A: Initial Version

SPECIFICATIONS

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{IF}=1 \mathrm{GHz}$, LO power $=4 \mathrm{dBm}, \mathrm{VD} _\mathrm{AMP}=+4 \mathrm{~V}$, VG_MIXER $=-1 \mathrm{~V}, \mathrm{VD} _$MULT $=+1.5 \mathrm{~V}$, VD12_LNA $=$ +2 V , and VD34_LNA $=+4 \mathrm{~V}$, unless otherwise noted. Measurements performed as a downconverter with lower sideband selected and an external 90° hybrid followed by two external 180° hybrids at the IF ports, unless otherwise noted.

Table 1.

Parameter	Symbol	Min	Typ	Max	Unit
OPERATING CONDITIONS					
Frequency Range					
RF		71		76	GHz
LO		11.5		13	GHz
IF Output		DC		2	GHz
LO Drive Level Range		0	4	8	dBm
PERFORMANCE					
Conversion Gain		7	13	20	dB
Gain Flatness			2		dB
Image Rejection		15	30		dBC
Input Power for 1 dB Compression (Input P1dB)		-13	-8		dBm
Input Third-Order Intercept (Input IP3)		-6	1		dBm
Input Second-Order Intercept (Input IP2)		15	28		dBm
$6 \times$ LO Leakage at the RF Input Port (RFIN)			<-55	-50	dBm
I/Q Amplitude Imbalance			0.2	3	dB
I/Q Phase Imbalance		-10	5	10	Degrees
Noise Figure			5	8	dB
Return Loss					
RFIN			10		dB
LO Input Port (LOIN)			10		dB
Baseband Output Port ${ }^{1}$			10		dB
DIFFERENTIAL BASEBAND OUTPUT PORT IMPEDANCE			100		Ω
LOIN PORT IMPEDANCE			50		Ω
POWER SUPPLY					
DC Power Dissipation			1	1.25	W
Low Noise Amplifier Gate Voltage	VG12_LNA, VG34_LNA	-2		0	V
Low Noise Amplifier Drain Voltage					
First and Second Stage	VD12_LNA	1.9	2	2.1	V
Third and Fourth Stage	VD34_LNA	3.8	4	4.2	V
Multiplier Drain Voltage	VD_MULT	1.42	1.5	1.58	V
Multiplier Gate Voltage	VG_MULT	-2		0	V
Mixer Gate Voltage	VG_MIX	-2		0	,
Low Noise Amplifier Supply Current	$\mathrm{IVD12}^{\text {LNA }}$ and IVD34_LNA		66		mA
Amplifier Drain Current	IvD_AMP		175		mA
Multiplier Drain Current	Ivd_Mult		80		mA

${ }^{1}$ Measurements taken without external hybrids at the IF ports.

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
VD_AMP	4.5 V
VD_MULT	3 V
VD12_LNA and VD34_LNA	4.5 V
VG_AMP	-3 V to +0.2 V
VG_MULT	-3 V to +0.2 V
VG12_LNA and VG34_LNA	-3 V to +0.2 V
LO Drive	10 dBm
Baseband Input (IF_IP, IF_IN, IF_QP, and IF_QN)	4 dBm
IF Source and Sink Current	3 mA
Nominal Junction Temperature (TA $=85^{\circ} \mathrm{C}$)	$137^{\circ} \mathrm{C}$
Maximum Junction Temperature	$175^{\circ} \mathrm{C}$
\quad (to Maintain 3 Million Hours Mean Time to	
\quad Failure (MTTF))	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	$260^{\circ} \mathrm{C}$
Maximum Peak Reflow Temperature for	
\quad Moisture Sensitivity Level 3 (MSL3)	$\mathrm{JESD22-A101} 1^{1,2,3}$
Thermal Humidity Bias (THB)	$\mathrm{JESD} 22-\mathrm{A} 101^{1,3}$
Thermal Humidity Storage (THS)	
Electrostatic Discharge (ESD) Sensitivity	250 V
\quad Human Body Model (HBM)	500 V
\quad Field Induced Charged Device Model	
\quad (FICDM)	

${ }^{1}$ Samples subject to preconditioning (per J-STD-020 Level 3) prior to the start of the stress test. Level 3 preconditioning consists of the following: bake for 24 hours at $125^{\circ} \mathrm{C}$, unbiased soak for 192 hours at $30^{\circ} \mathrm{C}$ and 60% relative humidity (RH), and reflow of three passes through an oven with a peak temperature of $260^{\circ} \mathrm{C}$.
${ }^{2}$ Results valid for 400 mW of nominal dc power dissipation for all active devices. Analog Devices, Inc., recommends that users perform their own THB test for all other bias conditions.
${ }^{3}$ Valid for package vent hole solder sealed or unsealed during test.
Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.
θ_{JC} is the junction to case (or die to package) thermal resistance.
Table 3. Thermal Resistance ${ }^{1}$

Package Type	$\boldsymbol{\theta}_{\mathrm{Jc}}$	Unit
CE-34-2	52.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ Thermal impedance simulated values are based on a JEDEC 2S2P test board with $11 \mathrm{~mm} \times 13 \mathrm{~mm}$ thermal vias. Refer to JEDEC standard JESD51-2 for additional information.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration
Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1, 6 to 12, 14, 16, 17, 19, 21 to 23, 25, 27, 29, 31, 34	GND	Ground Connections. These pins must be connected to RF and dc ground.
2	IF_IP	Positive IF In Phase Output. This pin is dc-coupled. When operation to dc is not required, block this pin externally using a series capacitor with a value chosen to pass the necessary frequency range. For operation to dc, this pin must not source or sink more than 3 mA of current or device malfunction and device failure may result.
3	IF_IN	Negative IF In Phase Output. This pin is dc-coupled. When operation to dc is not required, block this pin externally using a series capacitor with a value chosen to pass the necessary frequency range. For operation to dc, this pin must not source or sink more than 3 mA of current or device malfunction and device failure may result.
4	IF_QN	Negative IF Quadrature Output. This pin is dc-coupled. When operation to dc is not required, block this pin externally using a series capacitor with a value chosen to pass the necessary frequency range. For operation to dc, this pin must not source or sink more than 3 mA of current or device malfunction and device failure may result.
5	IF_QP	Positive IF Quadrature Output. This pin is dc-coupled. When operation to dc is not required, block this pin externally using a series capacitor with a value chosen to pass the necessary frequency range. For operation to dc, this pin must not source or sink more than 3 mA of current or device malfunction and device failure may result.
13	VD34_LNA	Drain Voltage for the Third and Fourth Stage Low Noise Amplifier. See Figure 75 for the recommended external components.
15	VG34_LNA	Gate Voltage for the Third and Fourth Stage Low Noise Amplifier. See Figure 75 for the recommended external components.
18	VD12_LNA	Drain Voltage for the First and Second Stage Low Noise Amplifier. See Figure 75 for the recommended external components.
20	VG12_LNA	Gate Voltage for the First and Second Stage Low Noise Amplifier. See Figure 75 for the recommended external components.

Pin No.	Mnemonic	Description		
24	LOIN	VG_MULT		LO Input. This pin is dc-coupled and matched to 50Ω.
:---				
26				
Gate Voltage for the LO Multiplier. See Figure 75 for the recommended				
external components.				
Drain Voltage for the LO Multiplier. See Figure 75 for the recommended				
external components.				
30	\quad VD_MULT	Gate Voltage for the LO Amplifier. See Figure 75 for the recommended		
:---	:---			
external components.				
Drain Voltage for the LO Amplifier. See Figure 75 for the recommended				
external components.				
32	VD_AMP			
PORT 1	VF_MIXER		Gate Voltage for the Field Effect Transistor (FET) Mixer. See Figure 75 for	
:---				
the recommended external components.				
WR-12 Waveguide Port. This port is ac-coupled and matched to the				
waveguide input impedance.				
Exposed Pads. The exposed ground pads must be connected to RF and				
dc ground.				

INTERFACE SCHEMATICS

GND

Figure 3. GND Interface Schematic

Figure 4. IF_IP, IF_IN, IF_QN, IF_QP, and VG_MIXER Interface Schematic

VD12_LNA, VD34_LNA

Figure 5. VD12_LNA and VD34_LNA Interface Schematic

Figure 6. VG12_LNA and VG34_LNA Interface Schematic

Figure 7. VG_MULT, VD_MULT, VG_AMP, and VD_AMP Interface Schematic

Figure 8. RFIN Interface Schematic

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{IF}=1 \mathrm{GHz}$, RFIN $=-20 \mathrm{dBm}$ combined, LO power $=+4 \mathrm{dBm}$, and lower sideband selected, unless otherwise noted.

Figure 9. Conversion Gain vs. RF Frequency over Temperature

Figure 10. Image Rejection vs. RF Frequency over Temperature

Figure 11. Input IP3 vs. RF Frequency over Temperature

Figure 12. Conversion Gain vs. RF Frequency over LO Power

Figure 13. Image Rejection vs. RF Frequency over LO Power

Figure 14. Input IP3 vs. RF Frequency over LO Power

Figure 15. Input IP2 vs. RF Frequency over Temperature

Figure 16. Amplitude Imbalance vs. RF Frequency over Temperature

Figure 17. Phase Imbalance vs. RF Frequency over Temperature

Figure 18. Input IP2 vs. RF Frequency over LO Power

Figure 19. Amplitude Imbalance vs. RF Frequency over LO Power

Figure 20. Phase Imbalance vs. RF Frequency over LO Power

Figure 21. Noise Figure vs. RF Frequency over Temperature

Figure 22. Input P1dB vs. RF Frequency over Temperature

Figure 23. Noise Figure vs. RF Frequency over LO Power
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{IF}=0.1 \mathrm{GHz}$, RFIN $=-20 \mathrm{dBm}$ combined, LO power $=+4 \mathrm{dBm}$, and lower sideband selected, unless otherwise noted.

Figure 24. Conversion Gain vs. RF Frequency over Temperature

Figure 25. Image Rejection vs. RF Frequency over Temperature

Figure 26. Input IP3 vs. RF Frequency over Temperature

Figure 27. Conversion Gain vs. RF Frequency over LO Power

Figure 28. Image Rejection vs. RF Frequency over LO Power

Figure 29. Input IP3 vs. RF Frequency over LO Power

Figure 30. Input IP2 vs. RF Frequency over Temperature

Figure 31. Amplitude Imbalance vs. RF Frequency over Temperature

Figure 32. Phase Imbalance vs. RF Frequency over Temperature

Figure 33. Input IP2 vs. RF Frequency over LO Power

Figure 34. Amplitude Imbalance vs. RF Frequency over LO Power

Figure 35. Phase Imbalance vs. RF Frequency over LO Power

Figure 36. Noise Figure vs. RF Frequency over Temperature

Figure 38. Noise Figure vs. RF Frequency over LO Power

Figure 37. Input P1dB vs. RF Frequency over Temperature
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{IF}=0.5 \mathrm{GHz}$, RFIN $=-20 \mathrm{dBm}$ combined, LO power $=+4 \mathrm{dBm}$, and lower sideband selected, unless otherwise noted.

Figure 39. Conversion Gain vs. RF Frequency over Temperature

Figure 40. Image Rejection vs. RF Frequency over Temperature

Figure 41. Input IP3 vs. RF Frequency over Temperature

Figure 42. Conversion Gain vs. RF Frequency over LO Power

Figure 43. Image Rejection vs. RF Frequency over LO Power

Figure 44. Input IP3 vs. RF Frequency over LO Power

Figure 45. Input IP2 vs. RF Frequency over Temperature

Figure 46. Amplitude Imbalance vs. RF Frequency over Temperature

Figure 47. Phase Imbalance vs. RF Frequency over Temperature

Figure 48. Input IP2 vs. RF Frequency over LO Power

Figure 49. Amplitude Imbalance vs. RF Frequency over LO Power

Figure 50. Phase Imbalance vs. RF Frequency over LO Power

Figure 51. Noise Figure vs. RF Frequency over Temperature

Figure 52. Input P1dB vs. RF Frequency over Temperature

Figure 53. Noise Figure vs. RF Frequency over LO Power
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{IF}=2 \mathrm{GHz}$, RFIN $=-20 \mathrm{dBm}$ combined, LO power $=+4 \mathrm{dBm}$, and lower sideband selected, unless otherwise noted.

Figure 54. Conversion Gain vs. RF Frequency over Temperature

Figure 55. Image Rejection vs. RF Frequency over Temperature

Figure 56. Input IP3 vs. RF Frequency over Temperature

Figure 57. Conversion Gain vs. RF Frequency over LO Power

Figure 58. Image Rejection vs. RF Frequency over LO Power

Figure 59. Input IP3 vs. RF Frequency over LO Power

Figure 60. Input IP2 vs. RF Frequency over Temperature

Figure 61. Amplitude Imbalance vs. RF Frequency over Temperature

Figure 62. Phase Imbalance vs. RF Frequency over Temperature

Figure 63. Input IP2 vs. RF Frequency over LO Power

Figure 64. Amplitude Imbalance vs. RF Frequency over LO Power

Figure 65. Phase Imbalance vs. RF Frequency over LO Power

Figure 66. Noise Figure vs. RF Frequency over Temperature

Figure 68. Noise Figure vs. RF Frequency over LO Power

Figure 67. Input P1dB vs. RF Frequency over Temperature

RETURN LOSS AND $6 \times$ LO LEAKAGE

Figure 69. RF Return Loss vs. RF Frequency over Temperature LO Frequency $=11.8 \mathrm{GHz}$

Figure 70. IF Return Loss vs. IF Frequency over Temperature LO Frequency $=11.8 \mathrm{GHz}$

Figure 71. LO Return Loss vs. LO Frequency over Temperature

Figure 72. $6 \times$ LO Leakage at the RF Port over Temperature

ADMV7410

SPURIOUS PERFORMANCE

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{IF}=1 \mathrm{GHz}$, RFIN $=-20 \mathrm{dBm}$, and LO input $=+4 \mathrm{dBm}$, unless otherwise noted. Mixer spurious products are measured in dBc from the IF output power level single-ended for frequencies below 50 GHz , with all other IF ports terminated. Spur values are (M $\times R F$) $-(N \times$ LO). N/A means not applicable.
$M \times N$ Spurious Outputs, RF = 71 GHz, LO = 12 GHz

		N \times LO										
		0	1	2	3	4	5	6	7	8	12	18
$\mathbf{M} \times \mathbf{R F}$	0	N/A	-35	-55	-56	-73	<-80	<-80	<-80	<-80	<-80	<-80
	1	<-80	<-80	-75	-66	-85	-34	0	-34	-67	<-80	<-80
	2	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80	-74	-31	<-80
	3	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80	-42
	4	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80
	5	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80

$M \times N$ Spurious Outputs, $R F=73.5$ GHz, $L O=12.417$ GHz

		N \times LO										
		0	1	2	3	4	5	6	7	8	12	18
$\mathbf{M} \times \mathbf{R F}$	0	N/A	-29	-84	-76	-69	<-80	<-80	<-80	<-80	<-80	<-80
	1	<-80	<-80	-73	-78	-82	-35	0	-37	-85	<-80	<-80
	2	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80	-73	-34	<-80
	3	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80	-96
	4	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80
	5	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80

$M \times N$ Spurious Outputs, RF = 76 GHz, LO = 12.833 GHz

		$\mathrm{N} \times$ LO										
		0	1	2	3	4	5	6	7	8	12	18
$\mathbf{M} \times \mathbf{R F}$	0	N/A	-34	-84	-74	<-80	<-80	<-80	<-80	<-80	<-80	<-80
	1	<-80	<-80	<-80	-74	-85	-91	0	-90	-83	<-80	<-80
	2	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80	-65	-33	<-80
	3	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80	-97
	4	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80
	5	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80	<-80

ADMV7410

THEORY OF OPERATION

The ADMV7410 is a fully integrated $\mathrm{SiP}, \mathrm{I} / \mathrm{Q}$ low noise downconverter that consists of two functional blocks.
The RFIN port of the ADMV7410 is connected to the gallium arsenide (GaAs), low noise amplifier that consists of four stages of low noise amplification that feed into the second block.

The second block is a GaAs, I/Q downconverter with an integrated LO buffer and $6 \times$ multiplier. The $6 \times$ multiplier allows the use of a lower frequency range LO input signal, typically between 11.5 GHz and 13 GHz . The $6 \times$ multiplier is
implemented using a cascade of $3 \times$ and $2 \times$ multipliers. The LO buffer amplifiers are included on chip to allow a typical LO drive level of 4 dBm for typical performance. The LO path feeds a quadrature splitter followed by on-chip baluns that drive the I and Q mixer cores. The mixer cores comprise singly balanced passive mixers. The RF input of the I and Q mixers are then driven through an on-chip Wilkinson power splitter, which is then fed by the first block of the ADMV7410.

APPLICATIONS INFORMATION POWER-UP BIAS SEQUENCE

The ADMV7410 functional blocks use active multiple amplifier and multiplier stages that all use depletion mode pseudomorphic high electron mobility transistors (pHEMTs). To ensure transistor damage does not occur, use the following power-up bias sequence and do not apply RF power to the device on the LO or IF ports unless otherwise noted:

1. Apply a - 2 V bias to VG_MULT, VG_AMP, VG12_LNA, and VG34_LNA.
2. Apply a -1 V bias to VG_{-}MIXER.
3. Apply a 2 V bias to VD12_LNA.
4. Apply a 1.5 V bias to VD_MULT.
5. Apply a 4 V bias to VD_AMP and VD34_LNA.
6. Adjust VG_AMP between -2 V and 0 V to achieve a total IVD_AMP current of 175 mA .
7. Adjust VG12_LNA between -2 V and 0 V to achieve a total IVD12_LNA current of 22 mA .
8. Adjust VG34_LNA between -2 V and 0 V to achieve a total IVD34_LNA current of 44 mA .
9. Apply a LO input signal on the LO port and adjust VG_MULT between -2 V and 0 V to achieve a total Ivd_mult current of 80 mA .

POWER-DOWN SEQUENCE

To power down the ADMV7410, take the following steps:

1. Apply a 0 V bias to VD_MULT, VD_AMP, VD12_LNA, and VD34_LNA.
2. Apply a 0 V bias to VG_MIXER.
3. Apply a 0 V bias to VG_MULT, VG_AMP, VG12_LNA, and VG34_LNA.

LAYOUT

Solder the exposed pad on the underside of the ADMV7410 to a low thermal and electrical impedance ground plane. This pad is typically soldered to an exposed opening in the solder mask. Connect these ground vias to all other ground layers to maximize heat dissipation from the device package.
Figure 73 illustrates the recommended mechanical layout on the interface plate used to interface to the WR-12 waveguide opening of the ADMV7410. The recommended PCB land pattern footprint is shown in Figure 74.

Figure 73. Recommended Standard WR-12 Footprint

Figure 74. PCB Land Pattern Footprint

TYPICAL APPLICATION CIRCUIT

Figure 75 shows the typical application circuit.

Figure 75. Typical Application Circuit

OUTLINE DIMENSIONS

ORDERING GUIDE
$\left.\begin{array}{l|l|l|l}\hline \text { Model }^{\mathbf{1}} & \text { Temperature Range } & \text { Package Description } & \text { Package Option } \\ \hline \text { ADMV7410BCEZ } & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} & \begin{array}{l}34-\text { Terminal Chip Array Small Outline No Lead Cavity [LGA_CAV] } \\ \text { ADMV7410-EVALZ }\end{array} & \text { Evaluation Board }\end{array}\right]$ CE-34-2 \quad.

[^0]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT\# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT\# MAX2692EVKIT\# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1

[^0]: ${ }^{1} Z=$ RoHS Compliant Part.

