## 12 V, 2 A Logic Controlled High-Side Power Switch

## Data Sheet

## FEATURES

## Low RDS ${ }_{\text {on }}$ of $40 \mathrm{~m} \Omega$

Wide input voltage range: 2.3 V to 13.2 V
2 A continuous operating current, $\mathrm{T}_{\mathrm{J}}=\left\langle 85^{\circ} \mathrm{C}\right.$
1.2 V logic compatible enable input

Low $15 \mu$ A quiescent current, $\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$
Low $19 \mu \mathrm{~A}$ quiescent current, $\mathrm{V}_{\mathrm{IN}}=6.5 \mathrm{~V}$
Ultralow shutdown current: $2.0 \mu \mathrm{~A}$ at $\mathrm{V}_{\mathrm{IN}}=6.5 \mathrm{~V}$
Ultrasmall $1.0 \mathrm{~mm} \times 1.5 \mathrm{~mm}, 6$-ball, 0.5 mm pitch WLCSP

## APPLICATIONS

## Mobile phones

Digital cameras and audio devices
Portable and battery-powered equipment

## GENERAL DESCRIPTION

The ADP1290 is a high-side load switch designed for operation between 2.3 V and 13.2 V . This load switch provides power domain isolation, helping to extend battery operation. The device contains a low on-resistance, N -channel MOSFET that supports more than 2 A of continuous current and minimizes power loss. In addition, RDSon is constant independent of the VIN voltage. The low $15 \mu \mathrm{~A}$ quiescent current and ultralow shutdown current of $20 \mu \mathrm{~A}$ make the ADP1290 ideal for battery-operated portable equipment. The built-in level shifter for enable logic makes the ADP1290 compatible with many processors and general-purpose input/output (GPIO) controllers.


Figure 1.

In addition to operating performance, the ADP1290 occupies minimal printed circuit board (PCB) space with an area of less than $1.5 \mathrm{~mm}^{2}$ and a height of 0.60 mm .

The ADP1290 is available in an ultrasmall, $1 \mathrm{~mm} \times 1.5 \mathrm{~mm}$, 6 -ball, 0.5 mm pitch WLCSP.

## TABLE OF CONTENTS



## REVISION HISTORY

## 12/14—Revision 0: Initial Version

Theory of Operation ..... 9
Applications Information ..... 10
Capacitor Selection ..... 10
Ground Current. ..... 10
Enable Feature ..... 10
Timing ..... 11
Current and Thermal Overload Precautions. ..... 11
Thermal Considerations ..... 11
Outline Dimensions ..... 12
Ordering Guide ..... 12

## SPECIFICATIONS

$\mathrm{V}_{\mathrm{IN}}=6.5 \mathrm{~V}$, enable input voltage $\left(\mathrm{V}_{\mathrm{EN}}\right)=\mathrm{V}_{\mathrm{IN}}, \mathrm{I}_{\mathrm{OUT}}=2 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ for minimum/maximum specifications, unless otherwise noted.

Table 1.

| Parameter | Symbol | Test Conditions/Comments | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INPUT VOLTAGE RANGE | $\mathrm{V}_{\text {IN }}$ |  | 2.3 |  | 13.2 | V |
| EN INPUT <br> EN Input <br> EN Input Pull-Down Current | $\begin{aligned} & \mathrm{V}_{\mathrm{H}} \\ & \mathrm{~V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{EN}} \end{aligned}$ | $\mathrm{V}_{\text {IN }}=2.3 \mathrm{~V}$ to 13.2 V | 1.0 | 15 | $\begin{aligned} & 0.4 \\ & 1000 \end{aligned}$ | $\begin{aligned} & \text { V } \\ & \text { V } \\ & \text { nA } \end{aligned}$ |
| CURRENT <br> Ground (Quiescent) Current <br> Shutdown Current <br> Continuous Operating Current | IGnd <br> loff <br> lout | $\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=2.3 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=6.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathbb{I N}}=13.2 \mathrm{~V} \\ & \mathrm{~V}_{\text {EN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=6.5 \mathrm{~V}, \text { output }=\text { high impedance } \\ & \mathrm{V}_{\text {EN }}=0 \mathrm{~V}, \text { output voltage }\left(\mathrm{V}_{\text {OUT }}\right)=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.3 \mathrm{~V} \text { to } 13.2 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}=2.3 \mathrm{~V} \text { to } 13.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=<85^{\circ} \mathrm{C} \end{aligned}$ |  | $\begin{aligned} & 10 \\ & 15 \\ & 19 \\ & 20 \\ & \\ & 2 \end{aligned}$ | $\begin{aligned} & 30 \\ & 45 \\ & 45 \\ & 45 \\ & 2.0 \\ & 4.0 \end{aligned}$ | $\mu \mathrm{A}$ <br> A |
| VIN TO VOUT RESISTANCE | RDSon | $\begin{aligned} & \mathrm{V}_{\mathbb{N}}=2.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathbb{N}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathbb{N}}=6.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathbb{N}}=13.2 \mathrm{~V} \end{aligned}$ |  | $\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$ | $\begin{aligned} & 70 \\ & 70 \\ & 70 \\ & 70 \end{aligned}$ | $\begin{aligned} & \mathrm{m} \Omega \\ & \mathrm{~m} \Omega \\ & \mathrm{~m} \Omega \\ & \mathrm{~m} \Omega \end{aligned}$ |
| Vout TURN ON Turn On Delay Time Turn On Rise Time Turn On Time | ton_dry <br> ton_RISE <br> ton | See Figure 2 $\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=5.5 \mathrm{~V}, \mathrm{C}_{\mathrm{LOAD}}=10 \mu \mathrm{~F} \\ & \mathrm{~V}_{\mathbb{N}}=5.5 \mathrm{~V}, \mathrm{C}_{\text {LOAD }}=10 \mu \mathrm{~F} \end{aligned}$ <br> Turn on delay time + turn on rise time |  | $\begin{aligned} & 250 \\ & 350 \\ & 600 \end{aligned}$ | 2000 | $\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$ |
| Vout TURN OFF Turn Off Delay Time Turn Off Fall Time Turn Off Time | toff_Dry <br> toff_fall <br> toff | See Figure 2 $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{C}_{\text {LOAD }}=10 \mu \mathrm{~F}, \text { IoUT }=20 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{C}_{\text {LOAD }}=10 \mu \mathrm{~F}, \text { IoUT }=20 \mathrm{~mA} \end{aligned}$ <br> Turn off delay time + turn off fall time |  | $\begin{aligned} & 125 \\ & 2000 \\ & 2125 \end{aligned}$ |  | $\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$ |
| SOURCE DRAIN BODY DIODE <br> Diode Forward Current | ID | $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$, pulse width $=70 \mu \mathrm{~s}$, duty cycle $<1 \%$, V out $=0.9 \mathrm{~V}$ |  | 4 | 6 | A |

## TIMING DIAGRAM



Figure 2. Timing Diagram

## ABSOLUTE MAXIMUM RATINGS

Table 2.

| Parameter | Rating |
| :--- | :--- |
| VIN to GND | -0.3 V to +16.5 V |
| VOUT to GND | -0.3 V to V IN |
| EN to GND | -0.3 V to +16.5 V |
| Continuous Drain Current | $\pm 3 \mathrm{~A}$ |
| $\mathrm{~T}=70^{\circ} \mathrm{C}$ | $\pm 1.6 \mathrm{~A}$ |
| $\mathrm{~T}_{\mathrm{J}}=105^{\circ} \mathrm{C}$ | -50 mA |
| Continuous Diode Current | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ |
| Operating Junction Temperature Range | JEDEC J-STD-020 |
| Soldering Conditions |  |

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

## THERMAL RESISTANCE

$\theta_{\text {IA }}$ is specified for the worst case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 3 Thermal Resistance

| Package Type | $\boldsymbol{\theta}_{\text {JA }}$ | $\boldsymbol{\Psi}_{\text {Jв }}$ | Unit |
| :--- | :--- | :--- | :--- |
| 6-Ball, 0.5 mm Pitch WLCSP | 260 | 58 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

## ESD CAUTION

|  | ESD (electrostatic discharge) sensitive device. <br> Charged devices and circuit boards can discharge <br> without detection. Although this product features <br> patented or proprietary protection circuitry, damage <br> may occur on devices subjected to high energy ESD. <br> Therefore, proper ESD precautions should be taken to <br> avoid performance degradation or loss of functionality. |
| :--- | :--- |

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



Table 4. Pin Function Descriptions

| Pin No. | Mnemonic | Description |
| :--- | :--- | :--- |
| A1, B1 | VIN | Input Voltage. |
| A2, B2 | VOUT | Output Voltage. |
| C1 | EN | Enable Input. Drive the EN pin high to turn on the switch. Drive the EN pin low to turn off the switch. |
| C2 | GND | Ground. |

## TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{V}_{\text {IN }}=6.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=\mathrm{V}_{\text {IN }}, \mathrm{C}_{\text {IN }}=\mathrm{C}_{\text {out }}=0 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.


Figure 4. RDS ${ }_{o n}$ Vs. Temperature, 50 mA , Different Input Voltages (VIN)


Figure 5. RDSon vs. Temperature, 2 A, Different Input Voltages (VIN)


Figure 6. RDSon vs. Input Voltage (VIN), Different Load Currents (ILOAD)


Figure 7. Voltage Drop vs. Input Voltage (VIN), Different Load Currents (ILOAD)


Figure 8. Ground Current vs. Temperature, Different Load Currents, $V_{\text {IN }}=2.3 \mathrm{~V}$


Figure 9. Ground Current vs. Temperature, Different Load Currents, $V_{I N}=6.5 \mathrm{~V}$


Figure 10. Ground Current vs. Temperature, Different Load Currents,
$V_{\text {IN }}=13.2 \mathrm{~V}$


Figure 11. Ground Current vs. Load Current (IOAD), Different Input Voltages (VIN)


Figure 12. Ground Shutdown Current vs. Temperature, Output Open, Different Input Voltages (VIN)


Figure 13. Ground Shutdown Current vs. Temperature, $V_{\text {out }}=0 \mathrm{~V}$, Different Input Voltages (VIN)


Figure 14. Typical Turn On Time and Inrush Current, $V_{I N}=2.3 \mathrm{~V}$, $C_{\text {OUT }}=100 \mu F, R_{\text {LOAD }}=100 \Omega$


Figure 15. Typical Turn On Time and Inrush Current, $V_{\mathbb{I N}}=6.5 \mathrm{~V}$, $C_{\text {OUT }}=100 \mu F, R_{\text {LOAD }}=100 \Omega$


Figure 16. Typical Turn On Time and Inrush Current, $V_{I N}=13.2 \mathrm{~V}$, Cout $=100 \mu F, R_{\text {LOAD }}=100 \Omega$


Figure 17. Typical Turn On Time and Inrush Current, $V_{I N}=2.3 \mathrm{~V}$, $C_{\text {OUt }}=10 \mu F, R_{\text {LOAD }}=100 \Omega$


Figure 18. Typical Turn On Time and Inrush Current, $V_{I N}=6.5 \mathrm{~V}$, Cout $=10 \mu F, R_{\text {LOAD }}=100 \Omega$


Figure 19. Typical Turn On Time and Inrush Current, $V_{I N}=13.2 \mathrm{~V}$, $C_{\text {OUt }}=10 \mu F, R_{\text {LOAD }}=100 \Omega$

## THEORY OF OPERATION

The ADP1290 is a high-side NMOS load switch, controlled by an internal charge pump. The ADP1290 is designed to operate with power supply voltages between 2.3 V and 13.2 V .
An internal charge pump biases the NMOS switch to achieve a relatively constant, ultralow on resistance of $40 \mathrm{~m} \Omega$ across the entire input voltage range. The use of the internal charge pump also allows controlled turn on times. Turning the NMOS switch on and off is controlled by the enable input, EN, which is capable of interfacing directly with 1.2 V logic signals.


Figure 20. Functional Block Diagram

The ADP1290 is capable of 2 A of continuous current as long as $\mathrm{T}_{\mathrm{J}}$ is less than $85^{\circ} \mathrm{C}$. Between $85^{\circ} \mathrm{C}$ and $105^{\circ} \mathrm{C}$, the rated current decreases linearly to 1.6 A .
ESD protection structures are shown in the block diagram as Zener diodes.

The ADP1290 is a low quiescent current device with a weak 15 nA pull-down current sink on its enable pin (EN).
The ADP1290 is available in a space-saving $1.0 \mathrm{~mm} \times 1.5 \mathrm{~mm}$, 0.5 mm pitch, 6-ball WLCSP.

## APPLICATIONS INFORMATION

## CAPACITOR SELECTION

## Output Capacitor

The ADP1290 is designed for operation with small, spacesaving ceramic capacitors but functions with most commonly used capacitors when the effective series resistance (ESR) value is carefully considered. The ESR of the output capacitor affects the response to load transients. A typical $1 \mu \mathrm{~F}$ capacitor with an ESR of $0.1 \Omega$ or less is recommended for good transient response. Using a larger value of output capacitance improves the transient response to large changes in load current.

## Input Bypass Capacitor

Connecting at least $1 \mu \mathrm{~F}$ of capacitance from VIN to GND reduces the circuit sensitivity to the PCB layout, especially when high source impedance or long input traces are encountered. When an output capacitance of greater than $1 \mu \mathrm{~F}$ is required, increase the input capacitor to match it.

## GROUND CURRENT

The major source for ground current in the ADP1290 is the internal charge pump for the FET drive circuitry. Figure 21 shows the typical ground current when $\mathrm{V}_{\text {EN }}=\mathrm{V}_{\text {IN }}$ and varies from 2.3 V to 13.2 V .


Figure 21. Ground Current vs. Input Voltage (VIN $)$, Different Load Currents (ILOAD)

## ENABLE FEATURE

The ADP1290 uses the EN pin to enable and disable the VOUT pin under normal operating conditions. As shown in Figure 22, when a rising voltage ( $\mathrm{V}_{\mathrm{EN}}$ ) on the EN pin crosses the active threshold, the VOUT pin turns on. When a falling voltage ( $\mathrm{V}_{\text {EN }}$ ) on the EN pin crosses the inactive threshold, the VOUT pin turns off.


As shown in Figure 22, the EN pin has hysteresis built into it. The hysteresis prevents on/off oscillations that can occur due to noise on the EN pin as it passes through the threshold points.
The EN pin rising and falling thresholds derive from the $\mathrm{V}_{\text {IN }}$ voltage; therefore, these thresholds vary with the changing input voltage. Figure 23 shows the typical EN rising and falling thresholds when the input voltage varies from 2.3 V to 13.2 V .


Figure 23. Typical EN Thresholds (Rising and Falling) vs. Input Voltage (VIN)

## TIMING

Turn on delay is defined as the interval between the time that $\mathrm{V}_{\text {EN }}$ exceeds the rising threshold voltage and when Vout rises to $\sim 10 \%$ of its final value. The ADP1290 includes circuitry that has a typical $250 \mu$ s turn on delay and a controlled rise time to limit the $\mathrm{V}_{\text {IN }}$ inrush current. As shown in Figure 24 and Figure 25, the turn on delay is nearly independent of the input voltage.


Figure 24. Typical Turn On Time and Inrush Current, $V_{I N}=2.5 \mathrm{~V}$, $C_{\text {OUT }}=10 \mu \mathrm{~F}, R_{\text {LOAD }}=100 \Omega$


Figure 25. Typical Turn On Time and Inrush Current, $V_{I N}=6.5 \mathrm{~V}$, $C_{\text {OUT }}=10 \mu F, R_{\text {LOAD }}=100 \Omega$

The rise time is defined as the time it takes the output voltage to rise from $10 \%$ to $90 \%$ of Vout reaching its final value. The turn on delay is dependent on the rise time of the internal charge pump.
For very large values of output capacitance, the RC time constant (where C is the load capacitance, $\mathrm{C}_{\text {LOAD }}$, and R is the $\mathrm{RDS}_{\text {ON }}| | \mathrm{R}_{\text {LOAD }}$ ) can become a factor in the rise time of the output voltage. Because RDSon is much smaller than R ROAD, an adequate approximation for RC is $\mathrm{RDS}_{\text {on }} \times \mathrm{C}_{\text {LOAD }}$. An input or load capacitor is not required for the ADP1290; however, capacitors can suppress noise on the board.
The turn off time is defined as the time it takes for the output voltage to fall from $90 \%$ to $10 \%$ of Vout reaching its final value. The turn off time is also dependent on the RC time constant of the output capacitance ( $\mathrm{C}_{\text {LOAD }}$ ) and load resistance ( $\mathrm{R}_{\text {LOAD }}$ ).

Figure 26 and Figure 27 show the typical turn off times with $\mathrm{V}_{\text {IN }}=6.5 \mathrm{~V}$, Cout $=10 \mu \mathrm{~F}$ and $100 \mu \mathrm{~F}$, and $\mathrm{R}_{\text {LOAD }}=100 \Omega$.


Figure 26. Typical Turn Off Time, $C_{\text {OUT }}=10 \mu F, R_{\text {LOAD }}=100 \Omega$


Figure 27. Typical Turn Off Time, $C_{\text {OUT }}=100 \mu F, R_{\text {LOAD }}=100 \Omega$

## CURRENT AND THERMAL OVERLOAD PRECAUTIONS

The ADP1290 is not protected against damage due to excessive power dissipation and does not have thermal overload protection circuits. To prevent permanent damage, never allow current through the ADP1290 to exceed its rated value for more than a few milliseconds. Permanent damage can also occur if the output is shorted to ground

## THERMAL CONSIDERATIONS

To guarantee reliable operation, the junction temperature of the ADP1290 must not exceed $105^{\circ} \mathrm{C}$. To ensure that the junction temperature stays below this maximum value, the user must be aware of the parameters that contribute to junction temperature changes. These parameters include ambient temperature, power dissipation in the power device, and thermal resistances between the junction and ambient air $\left(\theta_{\text {IA }}\right)$. The $\theta_{\text {JA }}$ number is dependent on the package assembly and the amount of copper used to solder the package pins to the PCB .

## OUTLINE DIMENSIONS



Figure 28. 6-Ball Wafer Level Chip Scale Package [WLCSP] (CB-6-2)
Dimensions shown in millimeters

ORDERING GUIDE

| Model $^{1}$ | Temperature Range | Package Description | Package Option | Branding |
| :--- | :--- | :--- | :--- | :--- |
| ADP1290ACBZ-R7 | $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ | 6-Ball Wafer Level Chip Scale Package [WLCSP] <br> Avaluation Board | $\mathrm{CB}-6-2$ | CL |

${ }^{1} Z=$ RoHS Compliant Part.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

