Data Sheet

FEATURES

4 A continuous output current

$43 \mathrm{~m} \Omega$ and $29 \mathrm{~m} \Omega$ integrated FET
$\pm 1.5 \%$ output accuracy
Input voltage range: 2.7 V to 6.5 V
Output voltage: 0.6 V to V_{IN}
Switching frequency
Fixed frequency: 600 kHz or $\mathbf{1 . 2 ~ M H z}$
Adjustable frequency: 500 kHz to 1.4 MHz
Synchronizable from $\mathbf{5 0 0} \mathbf{~ k H z}$ to 1.4 MHz
Selectable synchronize phase shift: $\mathbf{0}^{\circ}$ or 180°
Current mode architecture
Precision enable input
Power-good output
Voltage tracking input
Integrated soft start
Internal compensation
Starts up into a precharged output
UVLO, OVP, OCP, and thermal shutdown
Available in 16-lead, $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP package
Supported by ADIsimPower ${ }^{\text {rm }}$ design tool

APPLICATIONS

Point-of-load conversion
Communications and networking equipment
Industrial and instrumentation
Consumer electronics

GENERAL DESCRIPTION

The ADP2164 is a 4 A, synchronous, step-down, dc-to-dc regulator in a compact $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP package. The regulator uses a current mode, constant frequency pulse-width modulation (PWM) control scheme for excellent stability and transient response.

The input voltage range of the ADP2164 is 2.7 V to 6.5 V . The output voltage of the ADP2164 is adjustable from 0.6 V to the input voltage (V_{IN}). The ADP2164 is also available in six preset output voltage options: $3.3 \mathrm{~V}, 2.5 \mathrm{~V}, 1.8 \mathrm{~V}, 1.5 \mathrm{~V}, 1.2 \mathrm{~V}$, and 1.0 V .

Figure 2. Efficiency vs. Output Current

The ADP2164 integrates a pair of low on-resistance P-channel and N -channel internal MOSFETs to maximize efficiency and minimize external component count. The 100% duty cycle operation allows low dropout voltage at 4 A output current.

The high, 1.2 MHz PWM switching frequency allows the use of small external components, and the SYNC input enables multiple ICs to synchronize out of phase to reduce ripple and eliminate beat frequencies.
Other key features of the ADP2164 include undervoltage lockout (UVLO), integrated soft start to limit inrush current at startup, overvoltage protection (OVP), overcurrent protection (OCP), and thermal shutdown.

TABLE OF CONTENTS

Features 1
Applications. 1
Typical Applications Circuit 1
General Description 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 5
Thermal Resistance 5
ESD Caution 5
Pin Configuration and Function Descriptions 6
Typical Performance Characteristics 7
Functional Block Diagram 13
Theory of Operation 14
Control Scheme 14
Slope Compensation 14
Precision Enable/Shutdown 14
Integrated Soft Start 14
REVISION HISTORY
6/2018—Rev. B to Rev. C
Updated Outline Dimensions 19
Changes to Ordering Guide 19
8/2017-Rev. A to Rev. BChanged CP-16-26 to CP-16-177 ..Throughout
Updated Outline Dimensions 19
Changes to Ordering Guide 19
Oscillator and Synchronization 14
Power Good 15
Current Limit and Short-Circuit Protection 15
Overvoltage Protection (OVP) 15
Undervoltage Lockout (UVLO) 15
Thermal Shutdown 15
Applications Information 16
ADIsimPower Design Tool 16
Output Voltage Selection 16
Inductor Selection 16
Output Capacitor Selection. 16
Input Capacitor Selection. 17
Voltage Tracking 17
Applications Circuits. 18
Outline Dimensions 19
Ordering Guide 19
6/2012—Rev. 0 to Rev. A
Changes to Features Section 1
Added ADIsimPower Design Tool Section 16

SPECIFICATIONS

VIN $=$ PVIN $=3.3 \mathrm{~V}$, EN high, SYNC high, $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.
Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
VIN AND PVIN PINS VIN Voltage Range PVIN Voltage Range Quiescent Current Shutdown Current VIN Undervoltage Lockout Threshold	VIN PVIN Ivin ISHDN UVLO	No switching $\mathrm{VIN}=\mathrm{PVIN}=6.5 \mathrm{~V}, \mathrm{EN}=\mathrm{GND}$ VIN rising VIN falling	2.7 2.7 2.4	$\begin{aligned} & 895 \\ & 9 \\ & 2.6 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \\ & 1100 \\ & 12 \\ & 2.7 \end{aligned}$	
OUTPUT CHARACTERISTICS Load Regulation Line Regulation		Specified by the circuit in Figure 42 $\begin{aligned} & \mathrm{I}_{\mathrm{o}}=0 \mathrm{~A} \text { to } 4 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{o}}=2 \mathrm{~A} \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$		$\begin{aligned} & \% / \mathrm{A} \\ & \% / \mathrm{V} \end{aligned}$
FB PIN FB Regulation Voltage FB Bias Current	$\begin{aligned} & V_{\text {FB }} \\ & \mathrm{I}_{\text {FB }} \end{aligned}$	$\mathrm{T}_{j}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	0.591	$\begin{aligned} & 0.6 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.609 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mu \mathrm{~A} \end{aligned}$
SW PIN High-Side On Resistance ${ }^{1}$ Low-Side On Resistance ${ }^{1}$ SW Peak Current Limit SW Maximum Duty Cycle SW Minimum On Time ${ }^{2}$		$\begin{aligned} & \mathrm{VIN}=\mathrm{PVIN}=3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{sw}}=500 \mathrm{~mA} \\ & \mathrm{VIN}=\mathrm{PVIN}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{sw}}=500 \mathrm{~mA} \\ & \mathrm{VIN}=\mathrm{PVIN}=3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{sw}}=500 \mathrm{~mA} \\ & \mathrm{VIN}=\mathrm{PVIN}=5 \mathrm{~V}, \mathrm{Isw}_{\mathrm{sw}}=500 \mathrm{~mA} \\ & \text { High-side switch, } \mathrm{PVIN}=3.3 \mathrm{~V} \\ & \text { Full frequency } \\ & \text { Full frequency } \end{aligned}$	$\begin{aligned} & 35 \\ & 30 \\ & 24 \\ & 20 \\ & 5 \end{aligned}$	$\begin{aligned} & 52 \\ & 43 \\ & 32 \\ & 29 \\ & 6.2 \\ & 100 \end{aligned}$	$\begin{aligned} & 70 \\ & 55 \\ & 40 \\ & 35 \\ & 7.4 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{m} \Omega \\ & \mathrm{~m} \Omega \\ & \mathrm{~m} \Omega \\ & \mathrm{~m} \Omega \\ & \mathrm{~A} \\ & \% \\ & \mathrm{~ns} \end{aligned}$
TRK PIN TRK Input Voltage Range TRK to FB Offset Voltage TRK Input Bias Current		TRK $=0 \mathrm{mV}$ to 500 mV	$\begin{aligned} & 0 \\ & -15 \end{aligned}$		$\begin{array}{r} 600 \\ +15 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{nA} \end{aligned}$
FREQUENCY Switching Frequency Switching Frequency Range RT Pin Input High Voltage RT Pin Input Low Voltage	fs	$\begin{aligned} & \mathrm{RT}=\mathrm{VIN} \\ & \mathrm{RT}=\mathrm{GND} \\ & \mathrm{RT}=91 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 1.08 \\ & 540 \\ & 480 \\ & 500 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 1.32 \\ & 660 \\ & 720 \\ & 1400 \\ & \\ & 0.45 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{kHz} \\ & \mathrm{kHz} \\ & \mathrm{kHz} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \hline \end{aligned}$
SYNC PIN Synchronization Range Minimum Pulse Width Minimum Off Time Input High Voltage Input Low Voltage			$\begin{aligned} & 0.5 \\ & 100 \\ & 100 \\ & 1.2 \end{aligned}$		1.4 0.4	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
PGOOD PIN Power-Good Range Power-Good Deglitch Time Power-Good Leakage Current Power-Good Output Low Voltage		FB rising threshold FB rising hysteresis FB falling threshold FB falling hysteresis From FB to PGOOD $\begin{aligned} & V_{\text {PGOOD }}=5 \mathrm{~V} \\ & \mathrm{I}_{\text {PGOOD }}=1 \mathrm{~mA} \end{aligned}$	105 85	$\begin{aligned} & 110 \\ & 2.5 \\ & 90 \\ & 2.5 \\ & 16 \\ & \\ & 0.1 \\ & 170 \end{aligned}$	115 95 1 220	\% \% \% \% Clock cycles $\mu \mathrm{A}$ mV

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
INTEGRATED SOFT START Soft Start Time		All switching frequencies		2048		Clock cycles
EN PIN EN Input Rising Threshold EN Input Hysteresis EN Pull-Down Resistor			1.12	$\begin{aligned} & 1.2 \\ & 100 \\ & 1 \end{aligned}$	1.28	V mV $\mathrm{M} \Omega$
THERMAL SHUTDOWN Thermal Shutdown Threshold Thermal Shutdown Hysteresis		TJincreasing		$\begin{aligned} & 140 \\ & 15 \end{aligned}$		$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

${ }^{1}$ Pin-to-pin measurements.
${ }^{2}$ Guaranteed by design.

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
PVIN, VIN, SW	-0.3 V to +7 V
FB, SYNC, TRK, RT, EN, PGOOD	-0.3 V to +7 V
PGND to GND	-0.3 V to +0.3 V
Operating Junction Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering Conditions	JEDEC J-STD-020

THERMAL RESISTANCE

θ_{JA} is measured using natural convection on a JEDEC 4-layer board. The exposed pad is soldered to the printed circuit board with thermal vias.

Table 3. Thermal Resistance

Package Type	θ_{JA}	Unit
16-Lead LFCSP	38.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 3. Pin Configuration

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	SYNC	Synchronization Input. To synchronize the switching frequency to an external clock, connect this pin to an external clock with a frequency of 500 kHz to 1.4 MHz (see the Oscillator and Synchronization section for more information).
2	RT	Frequency Setting. To select a switching frequency of 600 kHz , connect this pin to GND; to select a switching frequency of 1.2 MHz , connect this pin to VIN. To program the frequency from 500 kHz to 1.4 MHz , connect a resistor from this pin to GND (see the Oscillator and Synchronization section for more information).
3	TRK	Tracking Input. To track a master voltage, connect the TRK pin to a voltage divider from the master voltage. If the tracking function is not used, connect the TRK pin to VIN. For more information, see the Voltage Tracking section.
4	FB	Feedback Voltage Sense Input. Connect this pin to a resistor divider from Vour. For the preset output version, connect this pin directly to Vout.
5	GND	Analog Ground. Connect to the ground plane.
6,7,8	PGND	Power Ground. Connect to the ground plane and to the output return side of the output capacitor.
9, 10, 11	SW	Switch Node Output. Connect to the output inductor.
12, 13	PVIN	Power Input Pin. Connect this pin to the input power source. Connect a bypass capacitor between this pin and PGND.
14	VIN	Bias Voltage Input Pin. Connect a bypass capacitor between this pin and GND; connect a small (10Ω) resistor between this pin and PVIN.
15	EN	Precision Enable Pin. The external resistor divider can be used to set the turn-on threshold. To enable the part automatically, connect the EN pin to VIN. This pin has a $1 \mathrm{M} \Omega$ pull-down resistor to GND.
16	PGOOD	Power-Good Output (Open Drain). Connect this pin to a resistor from any pull-up voltage lower than 6.5 V .
17 (EPAD)	Exposed Pad	The exposed pad should be soldered to an external ground plane under the IC for thermal dissipation.

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {out }}=1.2 \mathrm{~V}, \mathrm{~L}=1 \mu \mathrm{H}, \mathrm{C}_{\text {IN }}=47 \mu \mathrm{~F}$, Cout $=100 \mu \mathrm{~F}$, unless otherwise noted.

Figure 4. Efficiency vs. Output Current, $V_{I N}=3.3 \mathrm{~V}, f_{S}=600 \mathrm{kHz}$

Figure 5. Efficiency vs. Output Current, $V_{I N}=3.3 \mathrm{~V}, f_{s}=1.2 \mathrm{MHz}$

Figure 6. Quiescent Current vs. VIN (No Switching)

Figure 7. Efficiency vs. Output Current, $V_{I N}=5 \mathrm{~V}, f_{S}=600 \mathrm{kHz}$

Figure 8. Efficiency vs. Output Current, $V_{I N}=5 \mathrm{~V}, f_{S}=1.2 \mathrm{MHz}$

Figure 9. Shutdown Current vs. VIN

Figure 10. Feedback Voltage vs. Temperature, $V_{I N}=3.3 \mathrm{~V}$

Figure 11. PFET Resistor vs. VIN (Pin-to-Pin Measurements)

Figure 12. Switching Frequency vs. $V_{I_{N}}, f_{S}=1.2 \mathrm{MHz}(R T=V I N)$

Figure 13. EN Threshold vs. Temperature

Figure 14. NFET Resistor vs. VIN (Pin-to-Pin Measurements)

Figure 15. Switching Frequency vs. $V_{I N}, f_{S}=600 \mathrm{kHz}(R T=G N D)$

Figure 16. Switching Frequency vs. $V_{i N}, f_{S}=600 \mathrm{kHz}(R T=91 \mathrm{k} \Omega)$

Figure 17. Peak Current Limit vs. Temperature, $V_{I N}=3.3 \mathrm{~V}$

Figure 18. Soft Start with Full Load, $V_{i N}=5 \mathrm{~V}, V_{\text {out }}=1.2 \mathrm{~V}, f_{S}=1.2 \mathrm{MHz}$

Figure 19. UVLO Threshold vs. Temperature, $V_{I N}=3.3 \mathrm{~V}$

Figure 20. Peak Current Limit vs. $V_{I N}, T_{J}=25^{\circ} \mathrm{C}$

Figure 21. Soft Start with Precharged Output Voltage, $V_{I N}=5 \mathrm{~V}, f_{S}=1.2 \mathrm{MHz}$

Figure 22. Load Transient, 0.5 A to 3.5 A Load Step,
$V_{\text {IN }}=5 \mathrm{~V}, V_{\text {OUT }}=1.2 \mathrm{~V}, f_{5}=1.2 \mathrm{MHz}$

Figure 23. ADP2164 Synchronized to 1 MHz, in Phase

Figure 24. Output Short

Figure 25. Load Transient, 0.5 A to 3.5 A Load Step, $V_{\text {IN }}=5 \mathrm{~V}, V_{\text {out }}=1.2 \mathrm{~V}, f_{S}=600 \mathrm{kHz}$

Figure 26. ADP2164 Synchronized to $1 \mathrm{MHz}, 180^{\circ}$ out of Phase

Figure 27. Output Short Recovery

Figure 28. Tracking Function

Figure 29. Bode Plot at $V_{I N}=5 \mathrm{~V}, V_{\text {OUt }}=1.0 \mathrm{~V}, I_{O}=4 \mathrm{~A}, f_{S}=1.2 \mathrm{MHz}$, $L=0.68 \mu H$, Cout $=2 \times 100 \mu \mathrm{~F}$

Figure 30. Bode Plot at $V_{I N}=5 \mathrm{~V}, V_{\text {out }}=1.5 \mathrm{~V}, I_{o}=4 \mathrm{~A}, f_{s}=1.2 \mathrm{MHz}$, $L=1 \mu H, C_{\text {out }}=47 \mu F+100 \mu F$

Figure 31. Steady Waveform, $V_{I N}=5 \mathrm{~V}, V_{\text {OUT }}=1.2 \mathrm{~V}, f_{5}=1.2 \mathrm{MHz}$

Figure 32. Bode Plot at $V_{I N}=5 \mathrm{~V}, V_{\text {Out }}=1.2 \mathrm{~V}, I_{O}=4 \mathrm{~A}, f_{S}=1.2 \mathrm{MHz}$, $L=0.68 \mu H, C_{\text {OUt }}=47 \mu F+100 \mu F$

Figure 33. Bode Plot at $V_{I N}=5 \mathrm{~V}, V_{\text {OUT }}=1.8 \mathrm{~V}, I_{O}=4 \mathrm{~A}, f_{S}=1.2 \mathrm{MHz}$, $L=1 \mu H, C_{\text {OUt }}=100 \mu \mathrm{~F}$

Figure 34. Bode Plot at $V_{I N}=5 \mathrm{~V}, V_{\text {out }}=2.5 \mathrm{~V}, I_{O}=4 \mathrm{~A}, f_{S}=1.2 \mathrm{MHz}$, $L=1 \mu H, C_{\text {OUT }}=47 \mu \mathrm{~F}$

Figure 35. Bode Plot at $V_{I N}=5 \mathrm{~V}, V_{\text {out }}=3.3 \mathrm{~V}, I_{o}=4 \mathrm{~A}, f_{s}=1.2 \mathrm{MHz}$, $L=1 \mu H, C_{\text {out }}=47 \mu \mathrm{~F}$

FUNCTIONAL BLOCK DIAGRAM

THEORY OF OPERATION

The ADP2164 is a step-down dc-to-dc regulator that uses a fixed-frequency, peak current mode architecture with an integrated high-side switch and low-side synchronous rectifier. The high switching frequency and tiny, 16-lead, $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP package provide a small, step-down dc-to-dc regulator solution. The integrated high-side switch (P-channel MOSFET) and synchronous rectifier (N -channel MOSFET) yield high efficiency.
The ADP2164 operates with an input voltage from 2.7 V to 6.5 V and regulates the output voltage down to 0.6 V . The ADP2164 is also available with preset output voltage options of $3.3 \mathrm{~V}, 2.5 \mathrm{~V}$, $1.8 \mathrm{~V}, 1.5 \mathrm{~V}, 1.2 \mathrm{~V}$, and 1.0 V .

CONTROL SCHEME

The ADP2164 uses a fixed-frequency, peak current mode PWM control architecture. At the start of each oscillator cycle, the P-channel MOSFET switch is turned on, placing a positive voltage across the inductor. Current in the inductor increases until the current sense signal crosses the peak inductor current level, turns off the P-channel MOSFET switch, and turns on the N -channel MOSFET synchronous rectifier. This action places a negative voltage across the inductor, causing the inductor current to decrease. The synchronous rectifier stays on for the rest of the cycle.
The peak inductor current level is set by the compensation (COMP) voltage. The COMP voltage is the output of a transconductance error amplifier that compares the feedback voltage with an internal 0.6 V reference (see Figure 36).

SLOPE COMPENSATION

To prevent subharmonic oscillations, slope compensation stabilizes the internal current control loop of the ADP2164 when the part operates at or beyond a 50% duty cycle. Slope compensation is implemented by summing an artificial voltage ramp with the current sense signal during the on time of the P-channel MOSFET switch. This voltage ramp depends on the output voltage. When operating at high output voltages, slope compensation increases. The slope compensation ramp value determines the minimum inductor value that can be used to prevent subharmonic oscillations.

PRECISION ENABLE/SHUTDOWN

The EN pin is a precision analog input that enables the device when the voltage exceeds 1.2 V (typical); this pin has 100 mV hysteresis. When the enable voltage falls below 1.1 V (typical), the part turns off. To force the ADP2164 to start automatically when input power is applied, connect the EN pin to the VIN pin.
When the ADP2164 is shut down, the soft start capacitor is discharged. This causes a new soft start cycle to begin when the part is reenabled.
An internal pull-down resistor ($1 \mathrm{M} \Omega$) prevents accidental enabling of the part if the EN input is left floating.

INTEGRATED SOFT START

The ADP2164 has integrated soft start circuitry to limit the output voltage rise time and reduce inrush current at startup. The soft start time is set at 2048 clock cycles.
If the output voltage is precharged before the part is turned on, the ADP2164 prevents a reverse inductor current (which would discharge the output capacitor) until the soft start voltage exceeds the voltage on the FB pin.

OSCILLATOR AND SYNCHRONIZATION

The ADP2164 switching frequency is controlled by the RT pin. If the RT pin is connected to GND, the switching frequency is set to 600 kHz . If the RT pin is connected to VIN, the switching frequency is set to 1.2 MHz .
Connecting a resistor from RT to GND allows programming of the switching frequency from 500 kHz to 1.4 MHz . Use the following equation to set the switching frequency:

$$
R T(\mathrm{k} \Omega)=\frac{54,000}{f_{S}(\mathrm{kHz})}
$$

Figure 37 shows the typical relationship between the switching frequency and the RT resistor.

Figure 37. Switching Frequency vs. RT Resistor
To synchronize the ADP2164, drive an external clock at the SYNC pin. The frequency of the external clock can be in the range of 500 kHz to 1.4 MHz .
When the SYNC pin is driven by an external clock, the user can configure the switching frequency to be in phase with the external clock or 180° out of phase with the external clock, as follows:

- If the RT pin is connected to GND or to a resistor, the switching frequency is in phase with the external clock.
- If the RT pin is connected to VIN, the switching frequency is 180° out of phase with the external clock.

POWER GOOD

PGOOD is an active high, open-drain output and requires a resistor to pull it up to the logic supply voltage. PGOOD high indicates that the voltage on the FB pin (and, therefore, the output voltage) is within 10% of the desired value. PGOOD low indicates the opposite. There is a 16 -cycle waiting period after the FB voltage is detected as being out of bounds. If FB returns to within the $\pm 10 \%$ range, it is ignored by the PGOOD circuitry.

CURRENT LIMIT AND SHORT-CIRCUIT PROTECTION

The ADP2164 has a peak current limit protection circuit to prevent current runaway. The peak current limit is 6.2 A . When the inductor current reaches the peak current limit, the high-side MOSFET turns off and the low-side MOSFET turns on until the next cycle begins.

The overcurrent counter is incremented by 1 at each peak current limit event. If the overcurrent counter exceeds 10 , the part enters hiccup mode, and the high-side FET and low-side FET are both turned off. The part remains in this mode for 4096 clock cycles and then attempts to restart using soft start. If the current limit fault has cleared, the part resumes normal operation. If the current limit fault has not cleared, the part reenters hiccup mode after first counting 10 current limit violations.

OVERVOLTAGE PROTECTION (OVP)

Overvoltage protection (OVP) circuitry is integrated in the ADP2164. The output voltage is continuously monitored by a comparator through the FB pin, which is at 0.6 V (typical) under normal operation. The comparator is activated when the FB voltage exceeds 0.66 V (typical), thus indicating an output overvoltage condition. If the voltage remains above the OVP threshold for 16 clock cycles, the high-side MOSFET turns off and the low-side MOSFET turns on until the current through it reaches the -1.3 A current limit. Both MOSFETs remain in the off state until FB falls below 0.54 V (typical), after which the part restarts. The behavior of PGOOD under this condition is described in the Power Good section.

UNDERVOLTAGE LOCKOUT (UVLO)

Undervoltage lockout (UVLO) circuitry is integrated in the ADP2164. If the input voltage falls below 2.5 V , the ADP2164 shuts down, and both the power switch and the synchronous rectifier turn off. When the voltage rises above 2.6 V again, the soft start is initiated, and the part is enabled.

THERMAL SHUTDOWN

If the ADP2164 junction temperature rises above $140^{\circ} \mathrm{C}$, the thermal shutdown circuit turns off the regulator. Extreme junction temperatures can be the result of high current operation, poor circuit board design, and/or high ambient temperature. When thermal shutdown occurs, a $15^{\circ} \mathrm{C}$ hysteresis ensures that the ADP2164 does not return to operation until the on-chip temperature falls below $125^{\circ} \mathrm{C}$. Soft start is initiated when the part comes out of thermal shutdown.

APPLICATIONS INFORMATION
 ADISIMPOWER DESIGN TOOL

The ADP2164 is supported by ADIsimPower design tool set. ADIsimPower is a collection of tools that produce complete power designs optimized for a specific design goal. The tools enable the user to generate a full schematic, bill of materials, and calculate performance in minutes. ADIsimPower can optimize designs for cost, area, efficiency, and parts count while taking into consideration the operating conditions and limitations of the IC and all real external components. For more information about ADIsimPower design tools, refer to www.analog.com/ADIsimPower. The tool set is available from this website, and users can also request an unpopulated board through the tool.
The typical application circuit for the ADP2164 is shown in Figure 38.

Figure 38. Typical Application Circuit

OUTPUT VOLTAGE SELECTION

The output voltage of the adjustable version of the ADP2164 is set by an external resistive voltage divider using the following equation:

$$
V_{\text {OUT }}=0.6 \times\left(1+\frac{R_{T O P}}{R_{\text {BOT }}}\right)
$$

To limit output voltage accuracy degradation due to FB bias current ($0.1 \mu \mathrm{~A}$ maximum) to less than 0.5% (maximum), ensure that $\mathrm{R}_{\text {вот }}$ is less than $30 \mathrm{k} \Omega$.

INDUCTOR SELECTION

The inductor value is determined by the operating frequency, input voltage, output voltage, and ripple current. A small inductor value provides larger inductor current ripple and fast transient response but degrades efficiency; a large inductor value provides small inductor current ripple and good efficiency but slows transient response. For a reasonable trade-off between transient response and efficiency, the inductor current ripple, $\Delta \mathrm{I}_{\mathrm{L}}$, is typically set to one-third the maximum load current. The inductor value is calculated using the following equation:

$$
L=\frac{\left(V_{I N}-V_{\text {OUT }}\right) \times D}{\Delta I_{L} \times f_{S}}
$$

where:
$V_{I N}$ is the input voltage.
Vout is the output voltage.
ΔI_{L} is the inductor current ripple.
f_{s} is the switching frequency.
D is the duty cycle ($\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {IN }}$).
The ADP2164 uses slope compensation in the current control loop to prevent subharmonic oscillations when the duty cycle is larger than 50%. The internal slope compensation limits the minimum inductor value.

The negative current limit (-1.3 A) also limits the minimum inductor value. The inductor current ripple ($\Delta \mathrm{I}_{\mathrm{L}}$) calculated by the selected inductor should not exceed 2.6 A .
The peak inductor current should be kept below the peak current limit threshold and is calculated using the following equation:

$$
I_{P E A K}=I_{O}+\frac{\Delta I_{L}}{2}
$$

Ensure that the rms current of the selected inductor is greater than the maximum load current and that its saturation current is greater than the peak current limit of the converter.

OUTPUT CAPACITOR SELECTION

The output capacitor value is determined by the output voltage ripple, load step transient, and loop stability. The output ripple is determined by the ESR and the capacitance.

$$
\Delta V_{O U T}=\Delta I_{L} \times\left(E S R+\frac{1}{8 \times C_{O U T} \times f_{S}}\right)
$$

The load step transient response depends on the inductor, the output capacitor, and the current control loop.
The ADP2164 has integrated loop compensation for simple power design. Table 5 and Table 6 show the recommended values for inductors and capacitors for the ADP2164 based on the input and output voltages for the part. X5R or X7R dielectric ceramic capacitors are highly recommended.

Table 5. Recommended L and Cout Values at $f_{S}=1.2 \mathrm{MHz}$

$\mathbf{V}_{\text {IN }}(\mathbf{V})$	$\mathbf{V}_{\text {out }}(\mathbf{V})$	$\mathbf{L}(\boldsymbol{\mu} \mathbf{H})$	$\mathbf{C}_{\text {out }}(\boldsymbol{\mu} \mathbf{F})$
3.3	1.0	0.8	$100+100$
3.3	1.2	0.8	$100+47$
3.3	1.5	1	$100+47$
3.3	1.8	1	100
3.3	2.5	1	47
5	1.0	0.8	$100+100$
5	1.2	0.8	$100+47$
5	1.5	1	$100+47$
5	1.8	1	100
5	2.5	1	47
5	3.3	1	47

Table 6. Recommended L and Cout Values at $f_{s}=\mathbf{6 0 0} \mathbf{~ k H z}$

$\mathbf{V}_{\text {IN }}$ (V)	Vout (V)	$\mathbf{L}(\boldsymbol{\mu H})$	$\mathbf{C o u t ~}_{\text {ouf }} \boldsymbol{\mu}$)
3.3	1.0	1	$100+100$
3.3	1.2	1	$100+100$
3.3	1.5	1	$100+47$
3.3	1.8	1	$100+47$
3.3	2.5	1	100
5	1.0	1	$100+100$
5	1.2	1.5	$100+100$
5	1.5	1.5	$100+47$
5	1.8	1.5	$100+47$
5	2.5	1.5	100
5	3.3	1.5	100

Higher or lower values of inductors and output capacitors can be used in the regulator, but system stability and load transient performance must be verified.

Table 7 and Table 8 list some recommended inductors and capacitors for the ADP2164.

Table 7. Recommended Inductors

Manufacturer	Part No.
Coilcraft $^{\ominus}$	MSS1038, MSS1048, MSS1260
Sumida	CDRH103R, CDRH104R, CDRH105R

Table 8. Recommended Capacitors

Manufacturer	Part No.	Description
Murata	GRM32ER60J107ME20	$100 \mu \mathrm{~F}, 6.3 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}, 1210$
Murata	GRM32ER60J476ME20	$47 \mu \mathrm{~F}, 6.3 \mathrm{~V}, \mathrm{X5R}, 1210$
TDK	C3225X5ROJ107M	$100 \mu \mathrm{~F}, 6.3 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}, 1210$
TDK	C3225X5R0J476M	$47 \mu \mathrm{~F}, 6.3 \mathrm{~V}, \mathrm{X5R}, 1210$

INPUT CAPACITOR SELECTION

The input capacitor reduces the input voltage ripple caused by the switch current on PVIN. Place the input capacitor as close as possible to the PVIN pins. A $22 \mu \mathrm{~F}$ or $47 \mu \mathrm{~F}$ ceramic capacitor is recommended. The rms current rating of the input capacitor should be larger than the value calculated using the following equation:

$$
I_{R M S}=I_{O} \times \sqrt{D \times(1-D)}
$$

where D is the duty cycle.

VOLTAGE TRACKING

The ADP2164 includes a tracking feature that allows the ADP2164 output (slave voltage) to be configured to track an external voltage (master voltage), as shown in Figure 39.

Figure 39. Voltage Tracking

Coincident Tracking

A common requirement is coincident tracking, as shown in Figure 40. Coincident tracking limits the slave output voltage to the same value as the master voltage until the slave output voltage reaches regulation. Connect the TRK pin to a resistor divider driven from the master voltage, as shown in Figure 39. For coincident tracking, set $\mathrm{R}_{\mathrm{TRKT}}=\mathrm{R}_{\mathrm{TOP}}$ and $\mathrm{R}_{\mathrm{TRKB}}=\mathrm{R}_{\text {BOT }}$.

Figure 40. Coincident Tracking

Ratiometric Tracking

Ratiometric tracking is shown in Figure 41. The slave output is limited to a fraction of the master voltage. In this application, the slave and master voltages reach their final values at the same time.

Figure 41. Ratiometric Tracking
The ratio of the slave output voltage to the master voltage is a function of the two dividers.

$$
\frac{V_{\text {SLAVE }}}{V_{\text {MASTER }}}=\frac{1+\frac{R_{\text {TOP }}}{R_{\text {BOT }}}}{1+\frac{R_{\text {TRKT }}}{R_{\text {TRKB }}}}
$$

APPLICATIONS CIRCUITS

Figure 42.1.2 V, 4 A, 1.2 MHz Step-Down Regulator

Figure 43. 1.8 V, 4 A Step-Down Regulator, Synchronized to 1 MHz , in Phase with the External Clock

Figure 44. Fixed 1.2 V, 4A, 1.2 MHz Step-Down Regulator

Figure 45. 3.3 V, 4A, 1 MHz Step-Down Regulator

Figure 46. 1.5 V, 4 A Step-Down Regulator, Synchronized to 1 MHz, 180° out of Phase with the External Clock

Figure 47. 3.3 V, 4 A, 1.2 MHz Step-Down Regulator, Tracking Mode

OUTLINE DIMENSIONS

FOR PROPER CONNECTION OF FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AN FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET.

COMPLIANT TO JEDEC STANDARDS MO-220-WGGC-3.
Figure 48. 16-Lead Lead Frame Chip Scale Package [LFCSP]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body and 0.75 mm Package Height
(CP-16-26)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Output Voltage	Package Description	Package Option
ADP2164ACPZ-R7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Adjustable	16 -Lead LFCSP	CP-16-26
ADP2164ACPZ-1.0-R7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	1.0 V	16 -Lead LFCSP	CP-16-26
ADP2164ACPZ-1.2-R7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	1.2 V	16 -Lead LFCSP	CP-16-26
ADP2164ACPZ-1.5-R7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	1.5 V	16 -Lead LFCSP	$\mathrm{CP}-16-26$
ADP2164ACPZ-1.8-R7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	1.8 V	16 -Lead LFCSP	$\mathrm{CP}-16-26$
ADP2164ACPZ-2.5-R7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	2.5 V	16 -Lead LFCSP	$\mathrm{CP}-16-26$
ADP2164ACPZ-3.3-R7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	3.3 V	16-Lead LFCSP	CP-16-26
ADP2164-EVALZ		Evaluation Board		

[^0]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

[^0]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

