FEATURES

Input sensitivity: $\mathbf{3 . 5 ~ m V ~ p - p ~}$
70 ps rise/fall times
CML outputs: $\mathbf{7 5 0} \mathbf{m V}$ p-p differential
Bandwidth selectable for multirate $1 \times / 2 \times / 4 \times$ FC modules
Optional LOS output inversion
Programmable LOS detector: $\mathbf{3 . 5} \mathbf{~ m V}$ to $\mathbf{3 5} \mathbf{~ m V}$
Rx signal strength indicator (RSSI)
SFF-8472-compliant average power measurement

Single-supply operation: 3.3 V

Low power dissipation: $\mathbf{1 6 0} \mathbf{~ m W}$

Extended temperature range: $-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$
SFP reference design available

APPLICATIONS

$1 \times, 2 \times$, and $4 \times$ FC transceivers
SFP/SFF/GBIC optical transceivers

GbE transceivers

Backplane receivers

GENERAL DESCRIPTION

The ADN2892 is a 4.25 Gbps limiting amplifier with integrated loss of signal (LOS) detection circuitry and a received signal strength indicator (RSSI). This part is optimized for Fibre Channel (FC) and Gigabit Ethernet (GbE) optoelectronic conversion applications. The ADN2892 has a differential input sensitivity of 3.5 mV p-p and accepts up to a 2.0 V p-p differential input overload voltage. The ADN2892 has current mode logic (CML) outputs with controlled rise and fall times.
The ADN2892 has a selectable low-pass filter with a -3 dB cutoff frequency of 1.5 GHz . By setting BW_SEL to Logic 0 , the filter can limit the relaxation oscillation of a low cost CD laser used in a legacy 1 Gbps FC transmitter. The limited BW also reduces the rms noise and in turn improves the receiver optical sensitivity for a lower data rate application, such as $1 \times$ FC and GbE.

By monitoring the bias current through a photodiode, the onchip RSSI detector measures the average power received with 2% typical linearity over the entire valid input range of the photodiode. The on-chip RSSI detector facilitates SFF-8472compliant optical transceivers by eliminating the need for external RSSI detector circuitry.
Additional features include a programmable loss-of-signal (LOS) detector and output squelch. The ADN2892 is available in a $3 \mathrm{~mm} \times 3 \mathrm{~mm}, 16$-lead LFCSP.

Figure 1. RSSI Function Capable—Applications Setup Block Diagram

TABLE OF CONTENTS

Features 1
Applications. 1
General Description 1
Functional Block Diagram 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 5
Thermal Resistance 5
ESD Caution 5
Pin Configuration and Function Descriptions. 6
Typical Performance Characteristics 7
Theory of Operation 10
REVISION HISTORY
3/2017—Rev. B to Rev. C
Changes to Figure 2 6
Changes to Figure 18 11
Updated Outline Dimensions 13
Changes to Ordering Guide 13
2/2014-Rev. A to Rev. B
Changes to Figure 2 6
Limiting Amplifier 10
Loss-of-Signal (LOS) Detector 10
Received Signal Strength Indicator (RSSI) 10
Squelch Mode 10
BW_SEL (Bandwidth Selection) Mode 10
LOS_INV (Lose of Signal_Invert) Mode 10
Applications Information 11
PCB Design Guidelines 11
Pad Coating and Pb -Free Soldering 12
Outline Dimensions 13
Ordering Guide 13
7/2013-Rev. 0 to Rev. A
Change to Output Voltage Swing Parameter, Table 1 3
Changes to Figure 2. 6
Updated Outline Dimensions 13
Changes to Ordering Guide 13
4/2005—Revision 0: Initial Version

SPECIFICATIONS

Test Conditions: VCC $=2.9 \mathrm{~V}$ to 3.6 V, VEE $=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
QUANTIZER DC CHARACTERISTICS Input Voltage Range Input Common Mode Peak-to-Peak Differential Input Range Input Sensitivity Input Offset Voltage Input RMS Noise Input Resistance Input Capacitance	$\begin{aligned} & V_{c c}-1.2 \\ & 2.1 \\ & 6.6 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 100 \\ & 235 \\ & 50 \\ & 0.65 \end{aligned}$	$\begin{aligned} & V_{c c}-0.2 \\ & 2.7 \\ & 2.0 \end{aligned}$	V V V p-p mV p-p $\mu \mathrm{V}$ $\mu \mathrm{V}$ rms Ω pF	At PIN or NIN, dc-coupled DC-coupled PIN - NIN, ac-coupled PIN - NIN, BER $\leq 1 \times 10^{-10}$ Single-ended
QUANTIZER AC CHARACTERISTICS Input Data Rate Small Signal Gain S11 S22 Random Jitter Deterministic Jitter Low Frequency Cutoff Power Supply Rejection	1.0	$\begin{aligned} & 51 \\ & -10 \\ & -10 \\ & 3.0 \\ & 10 \\ & 30 \\ & 45 \end{aligned}$	$\begin{aligned} & 4.25 \\ & \\ & 3.9 \\ & 21.0 \end{aligned}$	Gbps dB dB dB ps rms ps p-p kHz dB	Differential Differential, $\mathrm{f}<4.25 \mathrm{GHz}$ Differential, $\mathrm{f}<4.25 \mathrm{GHz}$ Input $\geq 10 \mathrm{mV}$ p-p, $4 \times \mathrm{FC}$, K28.7 pattern Input $\geq 10 \mathrm{mV}$ p-p, $4 \times \mathrm{FC}$, K28.5 pattern $100 \mathrm{kHz}<\mathrm{f}<10 \mathrm{MHz}$
LOSS OF SIGNAL DETECTOR (LOS) LOS Assert Level Electrical Hysteresis LOS Assert Time LOS Deassert Time	$\begin{aligned} & 2.9 \\ & 22.4 \\ & 2.5 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 35 \\ & 5.0 \\ & 5.0 \\ & 950 \\ & 62 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 55.0 \end{aligned}$	$\begin{aligned} & m V p-p \\ & m V p-p \\ & d B \\ & d B \\ & n s \\ & n s \end{aligned}$	$R_{\text {ThRad }}=100 \mathrm{k} \Omega$ $R_{\text {THRAD }}=1 \mathrm{k} \Omega$ 1.0 Gbps, PRBS $2^{23}-1$ $4 \times$ FC, PRBS $2^{23}-1$ DC-coupled DC-coupled
RSSI Input Current Range RSSI Output Linearity Gain Offset Compliance Voltage (At PD_CATHODE)	5 $\begin{aligned} & V_{\mathrm{cc}}-0.4 \\ & \mathrm{~V}_{\mathrm{cc}}-0.9 \end{aligned}$	$\begin{aligned} & 2 \\ & 1.0 \\ & 145 \end{aligned}$	1000	$\mu \mathrm{A}$ \% $\mathrm{mA} / \mathrm{mA}$ nA V V	$\begin{aligned} & 5 \mu \mathrm{~A} \leq \mathrm{IIN}_{\mathrm{I}} \leq 1000 \mu \mathrm{~A} \\ & \mathrm{I}_{\text {RSSL/ } / \text { PD_CATHODE }} \\ & \\ & \text { IPD_CATHODE }=5 \mu \mathrm{~A} \\ & \text { IPD_CATHODE }=1000 \mu \mathrm{~A} \end{aligned}$
BW_SEL (BANDWIDTH SELECTION) Channel Bandwidth		1.5		GHz	-3 dB cutoff frequency of the on-chip, two-pole, low-pass filter, when BW_SEL = 0
POWER SUPPLIES Vcc Icc	2.9	$\begin{aligned} & 3.3 \\ & 48 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 54 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$	
OPERATING TEMPERATURE RANGE	-40	+25	+95	${ }^{\circ} \mathrm{C}$	$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$
CML OUTPUT CHARACTERISTICS Output Impedance Output Voltage Swing Output Rise and Fall Time	600	$\begin{aligned} & 50 \\ & 750 \\ & 70 \end{aligned}$	$\begin{aligned} & 940 \\ & 103 \end{aligned}$	$\begin{aligned} & \Omega \\ & m \vee p-p \end{aligned}$ ps	Single-ended Differential 20\% to 80\%

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
```LOGIC INPUTS (SQUELCH, LOS_INV, AND BW_SEL) VIH, Input High Voltage VIL, Input Low Voltage Input Current (SQUELCH, LOS_INV) Input Current (BW_SEL)```	2.0		$\begin{aligned} & 0.8 \\ & 39 \\ & -38 \end{aligned}$	V   V   $\mu \mathrm{A}$   $\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{NH}}, \mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 100 \mathrm{k} \Omega$ pull-down, on-chip resistor   linl, $\mathrm{V}_{\text {IN }}=0.0 \mathrm{~V}, 100 \mathrm{k} \Omega$ pull-up, on-chip resistor
LOGIC OUTPUTS (LOS)   Vон, Output High Voltage   Vol, Output Low Voltage	2.4		0.4	$\begin{aligned} & \text { V } \\ & \text { v } \end{aligned}$	Open drain output, $4.7 \mathrm{k} \Omega-10 \mathrm{k} \Omega$ pull-up resistor to VCC   Open drain output, $4.7 \mathrm{k} \Omega-10 \mathrm{k} \Omega$ pull-up resistor to VCC

## ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Power Supply Voltage	4.2 V
Minimum Voltage (All Inputs and Outputs)	VEE -0.4 V
Maximum Voltage (All Inputs and Outputs)	VCC +0.4 V
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$
Production Soldering Temperature	J -STD-20
Junction Temperature	$125^{\circ} \mathrm{C}$

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

## THERMAL RESISTANCE

$\theta_{\text {IA }}$ is specified for 4-layer PCB with exposed paddle soldered to GND.

Table 3.

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}$	Unit
$3 \mathrm{~mm} \times 3 \mathrm{~mm}, 16$-lead LFCSP	28	${ }^{\circ} \mathrm{C} / \mathrm{W}$

## ESD CAUTION

	ESD (electrostatic discharge) sensitive device.   Charged devices and circuit boards can discharge   without detection. Although this product features   patented or proprietary protection circuitry, damage   may occur on devices subjected to high energy ESD.   Therefore, proper ESD precautions should be taken to   avoid performance degradation or loss of functionality.

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



NOTES

1. THERE IS AN EXPOSED PAD ON THE BOTTOM OF
THE PACKAGE THAT MUST BE CONNECTED TO THE GND PLANE WITH FILLED VIAS.

Figure 2. Pin Configuration
Table 4. Pin Function Descriptions

Pin No.	Mnemonic	I/O Type ${ }^{1}$	Description
1	AVCC	P	Analog Power Supply.
2	PIN	AI	Differential Data Input, Positive Port, $50 \Omega$ On-Chip Termination.
3	NIN	AI	Differential Data Input, Negative Port, $50 \Omega$ On-Chip Termination.
4	AVEE	P	Analog Ground.
5	THRADJ	AO	LOS Threshold Adjust Resistor.
6	BW_SEL	DI	With one $100 \mathrm{k} \Omega$ on-chip, pull-up resistor, BW_SEL $=0$ for $1 \times / 2 \times \mathrm{FC}, \mathrm{BW}$ _SEL $=1$ for $4 \times \mathrm{FC}$.
7	LOS_INV	DI	With one $100 \mathrm{k} \Omega$ on-chip, pull-down resistor, LOS_INV $=1$ inverts the LOS output
			to be active low for SFF.
8	LOS	DO	LOS Detector Output, Open Collector.
9	DRVEE	P	Output Buffer Ground.
10	OUTN	DO	Differential Data Output, CML, Negative Port, $50 \Omega$, On-Chip Termination.
11	OUTP	DO	Differential Data Output, CML, Positive Port, $50 \Omega$, On-Chip Termination.
12	DRVCC	P	Output Buffer Power Supply.
13	SQUELCH	DI	Disable Outputs, $100 \mathrm{k} \Omega$ On-Chip, Pull-Down Resistor.
14	RSSI_OUT	AO	Average Current Output.
15	PD_VCC	P	Power Input for RSSI Measurement.
16	PD_CATHODE	AO	Photodiode Bias Voltage.
Exposed Pad	Pad	P	Connect to Ground.

${ }^{1} \mathrm{P}=$ power; $\mathrm{DI}=$ digital input; $\mathrm{DO}=$ digital output; $\mathrm{AI}=$ analog input; and $\mathrm{AO}=$ analog output.

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 3. Eye of ADN2892 at $25^{\circ} \mathrm{C}, 4.25 \mathrm{Gbps}$, and 10 mV Input


Figure 4. Eye of ADN2892 at $95^{\circ} \mathrm{C}, 4.25 \mathrm{Gbps}$, and 10 mV Input


Figure 5. Eye of ADN2892 at $25^{\circ} \mathrm{C}, 1.063 \mathrm{Gbps}$, and 10 mV Input (BW_SEL = 0)


Figure 6. LOS Trip and Release vs. $R_{\text {TH }}$ at 4.25 Gbps


Figure 7. LOS Electrical Hysteresis vs. $R_{\text {TH }}$ at $25^{\circ} \mathrm{C}$


Figure 8. Sample Lot Distribution-Worst-Case Condition: Conditions $=4.25 \mathrm{Gbps}, 100 \mathrm{k} \Omega$ at $-40^{\circ} \mathrm{C}, 3.6 \mathrm{~V}$


Figure 9. Random Jitter vs. Data Rate


Figure 10. Deterministic Jitter vs. Data Rate


Figure 11. PSRR vs. Supply-Noise Frequency


Figure 12. RSSI Output vs. Average Photodiode Current


Figure 13. RSSI Output vs. Average Photodiode Current (Zoomed)


Figure 14. PD_CATHODE Compliance Voltage vs. Input Current RSSI (Refer to VCC)


Figure 15. RSSI Offset—Difference Between Measured RSSI Output and PD_CATHODE (Input) Current of $5 \mu A$


Figure 16. RSSI Linearity \% vs. PD_CATHODE Current


Figure 17. ADN2892 Icc Current vs. Temperature

## THEORY OF OPERATION

## LIMITING AMPLIFIER

Input Buffer
The ADN2892 limiting amplifier provides differential inputs (PIN/NIN), each with a single-ended, on-chip $50 \Omega$ termination. The amplifier can accept either dc-coupled or ac-coupled signals; however, an ac-coupled signal is recommended. Using a dccoupled signal, the amplifier needs a nominal VCC -0.7 V common-mode voltage and $\pm 0.5 \mathrm{~V}$ headroom. If the input common-mode voltage is 2.4 V , the available headroom is reduced down to $\pm 0.3 \mathrm{~V}$.

The ADN2892 limiting amplifier is a high gain device. It is susceptible to dc offsets in the signal path. The pulse width distortion presented in the NRZ data or a distortion generated by the TIA may appear as dc offset or a corrupted signal to the ADN2892 inputs. An internal offset correction loop can compensate for certain levels of offset.

## CML Output Buffer

The ADN2892 provides differential CML outputs, OUTP and OUTN. Each output has an internal $50 \Omega$ termination to VCC.

## LOSS-OF-SIGNAL (LOS) DETECTOR

The on-chip LOS circuit drives LOS to logic high when the input signal level falls below a user-programmable threshold. The threshold level can be set anywhere from 3.5 mV p-p to 35 mV p-p typical by a resistor connected between the THRADJ pin and VEE. See Figure 6 and Figure 7 for the LOS threshold vs. THRADJ. The ADN2892 LOS circuit has an electrical hysteresis greater than 2.5 dB to prevent chatter at the LOS signal. The LOS output is an open-collector output that must be pulled up externally with a $4.7 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ resistor.

## RECEIVED SIGNAL STRENGTH INDICATOR (RSSI)

The ADN2892 has an on-chip, RSSI circuit. By monitoring the current supplied to the photodiode, the RSSI circuit provides an accurate, average power measurement. The output of the RSSI is a current that is directly proportional to the average amount of PIN photodiode current. Placing a resistor between the RSSI_OUT pin and GND converts the current to a GND referenced voltage. This function eliminates the need for external RSSI circuitry for SFF-8472-compliant optical receivers. For more information, see Figure 12 to Figure 16.

Connect the PD_VCC, PD_CATHODE, and RSSI_OUT pins to AVCC to disable the RSSI feature.

## SQUELCH MODE

Driving the SQUELCH input to logic high disables the limiting amplifier outputs. Using LOS output to drive the SQUELCH input, the limiting amplifier outputs stop toggling anytime a signal input level to the limiting amplifier drops below the programmed LOS threshold.
The SQUELCH pin has a $100 \mathrm{k} \Omega$, internal pull-down resistor.

## BW_SEL (BANDWIDTH SELECTION) MODE

Driving the BW_SEL input signal to logic high, the amplifier provides a 3.8 GHz bandwidth. Driving the BW_SEL input signal to logic low, the amplifier accepts input signals through a 1.5 GHz , 2-pole, low-pass filter that improves receiving sensitivity.

The low-pass filter reduces the possible relaxation oscillation of low speed, low cost laser source by limiting the input signal bandwidth.

The BW_SEL pin has a $100 \mathrm{k} \Omega$, on-chip pull-up resistor. Setting the BW_SEL pin open disables the low-pass filter.

## LOS_INV (LOSE OF SIGNAL_INVERT) MODE

Some applications, such as SFF, need the LOS assertion and deassertion voltage reversed. When the LOS_INV pin is pulled to logic high, the LOS output assertion is pulled down to electrical low.

The LOS_INV pin has a $100 \mathrm{k} \Omega$ on-chip, pull-down resistor.

## APPLICATIONS INFORMATION PCB DESIGN GUIDELINES

Proper RF PCB design techniques must be used to ensure optimal performance.

## Output Buffer Power Supply and Ground Planes

Pin 9 (DRVEE) and Pin 12 (DRVCC) are the power supply and ground pins that provide current to the differential output buffer. To reduce possible series inductance, $\operatorname{Pin} 9$, which is the ground return of the output buffer, should connect to ground directly. If the ground plane is an internal plane and connections to the ground plane are vias, multiple vias in parallel to ground can reduce series inductance.

Similarly, to reduce the possible series inductance, Pin 12 , which supplies power to the high speed differential OUTP/OUTN output buffer, should connect to the power plane directly. If the power plane is an internal plane and connections to the power plane are vias, multiple vias in parallel can reduce the series inductance, especially on Pin 12. See Figure 18 for the recommended connections.

The exposed pad should connect to the GND plane using filled vias so that solder does not leak through the vias during reflow. Using filled vias in parallel under the package greatly reduces the thermal resistance and enhances the reliability of the connectivity of the exposed pad to the GND plane during reflow.
To reduce power supply noise, a $10 \mu \mathrm{~F}$ electrolytic decoupling capacitor between power and ground should be close to where the 3.3 V supply enters the PCB. The other $0.1 \mu \mathrm{~F}$ and 1 nF ceramic chip decoupling capacitors should be close to the VCC and VEE pins to provide optimal supply decoupling and a shorter current return loop.


Figure 18. Typical ADN2892 Applications Circuit

## PCB Layout

Figure 19 shows the recommended PCB layout. The $50 \Omega$ transmission lines are the traces that bring the high frequency input and output signals (PIN, NIN, OUTP, and OUTN) from a terminated source to a terminated load with minimum reflection. To avoid a signal skew between the differential traces, each differential PIN/NIN and OUTP/OUTN pair should have matched trace lengths from a differential source to a differential load. C1, C2, C3, and C4 are ac coupling capacitors in series with the high speed, signal input/output paths. To minimize the possible mismatch, the ac coupling capacitor pads should be the same width as the $50 \Omega$ transmission line trace width. To reduce supply noise, a 1 nF decoupling capacitor should be placed as close as possible to the VCC pins on the same layer and not through vias. A $0.1 \mu \mathrm{~F}$ decoupling capacitor can be placed on the bottom of the PCB directly underneath the 1 nF capacitor. All high speed, CML outputs have internal $50 \Omega$ resistor termination between the output pin and VCC. The high speed inputs, PIN and NIN, also have the internal $50 \Omega$ termination to an internal reference voltage.
As with any high speed, mixed-signal design, keep all high speed digital traces away from sensitive analog nodes.

## Soldering Guidelines for the LFCSP

The lands on the 16-lead LFCSP are rectangular. The PCB pad for these should be 0.1 mm longer than the package land length and 0.05 mm wider than the package land width. The land should be centered on the pad. This ensures that the solder joint size is maximized. The bottom of the LFCSP has a central exposed pad. The pad on the printed circuit board should be at least as large as the exposed pad. Users must connect the exposed pad to VEE using filled vias so that solder does not leak through the vias during reflow. This ensures a solid connection from the exposed pad to VEE.

## PAD COATING AND PB-FREE SOLDERING

Table 5.

Pad Coating	Matt-Tin
Pb-Free Reflow Portfolio	J-STD-20B



Figure 19. Recommended ADN2892 PCB Layout (Top View)

## OUTLINE DIMENSIONS



COMPLIANT TO JEDEC STANDARDS MO-220-WEED-6.
Figure 20. 16-Lead Lead Frame Chip Scale Package [LFCSP]
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Body and 0.75 mm Package Height (CP-16-27)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Branding
ADN2892ACPZ-500RL7 $^{\text {ADN2892ACPZ-RL7 }}$	$-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$	16 -Lead LFCSP, 500 pieces	CP-16-27	F05
EVAL-ADN2892EBZ	$-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$	16 -Lead LFCSP, 1,500 pieces	CP-16-27	F05

${ }^{1} Z=$ RoHS-Compliant Part.

NOTES
Data Sheet ADN2892

NOTES

## NOTES

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Logarithmic Amplifiers category:
Click to view products by Analog Devices manufacturer:

Other Similar products are found below :
TL441MNSREP TL441CNSR 5962-9864601QEA AD606JNZ AD606JRZ AD640BE AD640JNZ AD640TE/883B AD641ANZ AD641APZ AD8304ARUZ AD8306ARZ AD8307ANZ AD8309ARUZ AD8309ARUZ-REEL7 AD8310ARMZ AD8310ARMZ-REEL7 ADL5310ACPZ-REEL7 ADL5304ACPZ-R7 AD8307ARZ-REEL AD8307ARZ-RL7 AD8307ARZ MAX4206ETE+ LOG101AID LOG101AIDE4 LOG104AID LOG2112AIDW LOG102AID MAX4207ETE+ LOG114AIRGVT TL441CN

