FEATURES

Continuous output current
ADP2165: 5 A
ADP2166: 6 A
Integrated MOSFET
High-side on resistance: $19 \mathrm{~m} \Omega$
Low-side on resistance: $15 \mathrm{~m} \Omega$
Reference voltage: $0.6 \mathrm{~V} \pm 1 \%$ over temperature range
Input voltage range: 2.7 V to 5.5 V
Current mode architecture
Switching frequency
Fixed frequency: 620 kHz or 1.2 MHz
Adjustable frequency: 250 kHz to 1.4 MHz
Synchronizes to external clock: $\mathbf{2 5 0} \mathbf{~ k H z}$ to $\mathbf{1 . 4} \mathbf{~ M H z}$
Selectable synchronize phase shift: in phase or out of phase
External compensation
Programmable soft start
Startup into a precharged output
Voltage tracking input
Power-good output and precision enable input
Accurate current limit
Available in 24-lead, $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP package
Supported by ADlsimPower ${ }^{\text {rm }}$ design tool

APPLICATIONS

Point of load regulation

Communications and networking

High end consumer
Industrial, instrumentation, and healthcare

GENERAL DESCRIPTION

The ADP2165/ADP2166 are high efficiency, current mode control, step-down dc-to-dc regulators with an integrated $19 \mathrm{~m} \Omega$ high-side FET and a $15 \mathrm{~m} \Omega$ synchronous rectified FET. The ADP2165/ADP2166 combine a small size, $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP package with an accurate current limit, resulting in a smaller inductor size and a high power density, point of load solution.
Key features include precision enable, power-good monitor, and output voltage tracking to facilitate robust sequencing. The switching frequency can be programmed from 250 kHz to 1.4 MHz , or it can be fixed at 620 kHz or 1.2 MHz . The synchronization function allows the switching frequency to synchronize to an external clock, minimizing the electromagnetic interference (EMI) of the system.

Figure 1.
The ADP2165/ADP2166 are designed to be extremely flexible with the addition of a minimal amount of external components to program soft start and control loop compensation.
The ADP2165/ADP2166 are supplied from an input voltage of 2.7 V to 5.5 V. Output voltage options include $3.3 \mathrm{~V}, 2.5 \mathrm{~V}, 1.8 \mathrm{~V}$, $1.5 \mathrm{~V}, 1.2 \mathrm{~V}$, or 1.0 V fixed outputs and adjustable options capable of supporting an output voltage range from 0.6 V to 90% of the input voltage. Protection features include undervoltage lockout (UVLO), overvoltage protection (OVP), overcurrent protection (OCP), and thermal shutdown (TSD) for robust performance.
The ADP2165/ADP2166 operate over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ junction temperature range and are available in a 24 -lead LFCSP package.

Figure 2. Efficiency vs. Output Current

[^0]
ADP2165/ADP2166

TABLE OF CONTENTS

Features 1
Applications 1
General Description 1
Typical Application Circuit 1
Revision History 2
Functional Block Diagram 3
Specifications 4
Absolute Maximum Ratings 6
Thermal Resistance 6
ESD Caution 6
Pin Configuration and Function Descriptions 7
Typical Performance Characteristics 8
Theory of Operation 12
Control Scheme 12
PWM Mode 12
Enable/Shutdown 12
Internal Regulator (VREG) 12
Bootstrap Circuitry 12
Oscillator and Synchronization 12
Soft Start 13
Tracking 13
Power-Good (PGOOD) 13
Peak Current-Limit and Short-Circuit Protection 13
Overvoltage Protection 13
REVISION HISTORY
8/2017—Rev. A to Rev. B
Changed LFCSP_WQ to LFCSP . .Throughout
Updated Outline Dimensions 23
Changes to Ordering Guide 23
9/2016-Rev. 0 to Rev. A
Change to Compensation Components Section 18
Change to Table 8 19
Undervoltage Lockout 13
Thermal Shutdown 13
Applications Information 14
ADIsimPower Design Tool 14
Input Capacitor Selection. 14
Output Voltage Setting 14
Voltage Conversion Limitations 14
Inductor Selection 15
Output Capacitor Selection. 15
Compensation Design 16
Design Example 17
Output Voltage Setting 17
Frequency Setting 17
Inductor Selection 17
Output Capacitor Selection. 18
Compensation Components 18
Soft Start Time Program 18
Input Capacitor Selection 18
Recommended External Components 19
Printed Circuit Board Layout Recommendations 20
Reference Designs 21
Outline Dimensions 23
Ordering Guide 23

8/2014—Revision 0: Initial Version

FUNCTIONAL BLOCK DIAGRAM

ADP2165/ADP2166

SPECIFICATIONS

$V_{\text {PVIN }}=\mathrm{V}_{\text {AVIN }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for minimum/maximum specifications, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ for typical specifications, unless otherwise noted.

Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
PVIN AND AVIN $V_{\text {puin }}$ Voltage Range $V_{\text {Avin }}$ Voltage Range Quiescent Current Shutdown Current Vavin Undervoltage Lockout Threshold	$V_{\text {PVIN }}$ $V_{\text {AVIN }}$ IQ Ishon UVLO	No switching, $\mathrm{f}_{\mathrm{sw}}=600 \mathrm{kHz}$ $\mathrm{EN}=0 \mathrm{~V}$ Vavin rising Vavin falling	2.7 2.7 2.35	$\begin{aligned} & 2 \\ & 25 \\ & 2.6 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \\ & 10 \\ & 150 \\ & 2.7 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
FB FB Regulation Voltage Fixed Output Version FB Bias Current	$\mathrm{V}_{\text {Fb }}$ Vout Ifb	$\mathrm{V}_{\text {PVIN }}=2.7 \mathrm{~V}$ to 5.5 V	$\begin{aligned} & 0.594 \\ & -1 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.606 \\ & +1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \% \\ & \mu \mathrm{~A} \end{aligned}$
ERROR AMPLIFIER (EA) Transconductance EA Source Current EA Sink Current	g_{m} I Source IsInk		430	$\begin{aligned} & 500 \\ & 75 \\ & 85 \end{aligned}$	570	$\mu \mathrm{S}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
INTERNAL REGULATOR (VREG) VREG Voltage Dropout Voltage Regulator Current Limit		$\mathrm{I}_{\text {VREG }}=10 \mathrm{~mA}$	3.1	$\begin{aligned} & 3.3 \\ & 140 \\ & 50 \end{aligned}$	3.5	V mV mA
SW High-Side On Resistance ${ }^{1}$ Low-Side On Resistance ${ }^{1}$ High-Side Peak Current Limit Low-Side Negative Current Limit SW Minimum Off Time ${ }^{2}$ SW Minimum On Time ${ }^{2}$	toff_min ton_min	$\begin{aligned} & \mathrm{V}_{\text {BST }}-\mathrm{V}_{\mathrm{sw}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\text {BST }}-\mathrm{V}_{\mathrm{Sw}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\text {PVII }}=5 \mathrm{~V} \\ & \mathrm{~V}_{\text {PVII }}=3.3 \mathrm{~V} \\ & \text { ADP2165 } \\ & \text { ADP2166 } \end{aligned}$		$\begin{aligned} & 19 \\ & 22 \\ & 15 \\ & 16 \\ & 8 \\ & 9 \\ & 2.4 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 29 \\ & 34 \\ & 23 \\ & 26 \\ & 9.5 \\ & 10.5 \end{aligned}$	$\mathrm{m} \Omega$ $\mathrm{m} \Omega$ $\mathrm{m} \Omega$ $\mathrm{m} \Omega$ A A A ns ns
OSCILLATOR (RT) Switching Frequency Switching Frequency Range	$\mathrm{f}_{\text {sw }}$	RT pin floating RT pin connected to VREG $\mathrm{R}_{\mathrm{RT}}=95.3 \mathrm{k} \Omega$	$\begin{aligned} & 525 \\ & 1.08 \\ & 500 \\ & 250 \end{aligned}$	$\begin{aligned} & 620 \\ & 1.2 \\ & 590 \end{aligned}$	$\begin{aligned} & 715 \\ & 1.32 \\ & 680 \\ & 1400 \end{aligned}$	kHz MHz kHz kHz
SYNC Synchronization Range SYNC Minimum Pulse Width SYNC Minimum Off Time SYNC Input High Voltage SYNC Input Low Voltage			$\begin{aligned} & 250 \\ & 100 \\ & 100 \\ & 1.3 \end{aligned}$		$\begin{aligned} & 1400 \\ & 0.4 \end{aligned}$	kHz ns ns V V
SOFT START (SS) SS Pull-Up Current	Iss		2.7	3.5	4.3	$\mu \mathrm{A}$
TRK TRK Input Voltage Range TRK-to-FB Offset Voltage TRK Input Bias Current		TRK $=300 \mathrm{mV}$ to 500 mV	$\begin{aligned} & 0 \\ & -9 \end{aligned}$		$\begin{aligned} & 600 \\ & +9 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{nA} \end{aligned}$

ADP2165/ADP2166

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
PGOOD						
Power-Good Range		FB rising threshold	107	111	115	\%
		FB rising hysteresis		3		
		FB falling threshold	87	90.5	94.5	\%
		FB falling hysteresis		3		
Power-Good Deglitch Time		From FB to PGOOD		16		Clock cycles
PGOOD Leakage Current		$V_{\text {PGood }}=5 \mathrm{~V}$		0.1	1	$\mu \mathrm{A}$
PGOOD Output Low Voltage		$\mathrm{I}_{\mathrm{PGOOD}}=1 \mathrm{~mA}$		27	45	mV
EN						
EN Threshold			1.12	1.2	1.28	V
EN Hysteresis				100		mV
EN Pull-Down Resistor				1		$\mathrm{M} \Omega$
THERMAL						
Thermal Shutdown Threshold				150		${ }^{\circ} \mathrm{C}$
Thermal Shutdown Hysteresis				25		${ }^{\circ} \mathrm{C}$

${ }^{1}$ Pin-to-pin measurement.
${ }^{2}$ Guaranteed by design.

ADP2165/ADP2166

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
PVIN, AVIN, EN, PGOOD, FB	-0.3 V to +6 V
SW	-1 V to +6 V
BST	$\mathrm{SW}+6 \mathrm{~V}$
SS, COMP, TRK, VREG, SYNC, RT	-0.3 V to +6 V
PGND to GND	-0.3 V to +0.3 V
Operating Junction Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering Conditions	JEDEC J-STD -020

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

$\theta_{\text {IA }}$ is specified for the worst-case conditions, that is, a device soldered in a circuit board (4-layer, JEDEC standard board) for surface-mount packages.

Table 3. Thermal Resistance

Package Type	θ_{JA}	Unit
24-Lead LFCSP	38.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 4. Pin Configuration
Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	SYNC	Synchronization Input. Connect this pin to an external clock between 250 kHz and 1.4 MHz to synchronize the switching frequency to the external clock. RT can be used to program the phase shift when synchronizing the external clock. Frequency Setting. Connect a resistor between the RT and GND pins to program the switching frequency between 250 kHz to 1.4 MHz. When the RT pin is floating, the frequency is set to 620 kHz and when the RT pin is connected to VREG, the frequency is set to 1.2 MHz.
3	RT	Tracking Input. This pin can be used for tracking and sequencing. If the tracking function is not used, connect TRK
to VREG.		

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {PVIN }}=\mathrm{V}_{\text {AVIN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {out }}=1.2 \mathrm{~V}, \mathrm{~L}=1 \mu \mathrm{H}, \mathrm{C}_{\text {IN }}=47 \mu \mathrm{~F}, \mathrm{Cout}=100 \mu \mathrm{~F}, \mathrm{f}_{\mathrm{sw}}=600 \mathrm{kHz}$, unless otherwise noted.

Figure 5. Efficiency ($f_{\text {sw }}=600 \mathrm{kHz}, V_{\text {PVIN }}=3.3 \mathrm{~V}$) vs. Output Current

Figure 6. Efficiency ($\left.f_{S W}=1.2 \mathrm{MHz}, V_{P V I N}=3.3 \mathrm{~V}\right)$ vs. Output Current

Figure 7. Quiescent Current vs. VPVIN (No Switching)

Figure 8. Efficiency $\left(f_{S W}=600 \mathrm{kHz}, V_{P V I N}=5 \mathrm{~V}\right)$ vs. Output Current

Figure 9. Efficiency $\left(f_{S W}=1.2 \mathrm{MHz}, V_{P V I N}=5 \mathrm{~V}\right)$ vs. Output Current

Figure 10. Shutdown Current vs. Vpvin

Figure 11. High-Side NFET Resistor vs. VPVIn (Pin-to-Pin Measurements)

Figure 12. Feedback Voltage vs. Temperature, $V_{P V I N}=5 \mathrm{~V}$

Figure 13. Switching Frequency vs. VPVIN at $1.2 \mathrm{MHz}(R T=V R E G)$

Figure 14. Low-Side NFET Resistor vs. Vpvin (Pin-to-Pin Measurements)

Figure 15. Switching Frequency vs. $V_{\text {PVII }}\left(R_{R T}=95.3 \mathrm{k} \Omega\right)$

Figure 16. Switching Frequency vs. VPVIN $a t 620$ kHz (RT Floating)

Figure 17. ADP2165 Peak Current Limit vs. VPVIN

Figure 18. Soft Start with Full Load $\left(600 \mathrm{kHz}, V_{\text {PVIN }}=5 \mathrm{~V}\right)$

Figure 19. Load Transient ($600 \mathrm{kHz}, 1.5$ A to 4.5 A Load Step)

Figure 20. ADP2166 Peak Current Limit vs. VPVIN

Figure 21. Soft Start with Precharge $\left(600 \mathrm{kHz}, V_{\text {PVIN }}=5 \mathrm{~V}\right)$

Figure 22. Load Transient (1.2 MHz, 0.5 A to 5.5 A Load Step)

Figure 23. Steady Waveform

Figure 24. Output Short

Figure 25. Synchronized to 1 MHz in Phase

Figure 26. Tracing Function

Figure 27. Output Short Recovery

Figure 28. Synchronized to $1 \mathrm{MHz} 180^{\circ}$ Out of Phase

THEORY OF OPERATION

The ADP2165/ADP2166 are step-down, dc-to-dc regulators. They use a current mode architecture with an integrated high-side and low-side switch. They target high performance applications that require high efficiency and design simplicity.
The ADP2165/ADP2166 can operate with an input voltage from 2.7 V to 5.5 V and regulate the output voltage down to 0.6 V . Additional features for flexible design include programmable switching frequency, programmable soft start, external compensation, and enable and power-good pins. The ADP2165/ADP2166 are also available with preset output voltage options of $3.3 \mathrm{~V}, 2.5 \mathrm{~V}, 1.8 \mathrm{~V}, 1.5 \mathrm{~V}, 1.2 \mathrm{~V}$, and 1.0 V .

CONTROL SCHEME

The ADP2165/ADP2166 use a fixed frequency, current mode PWM control architecture for good line and load transient performance. In fixed frequency PWM mode, adjust the duty cycle of the integrated MOSFET to regulate the output voltage that has a low output ripple voltage.

PWM MODE

At the start of each oscillator cycle, the high-side NFET (Nchannel MOSFET) switch turns on and transmits a positive voltage across the inductor. Current in the inductor increases until the current sense signal crosses the peak inductor current level set by the voltage on the COMP pin. The high-side NFET then turns off, and the low-side NFET synchronous rectifier then turns on. This puts a negative voltage across the inductor, causing the inductor current to decrease. The synchronous rectifier stays on for the rest of the cycle.

ENABLE/SHUTDOWN

The EN input pin has a precision analog threshold of 1.2 V (typical) with 100 mV of hysteresis. When the enable voltage exceeds 1.2 V , the regulator turns on, and when it falls below 1.1 V (typical), the regulator turns off. To force the devices to automatically start when input power is applied, connect the EN pin to the PVIN pin.
When the ADP2165/ADP2166 are shut down, the soft start capacitor discharges. When the devices are reenabled, a new soft start cycle begins.
If the EN pin is not externally connected, an internal pull-down resistor ($1 \mathrm{M} \Omega$) prevents an accidental enable.

INTERNAL REGULATOR (VREG)

The internal regulator provides a stable supply for the internal control circuits. It is recommended to place a $1 \mu \mathrm{~F}$ ceramic capacitor between the VREG and GND pins. The internal regulator also includes a current-limit circuit to protect the circuit if the maximum external load is added.

The AVIN pin provides the power supply for the internal regulator. When device is enabled, the internal regulator is active.

BOOTSTRAP CIRCUITRY

The ADP2165/ADP2166 integrate the boot regulator to provide the gate drive voltage for the high-side NFET. A capacitor between the BST and SW pins is charged from the PVIN pin while the low-side NFET is on.
Placing an X7R or X5R $0.1 \mu \mathrm{~F}$ ceramic capacitor between the BST and SW pins is recommended.

OSCILLATOR AND SYNCHRONIZATION

The switching frequency of the ADP2165/ADP2166 can be set by connecting a resistor between the RT pin and the GND pin. Use the following equation to set the switching frequency:

$$
R_{R T}(\mathrm{k} \Omega)=60,000 /\left[f_{S W}(\mathrm{kHz})+10\right]-5
$$

A $191 \mathrm{k} \Omega$ resistor sets the frequency to 300 kHz , and a $93.1 \mathrm{k} \Omega$ resistor sets frequency to 600 kHz . Figure 29 shows the typical relationship between $R_{R T}$ and $f_{s w}$.

Figure 29. Frequency ($f_{s w}$) vs. RT Resistor
To synchronize the ADP2165/ADP2166, drive an external clock at the SYNC pin. The frequency of the external clock can be in the 250 kHz to 1.4 MHz range.

During the synchronization, the RT pin can be used to program the phase shift. When the RT pin is connected to the VREG pin, the rising edge of the SW pin is 180° out of phase with the external clock. If the RT pin is floating, the rising edge of the SW pin is in phase with the external clock.

ADP2165/ADP2166

SOFT START

The SS pin is used to program the soft start time. By connecting a capacitor between the SS and GND pins, the internal current then charges this capacitor and establishes the soft start ramp-up. The soft start time can be calculated by the following equation:

$$
t_{S S}=\frac{0.6 \mathrm{~V} \times C_{S S}}{I_{S S}}
$$

where:
$C_{S S}$ is the soft start capacitance.
$I_{S S}$ is the soft start pull-up current $(3.5 \mu \mathrm{~A})$.
If the output voltage is precharged prior to startup, the ADP2165/ADP2166 prevent reverse inductor current that discharges the output capacitor until the soft start voltage exceeds the voltage on the FB pin.

When the channel is disabled or a current fault happens, the soft start capacitor discharges.

TRACKING

The ADP2165/ADP2166 have a tracking input feature, TRK, that allows the output voltage to track another voltage (master voltage). It is especially useful in core and I/O voltage tracking for field programmable gate arrays (FPGAs), digital signal processors (DSPs), and application specific integrated circuits (ASICs).
The internal error amplifier includes three positive inputs: the internal reference voltage, the soft start voltage, and the TRK voltage. The error amplifier regulates the FB voltage to the lowest of the three voltages. To track a master voltage, tie the TRK pin to a resistor divider from the master voltage.

If the TRK function is not used, connect the TRK pin to the VREG.

POWER-GOOD (PGOOD)

The PGOOD pin is an active high, open-drain output that requires a pull-up resistor. A logic high on the PGOOD pin indicates that the voltage on the FB pin (and, therefore, the output voltage) is within $\pm 10 \%$ of the desired value. In addition, there is a 16 -cycle waiting period after the FB pin is detected as being within the $\pm 10 \%$ range. A logic low on the PGOOD pin indicates that the voltage on the FB pin is not within $\pm 10 \%$ of the desired value. Similarly, there is a 16 -cycle delay to deassert PGOOD.

PEAK CURRENT-LIMIT AND SHORT-CIRCUIT PROTECTION

The ADP2165/ADP2166 have a peak current-limit protection circuit to prevent current runaway. When the inductor peak current reaches the current-limit value, the high-side NFET turns off, and the low-side NFET turns on until the next cycle, while the overcurrent counter increments. If the overcurrent counter count exceeds 10 , the device enters hiccup mode, and the high-side NFET and low-side NFET both turn off. The devices remain in this mode for seven times the soft start time and then attempt to restart from the soft start. If the currentlimit fault clears, the devices resume normal operation. Otherwise, they reenter hiccup mode after counting 10 currentlimit violations.

OVERVOLTAGE PROTECTION

The ADP2165/ADP2166 provide an overvoltage protection feature that protects the system from an output short to a higher voltage supply or from a strong unload transient. If the feedback voltage increases to 0.7 V , the internal high-side NFET turns off and the low-side NFET turns on until the current through the low-side NFET reaches the negative current limit. Thereafter, both the high-side and low-side NFET are held in the off state until the voltage at FB decreases to 0.63 V , and the devices resume normal operation.

UNDERVOLTAGE LOCKOUT

Undervoltage lockout circuitry is integrated in the ADP2165/ ADP2166. If AVIN drops below 2.5 V , the devices turn off. When the AVIN voltage rises above 2.6 V , the soft start period initiates, and the devices are enabled.

THERMAL SHUTDOWN

In the event that the junction temperatures of the ADP2165/ ADP2166 rise above $150^{\circ} \mathrm{C}$, the thermal shutdown circuit turns the regulator off. Extreme junction temperatures can be the result of high current operation, poor circuit board design, and/or high ambient temperature. A $25^{\circ} \mathrm{C}$ hysteresis is included so that when thermal shutdown occurs, the ADP2165/ADP2166 do not return to operation until the on-chip temperature drops below $125^{\circ} \mathrm{C}$. When coming out of thermal shutdown, soft start initiates.

APPLICATIONS INFORMATION

ADIsimPOWER DESIGN TOOL

The ADP2165/ADP2166 are supported by the ADIsimPower design tool set. ADIsimPower is a collection of tools that produce complete power designs optimized to a specific design goal. The tools allow the user to generate a full schematic, bill of materials, and calculate performance in minutes. ADIsimPower can optimize designs for cost, area, efficiency, and parts count while taking into consideration the operating conditions and limitations of the IC and all real external components. The ADIsimPower tool can be found at www.analog.com/ADIsimPower, and the user can request an unpopulated board through the tool.

INPUT CAPACITOR SELECTION

The input capacitor reduces the input voltage ripple caused by the switch current on the PVIN pin. Place the input capacitor as close as possible to the PVIN pin. A ceramic capacitor in the $10 \mu \mathrm{~F}$ to $47 \mu \mathrm{~F}$ range is recommended. The loop that is composed of this input capacitor, the high-side NFET, and the low-side NFET must be kept as small as possible.
The voltage rating of the input capacitor must be greater than the maximum input voltage. The rms current rating of the input capacitor must be larger than the value calculated by the following equation:

$$
I_{C_{I N _R M S}}=I_{\text {OUT }} \times \sqrt{D \times(1-D)}
$$

OUTPUT VOLTAGE SETTING

The output voltage of the ADP2165/ADP2166 is set by an external resistive divider. The resistor values are calculated using the following equation:

$$
V_{\text {OUT }}=0.6 \times\left(1+\frac{R_{T O P}}{R_{B O T}}\right)
$$

To limit the output voltage accuracy degradation due to FB bias current ($0.1 \mu \mathrm{~A}$ maximum) to less than 0.5% (maximum), ensure that $\mathrm{R}_{\text {вот }}<30 \mathrm{k} \Omega$.

Table 5 lists the recommended resistor divider for various output voltages.

Table 5. Resistor Divider for Various Output Voltages

V ${ }_{\text {Out (}}(\mathrm{V}$)	RTop \pm 1\% (k)	$\mathrm{R}_{\text {вот }} \pm \mathbf{1 \%}$ (k)
1.0	10	15
1.2	10	10
1.5	15	10
1.8	20	10
2.5	47.5	15
3.3	10	2.21

VOLTAGE CONVERSION LIMITATIONS

The minimum output voltage for a given input voltage and switching frequency is constrained by the minimum on time. The minimum on time of the ADP2165/ADP2166 is typically 100 ns . The minimum output voltage at a given input voltage and frequency can be calculated using the following equation:

$$
\begin{align*}
& V_{\text {OUT_MIN }}=V_{\text {PVIN }} \times t_{\text {ON_MIN }} \times f_{\text {SW }}-\left(R_{\text {DSON_HS }}-R_{\text {DSON_LS }}\right) \times \\
& I_{\text {OUT_MIN }} \times t_{\text {ON_MIN }} \times f_{\text {SW }}-\left(R_{\text {DSON_LS }}+R_{L}\right) \times I_{\text {OUT_MIN }} \tag{1}
\end{align*}
$$

where:
$V_{\text {OUt_MIN }}$ is the minimum output voltage.
$t_{\text {ON_MIN }}$ is the minimum on time.
$I_{\text {out_MIN }}$ is the minimum output current.
$f_{S W}$ is the switching frequency.
$R_{\text {DSON_HS }}$ is the high-side MOSFET on resistance.
$R_{\text {DSON_LS }}$ is the low-side MOSFET on resistance.
R_{L} is the series resistance of the output inductor.
The maximum output voltage for a given input voltage and switching frequency is constrained by the minimum off time and the maximum duty cycle. The minimum off time is typically 100 ns , and the maximum duty cycle of the ADP2165/ADP2166 is typically 90%.
The maximum output voltage, limited by the minimum off time at a given input voltage and frequency, can be calculated using the following equation:

$$
\begin{align*}
& V_{\text {OUT_MAX }}=V_{\text {PVIN }} \times\left(1-t_{\text {OFF_MIN }} \times f_{\text {SW }}\right)-\left(R_{\text {DSON_HS }}-R_{\text {DSON_LS }}\right) \times \\
& I_{\text {out_MAX }} \times\left(1-t_{\text {OFF_MIN }} \times f_{\text {SW }}\right)-\left(R_{\text {DSON_LS }}+R_{L}\right) \times \text { Iout_MAX }^{2} \tag{2}
\end{align*}
$$

where:
$V_{\text {out_max }}$ is the maximum output voltage.
$t_{\text {OFF_MIN }}$ is the minimum off time.
Iout_Max is the maximum output current.
The maximum output voltage, limited by the maximum duty cycle at a given input voltage, can be calculated using the following equation:

$$
\begin{equation*}
V_{O U T _M A X}=D_{M A X} \times V_{P V I N} \tag{3}
\end{equation*}
$$

where $D_{M A X}$ is the maximum duty cycle.
As Equation 1 to Equation 3 show, reducing the switching frequency alleviates the minimum on time and minimum off time limitation.

INDUCTOR SELECTION

The inductor value is determined by the operating frequency, input voltage, output voltage, and inductor ripple current. Using a small inductor leads to a faster transient response; however, it degrades efficiency due to a larger inductor ripple current. Conversely, using a large inductor value leads to a smaller ripple current and better efficiency; however, it results in a slower transient response.
As a guideline, the inductor ripple current, $\Delta \mathrm{I}_{\mathrm{L}}$, is typically set to one-third of the maximum load current. The inductor value is calculated using the following equation:

$$
L=\frac{\left(V_{P V I N}-V_{\text {OUT }}\right) \times D}{\Delta I_{L} \times f_{S W}}
$$

where:
$V_{P V I N}$ is the input voltage.
$V_{\text {OUT }}$ is the output voltage.
ΔI_{L} is the inductor ripple current.
$f_{S W}$ is the switching frequency.
D is the duty cycle, $D=V_{\text {out }} / V_{P V I N}$.
The ADP2165/ADP2166 use adaptive slope compensation in the current loop to prevent subharmonic oscillations when the duty cycle is larger than 50%. The internal slope compensation limits the minimum inductor value.
For a duty cycle that is larger than 50%, the minimum inductor value is determined by using the following equation:

$$
L(\text { Minimum })=\frac{V_{\text {OUT }} \times(1-D)}{4 \times f_{S W}}
$$

The peak inductor current is calculated by using the following equation:

$$
I_{P E A K}=I_{O U T}+\frac{\Delta I_{L}}{2}
$$

The saturation current of the inductor must be larger than the peak inductor current. For ferrite core inductors with a quick saturation characteristic, the saturation current rating of the inductor must be higher than the current limit threshold of the switch. This prevents the inductor from reaching saturation.
The rms current of the inductor is calculated from the following equation:

$$
I_{R M S}=\sqrt{I_{O U T}^{2}+\frac{\Delta I_{L}^{2}}{12}}
$$

Shielded ferrite core materials are recommended for low core loss and low EMI. Table 6 lists some recommended inductors.

Table 6. Recommended Inductors

	Vendor	Part No.	\mathbf{L} $\mathbf{(\boldsymbol { \mu H })}$	IsAT (\mathbf{A})	IRMs $\mathbf{(A)}$
Würth	744311022	0.22	DCR $(\mathbf{m} \boldsymbol{\Omega})$		
Elektronik	744314047	21	1.10		
	744314076	0.47	20	18	1.35
	744311100	1.0	15	15.5	2.25
	744311150	1.5	14	11	4.6
	7443340220	2.2	12.5	16.5	4.4
	7443340330	3.3	8.5	14	6.5
Coilcraft	XAL7020-271ME	0.27	30	21	2.9
	XAL7020-331ME	0.33	28	20	4.0
	XAL7020-471ME	0.47	24.3	17	4.75
	XAL7020-681ME	0.68	22.3	13	7.9
	XAL7020-102ME	1.0	16.4	11	9.8
	XAL7030-152ME	1.5	23.5	15	7.6
	XAL7030-222ME	2.2	18	12.9	13.7

OUTPUT CAPACITOR SELECTION

The output capacitor selection affects the output ripple voltage load step transient and the loop stability of the regulator.
For example, during a load step transient where the load is suddenly increased, the output capacitor supplies the load until the control loop can ramp up the inductor current. The delay caused by the control loop causes the output to undershoot. The output capacitance that is required to satisfy the voltage droop requirement can be calculated by using the following equation:

$$
C_{\text {oUT_UV }}=\frac{K_{U V} \times \Delta I_{\text {STEP }}^{2} \times L}{2 \times\left(V_{P V I N}-V_{\text {OUT }}\right) \times \Delta V_{\text {OUT_UV }}}
$$

where:
$K_{U V}$ is a factor, with a typical setting of $K_{U V}=2$.
$\Delta I_{\text {Step }}$ is the load step.
$\Delta V_{\text {out_UV }}$ is the allowable undershoot on the output voltage.
Another example occurs when a load is suddenly removed from the output, and the energy stored in the inductor rushes into the output capacitor, causing the output to overshoot.

The output capacitance that is required to meet the overshoot requirement can be calculated using the following equation:

$$
\text { CoUT_OV }=\frac{K_{\text {OV }} \times \Delta I_{\text {STEP }}^{2} \times L}{\left(V_{\text {OUT }}+\Delta V_{\text {OUT_OV }}\right)^{2}-V_{\text {OUT }}{ }^{2}}
$$

where:
$K_{O V}$ is a factor, with a typical setting of $K_{O V}=2$.
$\Delta V_{\text {out_ov }}$ is the allowable overshoot on the output voltage.

The ESR and the value of the capacitance determine the output ripple. Use the following equation to select a capacitor that can meet the output ripple requirements:

$$
\begin{aligned}
& \text { Cout_RIPLE }=\frac{\Delta I_{L}}{8 \times f_{S W} \times \Delta V_{\text {OUT_RIPPLE }}} \\
& R_{\text {ESR }}=\frac{\Delta V_{\text {OUT_RIPPLE }}^{\Delta I_{L}}}{}
\end{aligned}
$$

where:
$\Delta V_{\text {out_RIPPLE }}$ is the allowable output ripple voltage.
$R_{E S R}$ is the equivalent series resistance of the output capacitor in ohms (Ω).
Select the largest output capacitance given by Cout_uv, Cout_ov, and Cout_ripple to meet both the load transient and the output ripple performance.
The selected output capacitor voltage rating must be greater than the output voltage. The rms current rating of the output capacitor must be larger than the value calculated by

$$
I_{C_{\text {OUT_RMS }}}=\frac{\Delta I_{L}}{\sqrt{12}}
$$

COMPENSATION DESIGN

For peak current mode control, the power stage can be simplified as a voltage controlled current source supplying current to the output capacitor and load resistor. It is composed of one domain pole and a zero that is contributed by the output capacitor ESR. The control to output transfer function is based on the following:

$$
\begin{aligned}
& G_{V D}(\mathrm{~S})=\frac{V_{O U T}(s)}{V_{C O M P}(s)}=A_{V I} \times R \times \frac{1+\frac{s}{2 \times \pi \times f_{Z}}}{1+\frac{s}{2 \times \pi \times f_{P}}} \\
& f_{Z}=\frac{1}{2 \times \pi \times R_{E S R} \times C_{O U T}} \\
& f_{P}=\frac{1}{2 \times \pi \times\left(R+R_{E S R}\right) \times C_{O U T}}
\end{aligned}
$$

where:
$A_{V I}=10 \mathrm{~A} / \mathrm{V}$.
R is the load resistance.
Cout is the output capacitance.
$R_{\text {ESR }}$ is the equivalent series resistance of the output capacitor.
The ADP2165/ADP2166 use a transconductance amplifier for the error amplifier, which compensates for the system loop. Figure 30 shows the simplified, peak current mode control, small signal circuit.

Figure 30. Simplified Peak Current Mode Control, Small Signal Circuit

The compensation components, R_{C} and C_{c}, contribute a zero, and the optional C_{CP} and R_{C} contribute an optional pole.
The loop gain transfer equation is as follows:

$$
\begin{aligned}
T_{V}(S)= & \\
& \frac{R_{B O T}}{R_{B O T}+R_{T O P}} \times \frac{-g_{m}}{C_{C}+C_{C P}} \times \\
& \frac{1+R_{C} \times C_{C} \times s}{s \times\left(1+\frac{R_{C} \times C_{C} \times C_{C P}}{C_{C}+C_{C P}} \times s\right)} \times G_{V D}(s)
\end{aligned}
$$

The following design guideline shows how to select the $\mathrm{R}_{\mathrm{c}}, \mathrm{C}_{\mathrm{c}}$, and C_{CP} compensation components for the ceramic output capacitor applications:

1. Determine the cross frequency, f_{c}. Generally, f_{c} is between $\mathrm{f}_{\mathrm{sw}} / 12$ and $\mathrm{f}_{\mathrm{sw}} / 6$.
2. Calculate R_{C} by using the following equation:

$$
R_{C}=\frac{2 \times \pi \times V_{\text {OUT }} \times C_{\text {OUT }} \times f_{C}}{0.6 \mathrm{~V} \times g_{m} \times A_{V I}}
$$

3. Place the compensation zero at the domain pole, f_{p}; then determine C_{c} by using the following equation:

$$
C_{C}=\frac{\left(R+R_{E S R}\right) \times C_{O U T}}{R_{C}}
$$

4. C_{CP} is optional. It can be used to cancel the zero caused by the ESR of the output capacitor.

$$
C_{C P}=\frac{R_{E S R} \times C_{O U T}}{R_{C}}
$$

The fixed output version IC must consider the feedforward capacitance of feedback resistor ($\mathrm{R}_{\text {Top }}$) to calculate C_{CP}. The total internal feedback resistance is $1 \mathrm{M} \Omega$.
First, place the compensation pole at the minimum value between the domain pole, f_{P}, and $\sqrt{f_{F B_{P}} \times f_{F B_{Z}}}$.
$f_{F B_{P}}=\frac{1}{2 \pi \times C_{F} \times\left(1 / R_{T O P}+1 / R_{B O T}\right)}$
$f_{F B_{Z}}=\frac{1}{2 \pi \times R_{T O P} \times C_{F}}$
Then, determine C_{CP} by

$$
\left.C_{C P}=\frac{C_{C} \times \min \left(f_{P}, \sqrt{f_{F B_{P}} \times f_{F B_{Z}}}\right)}{R_{C} \times C_{C}-C_{C} \times \min \left(f_{P}, \sqrt{f_{F B_{P}} \times f_{F B_{Z}}}\right.}\right)
$$

where $\mathrm{C}_{\mathrm{F}}=8.14 \mathrm{pF}$.

DESIGN EXAMPLE

Figure 31. Schematic for Design Example

This section describes the procedures for selecting the external components based on the example specifications listed in Table 7. See Figure 31 for the schematic of this design example.

Table 7. Step-Down DC-to-DC Regulator Requirements

Parameter	Specification
Input Voltage	$\mathrm{V}_{\text {PVIN }}=5.0 \mathrm{~V} \pm 10 \%$
Output Voltage	$\mathrm{V}_{\text {OUT }}=1.2 \mathrm{~V}$
Output Current	lout $=6 \mathrm{~A}$
Output Voltage Ripple	$\Delta \mathrm{V}_{\text {OUT_RIPPLE }}=12 \mathrm{mV}$
Load Transient	$\pm 5 \%, 1 \mathrm{~A}$ to $5 \mathrm{~A}, 2 \mathrm{~A} / \mu \mathrm{s}$
Switching Frequency	$\mathrm{f}_{\text {SW }}=1.2 \mathrm{MHz}$

OUTPUT VOLTAGE SETTING

Choose a $10 \mathrm{k} \Omega$ resistor as the top feedback resistor ($\mathrm{R}_{\text {Top }}$) and calculate the bottom feedback resistor ($\mathrm{R}_{\text {вот }}$) by using the following equation:

$$
R_{B O T}=R_{T O P} \times\left(\frac{0.6}{V_{O U T}-0.6}\right)
$$

To set the output voltage to 1.2 V , the resistor values are as follows: $\mathrm{R}_{\text {TOP }}=10 \mathrm{k} \Omega$ and $\mathrm{R}_{\text {вот }}=10 \mathrm{k} \Omega$.

FREQUENCY SETTING

To use the fixed 1.2 MHz switching frequency, connect the RT pin to the VREG pin.

INDUCTOR SELECTION

The peak-to-peak inductor ripple current, $\Delta \mathrm{I}_{\mathrm{L}}$, is set to 30% of the maximum output current. Use the following equation to estimate the inductor value:

$$
L=\frac{\left(V_{P V I N}-V_{\text {OUT }}\right) \times D}{\Delta I_{L} \times f_{S W}}
$$

where:
$V_{P V I N}=5 \mathrm{~V}$.
$V_{\text {OUT }}=1.2 \mathrm{~V}$.
$D=0.24$.
$\Delta I_{L}=1.8 \mathrm{~A}$.
$f_{S W}=1.2 \mathrm{MHz}$.

This calculation results in $\mathrm{L}=0.422 \mu \mathrm{H}$. Choose the standard inductor value of $0.47 \mu \mathrm{H}$.
The peak-to-peak inductor ripple current can be calculated by using the following equation:

$$
\Delta I_{L}=\frac{\left(V_{I N}-V_{\text {OUT }}\right) \times D}{L \times f_{S W}}
$$

This calculation results in $\Delta \mathrm{I}_{\mathrm{L}}=1.617 \mathrm{~A}$.
Use the following equation to calculate the peak inductor current:

$$
I_{\text {PEAK }}=I_{\text {OUTT }}+\frac{\Delta I_{L}}{2}
$$

This calculation results in $\mathrm{I}_{\text {PEAK }}=6.809 \mathrm{~A}$.
Use the following equation to calculate the rms current flowing through the inductor:

$$
I_{R M S}=\sqrt{I_{\text {OUT }}{ }^{2}+\frac{\Delta I_{L}^{2}}{12}}
$$

This calculation results in $\mathrm{I}_{\text {RMS }}=6.018 \mathrm{~A}$.
Based on the calculated current value, select an inductor with a minimum rms current rating of 6.03 A and a minimum saturation current rating of 6.9 A .
However, to protect the inductor from reaching its saturation point under the current-limit condition, use an inductor that is rated for at least a 9 A saturation current for reliable operation.
Based on the requirements described previously, select a $0.47 \mu \mathrm{H}$ inductor, such as the 744314047 from Würth, which has a $1.35 \mathrm{~m} \Omega$ DCR and a 20 A saturation current.

ADP2165/ADP2166

OUTPUT CAPACITOR SELECTION

The output capacitor is required to meet both the output voltage ripple and load transient response requirements.

To meet the output voltage ripple requirement, use the following equation to calculate the ESR and capacitance value of the output capacitor:

$$
\begin{aligned}
& \text { CoUT_RIPPLE }=\frac{\Delta I_{L}}{8 \times f_{S} \times \Delta V_{\text {OUT_RIPPLE }}} \\
& R_{\text {ESR }}=\frac{\Delta V_{\text {OUT_RIPPLE }}}{\Delta I_{L}}
\end{aligned}
$$

This calculation results in Cout_RIPPLE $=14 \mu \mathrm{~F}$ and $\mathrm{R}_{\text {ESR }}=7.4 \mathrm{~m} \Omega$.
To meet the $\pm 5 \%$ overshoot and undershoot transient requirements, use the following equations to calculate the capacitance:

$$
\begin{aligned}
& \text { CoUT_OV }=\frac{K_{\text {OV }} \times \Delta I_{\text {STEP }}^{2} \times L}{\left(V_{\text {OUT }}+\Delta V_{\text {OUT_OV }}\right)^{2}-V_{\text {OUT }}^{2}} \\
& \text { CoUT_UV }^{2}=\frac{K_{\text {UV }} \times \Delta I_{\text {STEP }}{ }^{2} \times L}{2 \times\left(V_{\text {PVIN }}-V_{\text {OUT }}\right) \times \Delta V_{\text {OUT_UV }}}
\end{aligned}
$$

where:
$K_{O V}=K_{U V}=2$, the coefficients for estimation purposes.
$\Delta I_{\text {STEP }}=4 \mathrm{~A}$, the load transient step.
$\Delta V_{\text {out_ov }}=5 \% \times V_{\text {out, }}$, the overshoot voltage.
$\Delta V_{\text {out_uv }}=5 \% \times$ Vout, the undershoot voltage.
This calculation results in Cout_ov $=100 \mu \mathrm{~F}$ and Cout_uv $=33 \mu \mathrm{~F}$.
According to the calculation, the output capacitance must be greater than $100 \mu \mathrm{~F}$, and the ESR of the output capacitor must be smaller than $7.4 \mathrm{~m} \Omega$. It is recommended that one $100 \mu \mathrm{~F}, \mathrm{X} 5 \mathrm{R}$, 6.3 V ceramic capacitor and one $47 \mu \mathrm{~F}, \mathrm{X} 5 \mathrm{R}, 6.3 \mathrm{~V}$ ceramic capacitor be used, such as the GRM32ER60J107ME20 and GRM32ER60J476ME20 from Murata, with an ESR of $2 \mathrm{~m} \Omega$.

COMPENSATION COMPONENTS

For better load transient and stability performance, set the cross frequency, f_{C}, to $\mathrm{f}_{\mathrm{sw}} / 10$. In this case, f_{sw} is running at 1200 kHz ; therefore, the f_{C} is set to 120 kHz .

The $100 \mu \mathrm{~F}$ and $47 \mu \mathrm{~F}$ ceramic output capacitors have a derated value of $62 \mu \mathrm{~F}$ and $32 \mu \mathrm{~F}$.

$$
\begin{aligned}
& R_{C}=\frac{2 \times \pi \times 1.2 \mathrm{~V} \times 94 \mu \mathrm{~F} \times 120 \mathrm{kHz}}{0.6 \mathrm{~V} \times 500 \mu \mathrm{~s} \times 10 \mathrm{~A} / \mathrm{V}}=28.35 \mathrm{k} \Omega \\
& C_{C}=\frac{(0.2 \Omega+0.002 \Omega) \times 94 \mu \mathrm{~F}}{28.35 \mathrm{k} \Omega}=669.8 \mathrm{pF} \\
& C_{C P}=\frac{0.002 \Omega \times 94 \mu \mathrm{~F}}{28.35 \mathrm{k} \Omega}=6.63 \mathrm{pF}
\end{aligned}
$$

Choose standard components as follows: $\mathrm{R}_{\mathrm{C}}=27 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{c}}=680 \mathrm{pF}$, and $\mathrm{C}_{\mathrm{CP}}=4.7 \mathrm{pF}$.

SOFT START TIME PROGRAM

The soft start feature allows the output voltage to ramp up in a controlled manner, eliminating output voltage overshoot during soft start and limiting the inrush current. Set the soft start time to 4 ms .

$$
C_{S S}=\frac{t_{S S_{-} E X T} \times I_{S S_{-} U P}}{0.6}=\frac{4 \mathrm{~ms} \times 3.5 \mu \mathrm{~A}}{0.6 \mathrm{~V}}=23.3 \mathrm{nF}
$$

Choose a standard component value as follows: $\mathrm{C}_{\mathrm{sS}}=22 \mathrm{nF}$.

INPUT CAPACITOR SELECTION

A minimum $22 \mu \mathrm{~F}$ ceramic capacitor must be placed near the PVIN pin. In this application, it is recommended that one $47 \mu \mathrm{~F}$, X5R, 16 V ceramic capacitor be used.

RECOMMENDED EXTERNAL COMPONENTS
Table 8. Recommended External Components for Typical Applications with 6 A Output Current

$\mathrm{f}_{\text {sw }}(\mathbf{k H z}$)	$\mathrm{V}_{\text {PVIN }}(\mathrm{V})$	V out (V)	$\mathrm{L}(\mu \mathrm{H})$	$\left.\mathrm{Cout}_{\text {(}} \mathrm{F}\right)^{1}$	RTop (k)	R $\mathbf{B o t}^{\text {(} \mathbf{k} \mathbf{\Omega} \text {) }}$	Rc (k)	$\mathbf{C l}_{\mathbf{c}}(\mathbf{p F})$	$\mathrm{C}_{\mathrm{CP}}(\mathrm{pF})$
300	3.3	1	1.5	$680+330$	10	15	52.9	3300	134
	3.3	1.2	1.5	$680+47$	10	10	44.7	3300	111
	3.3	1.5	2.2	680	15	10	53.4	3300	89
	3.3	1.8	2.2	$470+100$	20	10	50.1	3300	85
	3.3	2.5	1.5	$470+47$	47.5	15	65.7	3300	61
	5	1	1.5	$680+330$	10	15	52.9	3300	668
	5	1.2	2.2	$680+470$	10	10	72.3	3300	64
	5	1.5	2.2	680	15	10	53.4	3300	89
	5	1.8	2.2	470	20	10	44.3	3300	85
	5	2.5	3.3	$330+47$	47.5	15	47.4	3300	267
	5	3.3	2.2	3×100	10	2.21	32.1	3300	12
600	3.3	1	0.6	$330+47$	10	15	45.5	1600	279
	3.3	1.2	0.82	$330+47$	10	10	54.6	1500	232
	3.3	1.5	0.82	$2 \times 100+47$	15	10	29.4	1300	11
	3.3	1.8	0.82	2×100	20	10	28.0	1300	9
	3.3	2.5	0.6	2×100	47.5	15	39.0	1300	6
	5	1	0.82	$470+100$	10	15	66.9	1300	64
	5	1.2	0.82	$330+47$	10	10	54.6	1500	232
	5	1.5	1	330	15	10	62.2	1500	186
	5	1.8	1	2×100	20	10	28.0	1300	9
	5	2.5	1.5	$100+47$	47.5	15	39.0	1300	6
	5	3.3	1	100	10	2.21	25.7	1300	5
1200	3.3	1	0.33	2×100	10	15	31.2	680	8
	3.3	1.2	0.47	2×100	10	10	37.4	680	7
	3.3	1.5	0.47	$100+47$	15	10	35.4	680	5
	3.3	1.8	0.47	100	20	10	28.0	680	4
	3.3	2.5	0.33	100	47.5	15	39.0	680	3
	5	1	0.47	330	10	15	82.9	680	139
	5	1.2	0.47	2×100	10	10	37.4	680	7
	5	1.5	0.47	$100+47$	15	10	35.4	680	5
	5	1.8	0.6	100	20	10	28.0	680	4
	5	2.5	0.6	100	47.5	15	19.6	680	3
	5	3.3	0.6	100	10	2.21	51.4	680	2

[^1]
PRINTED CIRCUIT BOARD LAYOUT RECOMMENDATIONS

Good circuit board layout is essential for obtaining the best performance from the ADP2165/ADP2166. Poor printed circuit board (PCB) layout degrades the output regulation as well as the electromagnetic interface (EMI) and electromagnetic compatibility (EMC) performance. Figure 32 shows a PCB layout example. For optimum layout, use the following guidelines:

- Use separate analog ground and power ground planes. Connect the ground reference of sensitive analog circuitry, such as output voltage divider components, to analog ground. In addition, connect the ground reference of power components, such as input and output capacitors, to power ground. Connect both ground planes to the exposed pad of the ADP2165/ADP2166.
Place the input capacitor, inductor, and output capacitor as close to the IC as possible and use short traces.
- Ensure that the high current loop traces are as short and as wide as possible. Make the high current path from the input capacitor through the inductor, the output capacitor, and the power ground plane back to the input capacitor as short as possible. To accomplish this, ensure that the input and output capacitors share a common power ground plane.
- Connect the exposed pad of the ADP2165/ADP2166 to a large copper plane to maximize its power dissipation capability for better thermal dissipation.

Place the feedback resistor divider network as close as possible to the FB pin to prevent noise pickup. Try to minimize the length of the trace that connects the top of the feedback resistor divider to the output while keeping the trace away from the high current traces and the switching node to avoid noise pickup. To further reduce noise pickup, place an analog ground plane on either side of the FB trace and ensure that the trace is as short as possible to reduce parasitic capacitance pickup.

Figure 32. Recommended PCB Layout

REFERENCE DESIGNS

See Figure 33 through Figure 36 for the detailed reference designs.

Figure 33. 1.2 V, 5 A/6 A, 620 kHz by Floating the RT Pin Step-Down Regulator Application

Figure 34. 1.8 V, 5 A/6 A Step-Down Regulator Application, Synchronized to $1.2 \mathrm{MHz}, 180^{\circ}$ Out of Phase with the External Clock

Figure 35. 3.3 V, 5 A/6 A, 1.2 MHz Step-Down Regulator Application, Tracking Mode

Figure 36. Fixed Output 1.2 V, 5 A/6 A, 1.2 MHz Step-Down Regulator Application

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-220-WGGD-8

Figure 37. 24-Lead Lead Frame Chip Scale Package [LFCSP]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body and 0.75 mm Package Height (CP-24-15)
Dimensions shown in millimeters
ORDERING GUIDE

Model ${ }^{1}$	Output Current (A)	Temperature Range	Output Voltage	Package Description	Package Option
ADP2165ACPZ-R7	5	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	ADJ	24-Lead LFCSP	CP-24-15
ADP2165ACPZ-1.0-R7	5	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	1.0 V	24-Lead LFCSP	CP-24-15
ADP2165ACPZ-1.2-R7	5	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	1.2 V	24-Lead LFCSP	CP-24-15
ADP2165ACPZ-1.5-R7	5	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	1.5 V	24-Lead LFCSP	CP-24-15
ADP2165ACPZ-1.8-R7	5	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	1.8 V	24-Lead LFCSP	CP-24-15
ADP2165ACPZ-2.5-R7	5	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	2.5 V	24-Lead LFCSP	CP-24-15
ADP2165ACPZ-3.3-R7 ADP2165-EVALZ	5	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	3.3 V	24-Lead LFCSP	CP-24-15
ADP2165-EVALZ				Evaluation Board	
ADP2166ACPZ-R7	6	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	ADJ	24-Lead LFCSP	CP-24-15
ADP2166ACPZ-1.0-R7	6	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	1.0 V	24-Lead LFCSP	CP-24-15
ADP2166ACPZ-1.2-R7	6	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	1.2 V	24-Lead LFCSP	CP-24-15
ADP2166ACPZ-1.5-R7	6	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	1.5 V	24-Lead LFCSP	CP-24-15
ADP2166ACPZ-1.8-R7	6	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	1.8 V	24-Lead LFCSP	CP-24-15
ADP2166ACPZ-2.5-R7	6	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	2.5 V	24-Lead LFCSP	CP-24-15
ADP2166ACPZ-3.3-R7 ADP2166-EVALZ	6	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	3.3 V	24-Lead LFCSP Evaluation Board	CP-24-15

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Voltage Regulators category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB KE177614
FAN53611AUC12X MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 NCP81241MNTXG LTM8064IY LT8315EFE\#TRPBF LTM4664EY\#PBF LTM4668AIY\#PBF NCV1077CSTBT3G XCL207A123CR-G MPM54304GMN-0002 MPM54304GMN-0004 MPM54304GMN-0003 AP62300Z6-7 MP8757GL-P MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM+ XC9236D08CER-G MP3416GJ-P MP5461GC-Z MPQ4415AGQB-Z MPQ4590GS-Z MAX38640BENT18+T MAX77511AEWB+ MAX20406AFOD/VY+

[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2014-2017 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

[^1]: ${ }^{1} 680 \mu \mathrm{~F}: 2.5$ V, KEMET T520D687M2R5ATE010; $470 \mu \mathrm{~F}: 2.5$ V, KEMET T520D477M2R5ATE006; $330 \mu \mathrm{~F}: 2.5 \mathrm{~V}$, KEMET T520D337M2R5ATE006; $220 \mu \mathrm{~F}: 2.5 \mathrm{~V}, \mathrm{KEMET}$
 T520D227M2R5ATE007; $330 \mu F: 4 \mathrm{~V}$, KEMET T520D337M004ATE006; $100 \mu \mathrm{~F}: 6.3 \mathrm{~V}$, X5R, Murata GRM32ER60J107ME20; $47 \mu \mathrm{~F}$: 6.3 V , X5R, Murata GRM32ER60J476ME20.
 Vout is higher than 1.5 V , and Cout must use a 4 V tantalum capacitor.

