## Dual 3 MHz, 1200 mA Buck Regulators with Two 300 mA LDOs

## Data Sheet

## FEATURES

Main input voltage range: 2.3 V to 5.5 V
Two 1200 mA buck regulators and two $\mathbf{3 0 0} \mathrm{mA}$ LDOs 24-lead, $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP or 28-lead TSSOP package Regulator accuracy: $\pm 1.8 \%$
Factory programmable or external adjustable VOUTx 3 MHz buck operation with forced PWM and auto PWM/PSM modes

BUCK1/BUCK2: output voltage range from 0.8 V to 3.8 V
LDO1/LDO2: output voltage range from 0.8 V to 5.2 V
LDO1/LDO2: input supply voltage from 1.7 V to 5.5 V
LDO1/LDO2: high PSRR and low output noise

## APPLICATIONS

Power for processors, ASICS, FPGAs, and RF chipsets Portable instrumentation and medical devices Space constrained devices

## GENERAL DESCRIPTION

The ADP5034 combines two high performance buck regulators and two low dropout (LDO) regulators. It is available in either a 24-lead $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP or a 28 -lead TSSOP package.

The high switching frequency of the buck regulators enables tiny multilayer external components and minimizes the board space. When the MODE pin is set to high, the buck regulators operate in forced PWM mode. When the MODE pin is set to low, the buck
regulators operate in PWM mode when the load is above a predefined threshold. When the load current falls below a predefined threshold, the regulator operates in power save mode (PSM), improving the light load efficiency.

Table 1. Family Models

| Model | Channels | Maximum <br> Current | Package |
| :--- | :--- | :--- | :--- |
| ADP5023 | 2 Buck,1 LDO | 800 mA, | LFCSP (CP-24-10) |
| ADP5024 | 2 Buck,1 LDO | 300 mA |  |
|  |  | 1.2 A, | LFCSP (CP-24-10) |
| ADP5034 | 2 Buck,2 LDOs | 300 mA |  |
|  |  | 1.2 A, | LFCSP (CP-24-10), |
| ADP5037 | 2 Buck,2 LDOs | 300 mA | TSSOP (RE-28-1) |
|  |  | 800 mA, | LFCSP (CP-24-10) |
| ADP5033 | 2 Buck,2 LDOs with | 300 mA |  |
|  | 2 EN pins | 300 mA, | WLCSP (CB-16-8) |

The two bucks operate out of phase to reduce the input capacitor requirement. The low quiescent current, low dropout voltage, and wide input voltage range of the ADP5034 LDOs extend the battery life of portable devices. The ADP5034 LDOs maintain power supply rejection greater than 60 dB for frequencies as high as 10 kHz while operating with a low headroom voltage.
Regulators in the ADP5034 are activated through dedicated enable pins. The default output voltages can be externally set in the adjustable version, or factory programmable to a wide range of preset values in the fixed voltage version.

TYPICAL APPLICATION CIRCUIT


Figure 1.

## TABLE OF CONTENTS

Features ..... 1
Applications ..... 1
General Description .....  1
Typical Application Circuit ..... 1
Revision History ..... 3
Specifications ..... 4
General Specifications .....  4
BUCK1 and BUCK2 Specifications .....  5
LDO1 and LDO2 Specifications ..... 5
Input and Output Capacitor, Recommended Specifications.. 6
Absolute Maximum Ratings ..... 7
Thermal Resistance ..... 7
ESD Caution ..... 7
Pin Configuration and Function Descriptions. .....  8
Typical Performance Characteristics .....  9
Theory of Operation ..... 16
Power Management Unit ..... 16
BUCK1 and BUCK2 ..... 18
LDO1 and LDO2 ..... 19
Applications Information ..... 20
Buck External Component Selection ..... 20
LDO External Component Selection ..... 22
Power Dissipation and Thermal Considerations ..... 23
Buck Regulator Power Dissipation ..... 23
Junction Temperature ..... 24
PCB Layout Guidelines ..... 25
Typical Application Schematics ..... 26
Bill of Materials ..... 26
Outline Dimensions ..... 27
Ordering Guide ..... 28

## REVISION HISTORY

5/13-Rev. D to Rev. E
Added Table 1; Renumbered Sequentially .....  1
Changes to Figure 1 .....  1
Changes to NC Pin Description .....  8
Changes to Figure 49 ..... 19
Changes to Figure 51 ..... 21
Changes to Figure 53 and Figure 54 ..... 26
1/13—Rev. C to Rev. D
Changes to Ordering Guide ..... 28
11/12—Rev. B to Rev. C
Changes to Ordering Guide ..... 28
7/12—Rev. A to Rev. B
Added 28-Lead TSSOP Package Throughout ..... 1
Changes to Output Voltage Accuracy Parameter, Added TSSOP
SW On Resistance Specifications, Changes to Voltage Feedback
Minimum and Maximum Values, and Changes to Active Pull-Down Conditions; Table 2 5
Changes to Output Voltage Accuracy Parameter and Voltage
Feedback Minimum and Maximum Values in Table 3; Changesto Table 4 .6
Added Thermal Resistance Values for TSSOP Package, Table 6 .. 7
Added Figure 3 and TSSOP Pins to Table 7 .....  8
Changes to Figure 7, Figure 8, and Figure 9 .....  9
Changes to Figure 10 ..... 10
Changes to Figure 18 Caption ..... 11
Changes to Figure 31 and Figure 32 ..... 13
Changes to Figure 35 and Figure 39 Caption ..... 14
Changes to Undervoltage Lockout Section ..... 17
Changes to Table 8 ..... 20
Changes to Table 9 and Table 11 ..... 21
Changes to Equation 9 and Following Paragraph ..... 23
Added UG-349 to PCB Layout Guidelines Section ..... 25
Changes to Table 12 ..... 26
Updated Outline Dimensions ..... 27
Changes to Ordering Guide ..... 28
10/11-Rev. 0 to Rev. A
Change to Features Section .....  1
Changes to General Description Section .....  1
Changes to Figure 1 .....  1
Change to Table 1, Low UVLO Input Voltage Falling Parameter,Symbol Column. 3
Change to Table 2, Output Voltage Accuracy Parameter, Test Conditions/Comment Column .....  .4
Change to Table 2, Line Regulation Parameter, Symbols Column .....  .4
Change to Table 2, Load Regulation Parameter, Symbols Column .....  .4
Changes to Table 2, Reversed the $\mathrm{R}_{\text {pfet }}$ and $\mathrm{R}_{\text {Nfet }}$ Symbols for the SW On Resistance Parameter and Changes to Typ and Max Columns ..... 4
Changes to Table 3, Output Accuracy Parameter, Test Conditions/Comments Column .....  .4
Changes to Table 3, Line Regulation Parameter, Symbols Column and Test Conditions/Comments Column ..... 4
Change to Table 3, Changes to Dropout Voltage Parameter and Added Specification to Dropout Voltage Parameter ..... 5
Change to Table 3, Endnote 3 ..... 5
Change to Table 4, BUCK1, BUCK2 Output Capacitor Parameter, Min Column Value .....  .5
Change to Table 4, Endnote 1 ..... 5
Changes to Absolute Maximum Ratings, Table 5 ..... 6
Changes to Table 7, Pin Function Descriptions .....
Changes to TPC Section .....  8
Moved Power Dissipation and Thermal Considerations Section ..... 22
Change to Equation 5 Where Statement ..... 22
Change to Equation 6 ..... 22
Change to Undervoltage Lockout Section ..... 16
Changes to Figure 46 ..... 16
Change to Figure 47 ..... 17
Changes to LDO1/LDO2 Section ..... 18
Changes to Output Capacitor Section and Table 8 ..... 19
Change to $\mathrm{V}_{\text {ripple }}$ Equation, Table 9, and Figure 50 ..... 20
Changes to Input and Output Capacitor Properties Section ..... 21
Changes to Equation 3 ..... 22
Changes to Junction Temperature Section ..... 23
Changes to LDO Regulator Power Dissipation Section ..... 23
Changes to Figure 52 and Figure 53 ..... 25
Moved Bill of Materials Section ..... 25
Changes to Ordering Guide ..... 26
6/11—Revision 0: Initial Version

## SPECIFICATIONS

## GENERAL SPECIFICATIONS

$\mathrm{V}_{\mathrm{AVIN}}=\mathrm{V}_{\mathrm{IN} 1}=\mathrm{V}_{\mathrm{IN} 2}=2.3 \mathrm{~V}$ to $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN} 3}=\mathrm{V}_{\mathrm{IN} 4}=1.7 \mathrm{~V}$ to $5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for minimum $/$ maximum specifications, and $\mathrm{T}_{\mathrm{A}}=$ $25^{\circ} \mathrm{C}$ for typical specifications, unless otherwise noted.

Table 2.

| Parameter | Symbol | Test Conditions/Comments | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INPUTVOLTAGE RANGE | $\mathrm{V}_{\text {AVIN }}, \mathrm{V}_{\text {IN1 }}, \mathrm{V}_{\text {IN2 }}$ |  | 2.3 |  | 5.5 | V |
| THERMAL SHUTDOWN <br> Threshold Hysteresis | $\begin{aligned} & \mathrm{TS} S_{\mathrm{SD}} \\ & \mathrm{~T} \mathrm{~S}_{\mathrm{SD}-\mathrm{HYS}} \end{aligned}$ | Tر rising |  | $\begin{aligned} & 150 \\ & 20 \end{aligned}$ |  | $\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$ |
| $\begin{aligned} & \hline \text { START-UP TIME }{ }^{1} \\ & \text { BUCK1, LDO1, LDO2 } \\ & \text { BUCK2 } \\ & \hline \end{aligned}$ | tstart1 tstart2 |  |  | $\begin{aligned} & 250 \\ & 300 \end{aligned}$ |  | $\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \hline \end{aligned}$ |
| EN1, EN2, EN3, EN4, MODE INPUTS Input Logic High Input Logic Low Input Leakage Current | $\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\text {I-LEAKAGE }} \end{aligned}$ |  | 1.1 | $0.05$ | $\begin{aligned} & 0.4 \\ & 1 \end{aligned}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ $\mu \mathrm{A}$ |
| INPUT CURRENT <br> All Channels Enabled <br> All Channels Disabled | Istby-nosw <br> Ishutdown | No load, no buck switching $\mathrm{T}_{j}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$ |  | $\begin{aligned} & 108 \\ & 0.3 \end{aligned}$ | $\begin{aligned} & 175 \\ & 1 \end{aligned}$ | $\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$ |
| VIN1 UNDERVOLTAGE LOCKOUT High UVLO Input Voltage Rising High UVLO Input Voltage Falling Low UVLO Input Voltage Rising Low UVLO Input Voltage Falling | UVLOviniRISE UVLOvinifall UVLOviniRIE UVLOvinifall |  | 3.1 $1.95$ |  | $3.9$ <br> 2.275 | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$ |

${ }^{1}$ Start-up time is defined as the time from EN1 $=\mathrm{EN} 2=\mathrm{EN} 3=\mathrm{EN} 4$ from 0 V to $\mathrm{V}_{\text {AVIN }}$ to VOUT1, VOUT2, VOUT3, and VOUT4 reaching $90 \%$ of their nominal level. Start-up times are shorter for individual channels if another channel is already enabled. See the Typical Performance Characteristics section for more information.

## BUCK1 AND BUCK2 SPECIFICATIONS

$\mathrm{V}_{\text {AVIN }}=\mathrm{V}_{\text {IN } 1}=\mathrm{V}_{\mathrm{IN} 2}=2.3 \mathrm{~V}$ to $5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for minimum $/$ maximum specifications, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ for typical specifications, unless otherwise noted. ${ }^{1}$

Table 3.

| Parameter | Symbol | Test Conditions/Comments | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OUTPUT CHARACTERISTICS <br> Output Voltage Accuracy <br> Line Regulation <br> Load Regulation | $\Delta \mathrm{V}_{\text {out }} / \mathrm{V}_{\text {out }}$, <br> $\Delta V_{\text {out2 }} / V_{\text {out2 }}$ <br> ( $\left.\Delta \mathrm{V}_{\text {out }} / \mathrm{V}_{\text {out1 }}\right) / \Delta \mathrm{V}_{\text {IN1 }}$, <br> ( $\left.\Delta \mathrm{V}_{\text {out2 }} / \mathrm{V}_{\text {оит } 2}\right) / \Delta \mathrm{V}_{\text {IN2 }}$ <br> ( $\left.\Delta \mathrm{V}_{\text {out }} / \mathrm{V}_{\text {OUT1 }}\right) / \Delta \mathrm{l}_{\text {out }}$, <br> ( $\Delta \mathrm{V}_{\text {OUT2 }} / \mathrm{V}_{\text {OUt }}$ ) $/ \Delta$ lout2 | PWM mode; $I_{\text {LOAD1 }}=I_{\text {LOAD2 }}=0 \mathrm{~mA}$ <br> PWM mode <br> $\mathrm{L}_{\mathrm{LOAD}}=0 \mathrm{~mA}$ to 1200 mA , PWM mode | -1.8 | $\begin{aligned} & -0.05 \\ & -0.1 \end{aligned}$ | +1.8 | \% <br> \%/V <br> \%/A |
| VOLTAGE FEEDBACK | $\mathrm{V}_{\mathrm{FB} 1}, \mathrm{~V}_{\text {FB2 }}$ | Models with adjustable outputs | 0.491 | 0.5 | 0.509 | V |
| OPERATING SUPPLY CURRENT BUCK1 Only BUCK2 Only BUCK1 and BUCK2 | In In In In | MODE = ground <br> $\mathrm{I}_{\text {LOAD1 }}=0 \mathrm{~mA}$, device not switching, all other channels disabled <br> ILOAD2 $=0 \mathrm{~mA}$, device not switching, all other channels disabled <br> $I_{\text {LOAD1 }}=I_{\text {LOAD2 }}=0 \mathrm{~mA}$, device not switching, LDO channels disabled |  | 44 <br> 55 <br> 67 |  | $\mu \mathrm{A}$ <br> $\mu \mathrm{A}$ <br> $\mu \mathrm{A}$ |
| PSM CURRENT THRESHOLD | IPSM | PSM to PWM operation |  | 100 |  | mA |
| SW CHARACTERISTICS SW On Resistance <br> Current Limit | $\mathrm{R}_{\text {NFET }}$ <br> Rpfet <br> Rnfet <br> Rpfet <br> $\mathrm{R}_{\text {NFET }}$ <br> Rpfet <br> Rnfet <br> Rpfet <br> llimit1, llimitz | $\mathrm{V}_{\mathrm{IN} 1}=\mathrm{V}_{\text {IN } 2}=3.6 \mathrm{~V}$; LFCSP package <br> $\mathrm{V}_{\mathbb{N} 1}=\mathrm{V}_{\mathbb{N} 2}=3.6 \mathrm{~V}$; LFCSP package <br> $\mathrm{V}_{1 \mathbb{1} 1}=\mathrm{V}_{1 \mathbb{N} 2}=5.5 \mathrm{~V}$; LFCSP package <br> $\mathrm{V}_{\mathbb{I N} 1}=\mathrm{V}_{\mathbb{N} 2}=5.5 \mathrm{~V}$; LFCSP package <br> $\mathrm{V}_{\mathrm{IN}_{1}}=\mathrm{V}_{\mathrm{IN}_{2}}=3.6 \mathrm{~V}$; TSSOP package <br> $\mathrm{V}_{1 \times 1}=\mathrm{V}_{1 \times 2}=3.6 \mathrm{~V}$; TSSOP package <br> $\mathrm{V}_{1 \times 1}=\mathrm{V}_{1 \times 2}=5.5 \mathrm{~V}$; TSSOP package <br> $\mathrm{V}_{\mathbb{I N} 1}=\mathrm{V}_{\mathbb{N} 2}=5.5 \mathrm{~V}$; TSSOP package <br> pFET switch peak current limit | 1600 | $\begin{aligned} & 155 \\ & 205 \\ & 137 \\ & 162 \\ & 156 \\ & 194 \\ & 137 \\ & 154 \\ & 1950 \\ & \hline \end{aligned}$ | $\begin{aligned} & 240 \\ & 310 \\ & 204 \\ & 243 \\ & 237 \\ & 270 \\ & 202 \\ & 212 \\ & 2300 \\ & \hline \end{aligned}$ | $\mathrm{m} \Omega$ <br> $\mathrm{m} \Omega$ <br> $\mathrm{m} \Omega$ <br> $m \Omega$ <br> $\mathrm{m} \Omega$ <br> $\mathrm{m} \Omega$ <br> $\mathrm{m} \Omega$ <br> $\mathrm{m} \Omega$ <br> mA |
| ACTIVE PULL-DOWN | RPDWN-B | VIN1=VIN2 = 3.6 V; Channel disabled |  | 75 |  | $\Omega$ |
| OSCILLATOR FREQUENCY | $\mathrm{f}_{\text {sw }}$ |  | 2.5 | 3.0 | 3.5 | MHz |

${ }^{1}$ All limits at temperature extremes are guaranteed via correlation using standard statistical quality control (SQC).

## LD01 AND LDO2 SPECIFICATIONS

$\mathrm{V}_{\text {IN3 }}=\left(\mathrm{V}_{\text {out } 3}+0.5 \mathrm{~V}\right)$ or 1.7 V (whichever is greater) to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN } 4}=\left(\mathrm{V}_{\text {out } 4}+0.5 \mathrm{~V}\right)$ or 1.7 V (whichever is greater) to 5.5 V ; $\mathrm{C}_{\text {IN }}=\mathrm{C}_{\text {out }}=$ $1 \mu \mathrm{~F} ; \mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for minimum/maximum specifications, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ for typical specifications, unless otherwise noted. ${ }^{1}$

Table 4.

| Parameter | Symbol | Test Conditions/Comments | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INPUT VOLTAGE RANGE | $\mathrm{V}_{\text {IN3, }} \mathrm{V}_{\text {IN4 }}$ |  | 1.7 |  | 5.5 | V |
| OPERATING SUPPLY CURRENT <br> Bias Current per LDO ${ }^{2}$ <br> Total System Input Current <br> LDO1 or LDO2 Only <br> LDO1 and LDO2 Only | Ivinzbias/lvinabias IIn | Includes all current into AVIN, VIN1, VIN2, VIN3, and VIN4 <br> lout $=$ l $_{\text {out } 4}=0 \mu \mathrm{~A}$, all other channels disabled <br> lout $3=$ lout $4=0 \mu \mathrm{~A}$, buck channels disabled |  | $\begin{aligned} & 10 \\ & 60 \\ & 165 \\ & \\ & 53 \\ & 74 \end{aligned}$ | $\begin{aligned} & 30 \\ & 100 \\ & 245 \end{aligned}$ | $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ <br> $\mu \mathrm{A}$ $\mu \mathrm{A}$ |


| Parameter | Symbol | Test Conditions/Comments | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OUTPUT CHARACTERISTICS Output Voltage Accuracy Line Regulation Load Regulation ${ }^{3}$ | $\Delta V_{\text {out }} / V_{\text {оит }}$, <br> $\Delta \mathrm{V}_{\text {outa }} / \mathrm{V}_{\text {out4 }}$ <br> ( $\Delta \mathrm{V}_{\text {out }} / \mathrm{V}_{\text {оит }}$ )/ $\Delta \mathrm{V}_{\text {inз }}$, <br> ( $\left.\Delta \mathrm{V}_{\text {outa }} / \mathrm{V}_{\text {оutt }}\right) / \Delta \mathrm{V}_{\text {IN } 4}$ <br> ( $\left.\Delta \mathrm{V}_{\text {оut }} / \mathrm{V}_{\text {оит }}\right) / \Delta$ loutз $^{\text {, }}$ <br> ( $\left.\Delta \mathrm{V}_{\text {out }} / \mathrm{V}_{\text {outa }}\right) / \Delta$ lout4 | $\begin{aligned} & 100 \mu \mathrm{~A}<\text { lout3 }<300 \mathrm{~mA}, 100 \mu \mathrm{~A}<\text { lout4 }< \\ & 300 \mathrm{~mA} \\ & \text { lout3 }^{\text {l }} \text { lout4 }=1 \mathrm{~mA} \\ & \text { lout3 }=\text { l lout4 }=1 \mathrm{~mA} \text { to } 300 \mathrm{~mA} \end{aligned}$ | -1.8 -0.03 | $0.001$ | $\begin{aligned} & +1.8 \\ & +0.03 \\ & 0.003 \end{aligned}$ | \% <br> \%/V <br> \%/mA |
| VOLTAGE FEEDBACK | $\mathrm{V}_{\text {FB3 }} \mathrm{V}_{\text {F86 }}$ |  | 0.491 | 0.5 | 0.509 | V |
| DROPOUTVOLTAGE ${ }^{4}$ | V ${ }_{\text {dropout }}$ |  |  | $\begin{aligned} & \hline 50 \\ & 75 \\ & 100 \\ & 180 \\ & \hline \end{aligned}$ | 140 | $\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$ |
| CURRENT-LIMIT THRESHOLD ${ }^{5}$ | ІІмітз, ІІміт4 |  | 335 | 600 |  | mA |
| ACTIVE PULL-DOWN | Rpown-L | Channel disabled |  | 600 |  | $\Omega$ |
| OUTPUT NOISE <br> Regulator LDO1 <br> Regulator LDO2 | NOISELDo1 NOISELDo2 | $\begin{aligned} & 10 \mathrm{~Hz} \text { to } 100 \mathrm{kHz}, \mathrm{~V}_{\mathbb{1 N 3}}=5 \mathrm{~V}, \mathrm{~V} \text { оut } 3=2.8 \mathrm{~V} \\ & 10 \mathrm{~Hz} \text { to } 100 \mathrm{kHz}, \mathrm{~V}_{\mathbb{N} 4}=5 \mathrm{~V}, \mathrm{~V}_{\text {out } 4}=1.2 \mathrm{~V} \end{aligned}$ |  | $\begin{aligned} & 100 \\ & 60 \end{aligned}$ |  | $\mu \mathrm{V}$ rms <br> $\mu \mathrm{V}$ rms |
| POWER SUPPLY REJECTION RATIO Regulator LDO1 <br> Regulator LDO2 | PSRR |  |  | $\begin{aligned} & 60 \\ & 62 \\ & 63 \\ & 54 \\ & 57 \\ & 64 \\ & \hline \end{aligned}$ |  | dB <br> dB <br> dB <br> dB <br> dB <br> dB |

${ }^{1}$ All limits at temperature extremes are guaranteed via correlation using standard statistical quality control (SQC).
${ }^{2}$ This is the input current into VIN3/VIN4, which is not delivered to the output load.
${ }^{3}$ Based on an endpoint calculation using 1 mA and 300 mA loads.
${ }^{4}$ Dropout voltage is defined as the input-to-output voltage differential when the input voltage is set to the nominal output voltage. This applies only to output voltages above 1.7 V .
${ }^{5}$ Current-limit threshold is defined as the current at which the output voltage drops to $90 \%$ of the specified typical value. For example, the current limit for a 3.0 V output voltage is defined as the current that causes the output voltage to drop to $90 \%$ of 3.0 V , or 2.7 V .

## INPUT AND OUTPUT CAPACITOR, RECOMMENDED SPECIFICATIONS

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise specified.
Table 5.

| Parameter | Symbol | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NOMINAL INPUT AND OUTPUT CAPACITOR RATINGS |  |  |  |  |  |
| BUCK1, BUCK2 Input Capacitor Ratings | $\mathrm{C}_{\text {MIN1, }} \mathrm{C}_{\text {MIN2 }}$ | 4.7 |  | 40 | $\mu \mathrm{F}$ |
| BUCK1, BUCK2 Output Capacitor Ratings | $\mathrm{C}_{\text {min } 1, ~} \mathrm{C}_{\text {MIN2 }}$ | 10 |  | 40 | $\mu \mathrm{F}$ |
| LDO1, LDO2 ${ }^{1}$ Input and Output Capacitor Ratings | Смinз, С Смin4 | 1.0 |  |  | $\mu \mathrm{F}$ |
| CAPACITORESR | Resr | 0.001 |  | 1 | $\Omega$ |

## ABSOLUTE MAXIMUM RATINGS

Table 6.

| Parameter | Rating |
| :--- | :--- |
| AVIN to AGND | -0.3 V to +6 V |
| VIN1, VIN2 to AVIN | -0.3 V to +0.3 V |
| PGND1, PGND2 to AGND | -0.3 V to +0.3 V |
| VIN3, VIN4, VOUT1, VOUT2, FB1, FB2, | -0.3 V to (AVIN $+0.3 \mathrm{~V})$ |
| FB3, FB4, EN1, EN2, EN3, EN4, MODE |  |
| to AGND | -0.3 V to (VIN3 $+0.3 \mathrm{~V})$ |
| VOUT3 to AGND | -0.3 V to (VIN4 $+0.3 \mathrm{~V})$ |
| VOUT4 to AGND | -0.3 V to (VIN1 $+0.3 \mathrm{~V})$ |
| SW1 to PGND1 | -0.3 V to $(\mathrm{VIN2}+0.3 \mathrm{~V})$ |
| SW2 to PGND2 | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Operating Junction Temperature |  |
| $\quad$ Range | $\mathrm{JEDEC} \mathrm{J-STD-020}$ |
| Soldering Conditions |  |

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
For detailed information on power dissipation, see the Power Dissipation and Thermal Considerations section.

## THERMAL RESISTANCE

$\theta_{\mathrm{JA}}$ is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 7. Thermal Resistance

| Package Type | $\boldsymbol{\theta}_{\mathrm{JA}}$ | $\boldsymbol{\theta}_{\mathbf{\prime c}}$ | Unit |
| :--- | :--- | :--- | :--- |
| 24-Lead, 0.5 mm pitch LFCSP | 35 | 3 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| 28-Lead TSSOP | 36 | 5 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

## ESD CAUTION

|  | ESD (electrostatic discharge) sensitive device. <br> Charged devices and circuit boards can discharge <br> without detection. Although this product features <br> patented or proprietary protection circuitry, damage <br> may occur on devices subjected to high energy ESD. <br> Therefore, proper ESD precautions should be taken to <br> avoid performance degradation or loss of functionality. |
| :--- | :--- |

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



Figure 2. LFCSP Pin Configuration—View from the Top of the Die


NOTES

1. NC = NOT INTERNALLY CONNECTED
2. IT IS RECOMMENDED THAT THE EXPOSED PAD BE SOLDERED TO THE GROUND PLANE.

Figure 3. TSSOP Pin Configuration—View from the Top of the Die

Table 8. Pin Function Descriptions

| Pin No. |  | Mnemonic | Description |
| :---: | :---: | :---: | :---: |
| LFCSP | TSSOP |  |  |
| 1 | 5 | FB4 | LDO2 Feedback Input. For device models with an adjustable output voltage, connect this pin to the middle of the LDO2 resistor divider. For device models with a factory programmed output voltage, connect FB4 to the top of the capacitor on VOUT4. |
| 2 | 6 | EN4 | LDO2 Enable Pin. High level turns on this regulator, and low level turns it off. |
| 3 | 7 | VIN2 | BUCK2 Input Supply (2.3 V to 5.5 V). Connect VIN2 to VIN1 and AVIN. |
| 4 | 8 | SW2 | BUCK2 Switching Node. |
| 5 | 9 | PGND2 | Dedicated Power Ground for BUCK2. |
| 6 | $\begin{aligned} & 4,10,11, \\ & 18,25 \end{aligned}$ | NC | No Connect. Leave this pin unconnected or connect to ground. |
| 7 | 12 | EN2 | BUCK2 Enable Pin. High level turns on this regulator, and low level turns it off. |
| 8 | 13 | FB2 | BUCK2 Feedback Input. For device models with an adjustable output voltage, connect this pin to the middle of the BUCK2 resistor divider. For device models with a fixed output voltage, leave this pin unconnected. |
| 9 | 14 | VOUT2 | BUCK2 Output Voltage Sensing Input. Connect VOUT2 to the top of the capacitor on VOUT2. |
| 10 | 15 | VOUT1 | BUCK1 Output Voltage Sensing Input. Connect VOUT1 to the top of the capacitor on VOUT1. |
| 11 | 16 | FB1 | BUCK1 Feedback Input. For device models with an adjustable output voltage, connect this pin to the middle of the BUCK1 resistor divider. For device models with a fixed output voltage, leave this pin unconnected. |
| 12 | 17 | EN1 | BUCK1 Enable Pin. High level turns on this regulator, and low level turns it off. |
| 13 | 19 | MODE | BUCK1/BUCK2 Operating Mode. MODE = high: forced PWM operation. MODE = low: auto PWM/PSM operation. |
| 14 | 20 | PGND1 | Dedicated Power Ground for BUCK1. |
| 15 | 21 | SW1 | BUCK1 Switching Node. |
| 16 | 22 | VIN1 | BUCK1 Input Supply ( 2.3 V to 5.5 V ). Connect VIN1 to VIN2 and AVIN. |
| 17 | 23 | AVIN | Analog Input Supply (2.3 V to 5.5 V). Connect AVIN to VIN1 and VIN2. |
| 18 | 24 | AGND | Analog Ground. |
| 19 | 26 | FB3 | LDO1 Feedback Input. For device models with an adjustable output voltage, connect this pin to the middle of the LDO1 resistor divider. For device models with a factory programmed output voltage, connect FB3 to the top of the capacitor on VOUT3. |
| 20 | 27 | VOUT3 | LDO1 Output Voltage. |
| 21 | 28 | VIN3 | LDO1 Input Supply (1.7 V to 5.5 V). |
| 22 | 1 | EN3 | LDO1 Enable Pin. High level turns on this regulator, and low level turns it off. |
| 23 | 2 | VIN4 | LDO2 Input Supply (1.7 V to 5.5 V). |
| 24 | 3 | VOUT4 | LDO2 Output Voltage. |
| EPAD | EPAD | EP | Exposed Pad. It is recommended that the exposed pad be soldered to the ground plane. |

## TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{V}_{\mathrm{IN} 1}=\mathrm{V}_{\mathrm{IN} 2}=\mathrm{V}_{\mathrm{IN} 3}=\mathrm{V}_{\mathrm{IN} 4}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.


Figure 4. System Quiescent Current vs. Input Voltage, Vour1 $=3.3 \mathrm{~V}$, $V_{\text {out2 }}=1.8 \mathrm{~V}, V_{\text {OUT3 }}=1.2 \mathrm{~V}, V_{\text {out4 }}=3.3 \mathrm{~V}$, All Channels Unloaded


Figure 5. BUCK1 Startup, $V_{\text {out }}=1.8 \mathrm{~V}$, $l_{\text {out }}=5 \mathrm{~mA}$


Figure 6. BUCK2 Startup, $V_{\text {out2 }}=3.3 \mathrm{~V}, \mathrm{I}_{\text {out } 2}=10 \mathrm{~mA}$


Figure 7. BUCK1 Load Regulation Across Temperature,
$V_{\text {IN }}=4.2 \mathrm{~V}, V_{\text {outl }}=3.3 \mathrm{~V}$, PWM Mode


Figure 8. BUCK2 Load Regulation Across Temperature, $V_{\text {IN }}=3.6 \mathrm{~V}$, Vout $^{2}=1.8 \mathrm{~V}$, PWM Mode


Figure 9. BUCK1 Load Regulation Across Input Voltage, $V_{\text {IN }}=3.6 \mathrm{~V}$, $\mathrm{V}_{\text {outi }}=0.8 \mathrm{~V}$, PWM Mode


Figure 10. BUCK1 Efficiency vs. Load Current, Across Input Voltage, $V_{o u t 1}=3.3 \mathrm{~V}$, Auto Mode


Figure 11. BUCK1 Efficiency vs. Load Current, Across Input Voltage, $V_{\text {out }}=3.3 \mathrm{~V}$, PWM Mode


Figure 12. BUCK2 Efficiency vs. Load Current, Across Input Voltage, $V_{\text {out2 }}=1.8 \mathrm{~V}$, Auto Mode


Figure 13. BUCK2 Efficiency vs. Load Current, Across Input Voltage, $V_{\text {out2 }}=1.8 \mathrm{~V}$, PWM Mode


Figure 14. BUCK1 Efficiency vs. Load Current, Across Input Voltage, Voutl $=0.8 \mathrm{~V}$, Auto Mode


Figure 15. BUCK1 Efficiency vs. Load Current, Across Input Voltage, $V_{\text {out1 }}=0.8 \mathrm{~V}$, PWM Mode


Figure 16. BUCK1 Efficiency vs. Load Current, Across Temperature, $V_{\text {IN }}=3.9 \mathrm{~V}, V_{\text {out }}=3.3 \mathrm{~V}$, Auto Mode


Figure 17. BUCK2 Efficiency vs. Load Current, Across Temperature, $V_{\text {out } 2}=1.8 \mathrm{~V}$, Auto Mode


Figure 18. BUCK1 Efficiency vs. Load Current, Across Temperature, $V_{\text {out } 1}=0.8 \mathrm{~V}$, Auto Mode


Figure 19. BUCK2 Switching Frequency vs. Output Current, Across Temperature, $\mathrm{V}_{\text {out } 2}=1.8 \mathrm{~V}$, PWM Mode


Figure 20. Typical Waveforms, Vout1 $=3.3$ V, loutı $=30 \mathrm{~mA}$, Auto Mode


Figure 21. Typical Waveforms, $V_{\text {out2 }}=1.8 \mathrm{~V}$, $I_{\text {out2 }}=30 \mathrm{~mA}$, Auto Mode


Figure 22. Typical Waveforms, $V_{\text {out }}=3.3 \mathrm{~V}, l_{\text {out1 }}=30 \mathrm{~mA}, \mathrm{PWM}$ Mode


Figure 23. Typical Waveforms, $V_{\text {out2 }}=1.8 \mathrm{~V}$, lout2 $=30 \mathrm{~mA}$, PWM Mode


Figure 24. BUCK1 Response to Line Transient, Input Voltage from 4.5 V to 5.0 V, Vout1 $=3.3$ V, PWM Mode


Figure 25. BUCK2 Response to Line Transient, $V_{I N 2}=4.5 \mathrm{~V}$ to 5.0 V , $V_{\text {out2 }}=1.8 \mathrm{~V}$, PWM Mode


Figure 26. BUCK1 Response to Load Transient, lout1 from 1 mA to 50 mA , $V_{\text {outl }}=3.3$ V, Auto Mode


Figure 27. BUCK2 Response to Load Transient, Ioutz from 1 mA to 50 mA , $V_{\text {out2 }}=1.8 \mathrm{~V}$, Auto Mode


Figure 28. BUCK1 Response to Load Transient, Iout1 from 20 mA to 180 mA , Vouti $=3.3$ V, Auto Mode


Figure 29. BUCK2 Response to Load Transient, loutz from 20 mA to 180 mA , $V_{\text {out2 }}=1.8 \mathrm{~V}$, Auto Mode

Figure 30. VOUT and SW Waveforms for BUCK1 and BUCK2 in PWM Mode Showing Out-of-Phase Operation


Figure 31. LDO Startup, $V_{\text {оит }}=1.8 \mathrm{~V}$


Figure 32. LDO Load Regulation Across Input Voltage, Vоит3 $=3.3 \mathrm{~V}$


Figure 33. LFCSP NMOS RDSon vs. Input Voltage Across Temperature


Figure 34. LFCSP PMOS RDSon vs. Input Voltage Across Temperature


Figure 35. LDO Load Regulation Across Temperature, $V_{\mathbb{N N}_{3}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {OUT3 }}=1.8 \mathrm{~V}$


Figure 36. LDO Line Regulation Across Output Load, Vout3 $=2.8 \mathrm{~V}$


Figure 37. LDO Ground Current vs. Output Load, $V_{\mathbb{N N}_{3}}=3.3 \mathrm{~V}, \mathrm{Vout}_{3}=2.8 \mathrm{~V}$


Figure 38. LDO Response to Load Transient, louts from 1 mA to 80 mA , $V_{\text {out } 3}=2.8 \mathrm{~V}$


Figure 39. LDO Response to Line Transient, Input Voltage from 4.5 V to 5 V , $V_{\text {оит }}=2.8 \mathrm{~V}$


Figure 40. LDO Output Noise vs. Load Current, Across Input Voltage,
$V_{\text {оиt }}=2.8 \mathrm{~V}$


Figure 41. LDO Output Noise vs. Load Current, Across Input Voltage, $V_{\text {оит }}=3.0 \mathrm{~V}$


Figure 42. LDO PSRR Across Output Load, $V_{I N 3}=3.3 V, V_{\text {оит }}=2.8 \mathrm{~V}$


Figure 43. LDO PSRR Across Output Load, $V_{\mathbb{I N} 3}=3.3 \mathrm{~V}, V_{\text {out3 }}=3.0 \mathrm{~V}$


Figure 44. LDO PSRR Across Output Load, $V_{I N 3}=5.0 \mathrm{~V}, V_{\text {out3 }}=2.8 \mathrm{~V}$


Figure 45. LDO PSRR Across Output Load, $V_{I N 3}=5.0 \mathrm{~V}, V_{\text {out3 }}=3.0 \mathrm{~V}$

## THEORY OF OPERATION



Figure 46. Functional Block Diagram

## POWER MANAGEMENT UNIT

The ADP5034 is a micropower management unit (micro PMU) combining two step-down (buck) dc-to-dc converters and two low dropout linear regulators (LDOs). The high switching frequency and tiny 24 -lead LFCSP package allow for a small power management solution.
To combine these high performance regulators into the micro PMU, there is a system controller allowing them to operate together.
The buck regulators can operate in forced PWM mode if the MODE pin is at a logic high level. In forced PWM mode, the buck switching frequency is always constant and does not change with the load current. If the MODE pin is at logic low level, the switching regulators operate in auto PWM/PSM mode. In this mode, the regulators operate at fixed PWM frequency when the load current is above the PSM current threshold. When the load current falls below the PSM current threshold, the regulator in question enters PSM, where the switching occurs in bursts. The burst repetition rate is a function of the current load and the output capacitor value.

This operating mode reduces the switching and quiescent current losses. The auto PWM/PSM mode transition is controlled independently for each buck regulator. The two bucks operate synchronized to each other.
The ADP5034 has individual enable pins (EN1 to EN4) controlling the activation of each regulator. The regulators are activated by a logic level high applied to the respective EN pin. EN1 controls BUCK1, EN2 controls BUCK2, EN3 controls LDO1, and EN4 controls LDO2.
Regulator output voltages are set through external resistor dividers or can be optionally factory programmed to default values (see the Ordering Guide section).

When a regulator is turned on, the output voltage ramp rate is controlled through a soft start circuit to avoid a large inrush current due to the charging of the output capacitors.

## Thermal Protection

In the event that the junction temperature rises above $150^{\circ} \mathrm{C}$, the thermal shutdown circuit turns off all the regulators. Extreme junction temperatures can be the result of high current operation, poor circuit board design, or high ambient temperature. A $20^{\circ} \mathrm{C}$ hysteresis is included so that when thermal shutdown occurs, the regulators do not return to operation until the on-chip temperature drops below $130^{\circ} \mathrm{C}$. When coming out of thermal shutdown, all regulators restart with soft start control.

## Undervoltage Lockout

To protect against battery discharge, undervoltage lockout (UVLO) circuitry is integrated into the system. If the input voltage on AVIN drops below a typical 2.15 V UVLO threshold, all channels shut down. In the buck channels, both the power switch and the synchronous rectifier turn off. When the voltage on AVIN rises above the UVLO threshold, the part is enabled once more.

Alternatively, the user can select device models with a UVLO set at a higher level, suitable for 5 V supply applications. For these models, the device reaches the turn-off threshold when the input supply drops to 3.65 V typical.
In case of a thermal or UVLO event, the active pull-downs (if factory enabled) are enabled to discharge the output capacitors quickly. The pull-down resistors remain engaged until the thermal fault event is no longer present or the input supply voltage falls below the $V_{\text {Por }}$ voltage level. The typical value of $V_{\text {POR }}$ is approximately 1 V .

## Enable/Shutdown

The ADP5034 has an individual control pin for each regulator. A logic level high applied to the ENx pin activates a regulator, whereas a logic level low turns off a regulator.
Figure 47 shows the regulator activation timings for the ADP5034 when all enable pins are connected to AVIN. Also shown is the active pull-down activation.


Figure 47. Regulator Sequencing on the ADP5034 (EN1 $\left.=E N 2=E N 3=E N 4=V_{\text {AVII }}\right)$

## BUCK1 AND BUCK2

The buck uses a fixed frequency and high speed current mode architecture. The buck operates with an input voltage of 2.3 V to 5.5 V .

The buck output voltage is set through external resistor dividers, shown in Figure 48 for BUCK1. The output voltage can optionally be factory programmed to default values as indicated in the Ordering Guide section. In this event, R1 and R2 are not needed, and FB1 can be left unconnected. In all cases, VOUT1 must be connected to the output capacitor. FB1 is 0.5 V .


Figure 48. BUCK1 External Output Voltage Setting

## Control Scheme

The bucks operate with a fixed frequency, current mode PWM control architecture at medium to high loads for high efficiency but shift to a power save mode (PSM) control scheme at light loads to lower the regulation power losses. When operating in fixed frequency PWM mode, the duty cycle of the integrated switches is adjusted and regulates the output voltage. When operating in PSM at light loads, the output voltage is controlled in a hysteretic manner, with higher output voltage ripple. During part of this time, the converter is able to stop switching and enters an idle mode, which improves conversion efficiency.

## PWM Mode

In PWM mode, the bucks operate at a fixed frequency of 3 MHz set by an internal oscillator. At the start of each oscillator cycle, the pFET switch is turned on, sending a positive voltage across the inductor. Current in the inductor increases until the current sense signal crosses the peak inductor current threshold that turns off the pFET switch and turns on the nFET synchronous rectifier. This sends a negative voltage across the inductor, causing the inductor current to decrease. The synchronous rectifier stays on for the rest of the cycle. The buck regulates the output voltage by adjusting the peak inductor current threshold.

## Power Save Mode (PSM)

The bucks smoothly transition to PSM operation when the load current decreases below the PSM current threshold. When either of the bucks enters PSM, an offset is induced in the PWM regulation level, which makes the output voltage rise. When the output voltage reaches a level approximately $1.5 \%$ above the PWM regulation level, PWM operation is turned off. At this point, both power switches are off, and the buck enters an idle mode. The output capacitor discharges until the output voltage falls to the PWM regulation voltage, at which point the device
drives the inductor to make the output voltage rise again to the upper threshold. This process is repeated while the load current is below the PSM current threshold.

The ADP5034 has a dedicated MODE pin controlling the PSM and PWM operation. A high logic level applied to the MODE pin forces both bucks to operate in PWM mode. A logic level low sets the bucks to operate in auto PSM/PWM.

## PSM Current Threshold

The PSM current threshold is set to 100 mA . The bucks employ a scheme that enables this current to remain accurately controlled, independent of input and output voltage levels. This scheme also ensures that there is very little hysteresis between the PSM current threshold for entry to and exit from the PSM. The PSM current threshold is optimized for excellent efficiency over all load currents.

## Oscillator/Phasing of Inductor Switching

The ADP5034 ensures that both bucks operate at the same switching frequency when both bucks are in PWM mode.
Additionally, the ADP5034 ensures that when both bucks are in PWM mode, they operate out of phase, whereby the Buck2 pFET starts conducting exactly half a clock period after the BUCK1 pFET starts conducting.

## Short-Circuit Protection

The bucks include frequency foldback to prevent output current runaway on a hard short. When the voltage at the feedback pin falls below half the target output voltage, indicating the possibility of a hard short at the output, the switching frequency is reduced to half the internal oscillator frequency. The reduction in the switching frequency allows more time for the inductor to discharge, preventing a runaway of output current.

## Soft Start

The bucks have an internal soft start function that ramps the output voltage in a controlled manner upon startup, thereby limiting the inrush current. This prevents possible input voltage drops when a battery or a high impedance power source is connected to the input of the converter.

## Current Limit

Each buck has protection circuitry to limit the amount of positive current flowing through the pFET switch and the amount of negative current flowing through the synchronous rectifier. The positive current limit on the power switch limits the amount of current that can flow from the input to the output. The negative current limit prevents the inductor current from reversing direction and flowing out of the load.

## 100\% Duty Operation

With a drop in input voltage, or with an increase in load current, the buck may reach a limit where, even with the pFET switch on $100 \%$ of the time, the output voltage drops below the desired output voltage. At this limit, the buck transitions to a mode where the pFET switch stays on $100 \%$ of the time. When

ADP5034
the input conditions change again and the required duty cycle falls, the buck immediately restarts PWM regulation without allowing overshoot on the output voltage.

## Active Pull-Downs

All regulators have optional, factory programmable, active pulldown resistors discharging the respective output capacitors when the regulators are disabled. The pull-down resistors are connected between VOUTx and AGND. Active pull-downs are disabled when the regulators are turned on. The typical value of the pull-down resistor is $600 \Omega$ for the LDOs and $75 \Omega$ for the bucks. Figure 47 shows the activation timings for the active pull-downs during regulator activation and deactivation.

## LDO1 AND LDO2

The ADP5034 contains two LDOs with low quiescent current and low dropout linear regulators, and provides up to 300 mA of output current. Drawing a low $10 \mu \mathrm{~A}$ quiescent current (typical) at no load makes the LDO ideal for battery-operated portable equipment.
Each LDO operates with an input voltage of 1.7 V to 5.5 V . The wide operating range makes these LDOs suitable for cascading configurations where the LDO supply voltage is provided from one of the buck regulators.

Each LDO output voltage is set through external resistor dividers as shown in Figure 49 for LDO1. The output voltage can optionally be factory programmed to default values as indicated in the Ordering Guide section. In this event, Ra and Rb are not needed, and FB3 must be connected to the top of the capacitor on VOUT3.


Figure 49. LDO1 External Output Voltage Setting
The LDOs also provide high power supply rejection ratio (PSRR), low output noise, and excellent line and load transient response with only a small $1 \mu \mathrm{~F}$ ceramic input and output capacitor.
LDO1 is optimized to supply analog circuits because it offers better noise performance compared to LDO2. LDO1 should be used in applications where noise performance is critical.

## APPLICATIONS INFORMATION

## BUCK EXTERNAL COMPONENT SELECTION

Trade-offs between performance parameters such as efficiency and transient response can be made by varying the choice of external components in the applications circuit, as shown in Figure 1.

## Feedback Resistors

For the adjustable model, referring to Figure 50 the total combined resistance for R1 and R2 is not to exceed $400 \mathrm{k} \Omega$.

## Inductor

The high switching frequency of the ADP5034 bucks allows for the selection of small chip inductors. For best performance, use inductor values between $0.7 \mu \mathrm{H}$ and $3 \mu \mathrm{H}$. Suggested inductors are shown in Table 9.

The peak-to-peak inductor current ripple is calculated using the following equation:

$$
I_{\text {RIPPLE }}=\frac{V_{O U T} \times\left(V_{I N}-V_{\text {OUT }}\right)}{V_{I N} \times f_{S W} \times L}
$$

where:
$f_{S W}$ is the switching frequency.
$L$ is the inductor value.
The minimum dc current rating of the inductor must be greater than the inductor peak current. The inductor peak current is calculated using the following equation:

$$
I_{\text {PEAK }}=I_{L O A D(M A X)}+\frac{I_{R I P P L E}}{2}
$$

Inductor conduction losses are caused by the flow of current through the inductor, which has an associated internal dc resistance (DCR). Larger sized inductors have smaller DCR, which may decrease inductor conduction losses. Inductor core losses are related to the magnetic permeability of the core material. Because the bucks are high switching frequency dc-to-dc converters, shielded ferrite core material is recommended for its low core losses and low EMI.

## Output Capacitor

Higher output capacitor values reduce the output voltage ripple and improve load transient response. When choosing this value, it is also important to account for the loss of capacitance due to output voltage dc bias.

Table 9. Suggested $1.0 \mu \mathrm{H}$ Inductors

| Vendor | Model | Dimensions (mm) | sat $^{(\mathbf{m A})}$ | DCR (ms) |
| :--- | :--- | :--- | :--- | :--- |
| Murata | LQM2MPN1RONGOB | $2.0 \times 1.6 \times 0.9$ | 1400 | 85 |
| Murata | LQM2HPN1ROMJOL | $2.5 \times 2.0 \times 1.1$ | 1500 | 90 |
| Murata | LQH32PN1RONN0 | $3.2 \times 2.5 \times 1.6$ | 2300 | 45 |
| Taiyo Yuden | CBC3225T1ROMR | $3.2 \times 2.5 \times 2.5$ | 2000 | 71 |
| Coilcraft | $4.0 \times 4.0 \times 2.1$ | 5400 | 11 |  |
| Coilcraft | XFL4020-102ME | $1.9 \times 2.0 \times 1.0$ | 1800 | 89 |
| Toko | XPL2010-102ML | $2.5 \times 2.0 \times 1.2$ | 1350 | 85 |

The peak-to-peak output voltage ripple for the selected output capacitor and inductor values is calculated using the following equation:

$$
V_{R I P P L E}=\frac{I_{\text {RIPPLE }}}{8 \times f_{S W} \times C_{O U T}} \approx \frac{V_{I N}}{\left(2 \pi \times f_{S W}\right)^{2} \times L \times C_{O U T}}
$$

Capacitors with lower effective series resistance (ESR) are preferred to guarantee low output voltage ripple, as shown in the following equation:

$$
E S R_{\text {COUT }} \leq \frac{V_{\text {RIPPLE }}}{I_{\text {RIPPLE }}}
$$

The effective capacitance needed for stability, which includes temperature and dc bias effects, is a minimum of $7 \mu \mathrm{~F}$ and a maximum of $40 \mu \mathrm{~F}$.
The buck regulators require $10 \mu \mathrm{~F}$ output capacitors to guarantee stability and response to rapid load variations and to transition into and out of the PWM/PSM modes. A list of suggested capacitors is shown in Table 10. In certain applications where one or both buck regulator powers a processor, the operating state is known because it is controlled by software. In this condition, the processor can drive the MODE pin according to the operating state; consequently, it is possible to reduce the output capacitor from $10 \mu \mathrm{~F}$ to $4.7 \mu \mathrm{~F}$ because the regulator does not expect a large load variation when working in PSM mode (see Figure 51).

## Input Capacitor

Higher value input capacitors help to reduce the input voltage ripple and improve transient response. Maximum input capacitor current is calculated using the following equation:

$$
I_{\text {CIN }} \geq I_{\text {LOAD }(M A X)} \sqrt{\frac{V_{\text {OUT }}\left(V_{I N}-V_{\text {OUT }}\right)}{V_{I N}}}
$$

To minimize supply noise, place the input capacitor as close as possible to the VINx pin of the buck. As with the output capacitor, a low ESR capacitor is recommended.
The effective capacitance needed for stability, which includes temperature and dc bias effects, is a minimum of $3 \mu \mathrm{~F}$ and a maximum of $10 \mu \mathrm{~F}$. A list of suggested capacitors is shown in Table 10 and Table 11.

Table 10. Suggested $10 \mu \mathrm{~F}$ Capacitors

| Vendor | Type | Model | Case <br> Size | Voltage <br> Rating <br> (V) |
| :--- | :--- | :--- | :--- | :--- |
| Murata | X5R | GRM188R60J106 | 0603 | 6.3 |
| TDK | X5R | C1608JBOJ106K | 0603 | 6.3 |
| Taiyo Yuden | X5R | JMK107BJ106MA-T | 0603 | 6.3 |
| Panasonic | X5R | ECJ1VB0J106M | 0603 | 6.3 |

Table 11. Suggested $4.7 \mu$ F Capacitors

| Vendor | Type | Model | Case <br> Size | Voltage <br> Rating <br> (V) |
| :--- | :--- | :--- | :--- | :--- |
| Murata | X5R | GRM188R60J475ME19D | 0402 | 6.3 |
| Taiyo Yuden | X5R | JMK107BJ475 | 0402 | 6.3 |
| Panasonic | X5R | ECJ-0EB0J475M | 0402 | 6.3 |

Table 12. Suggested $1.0 \mu \mathrm{~F}$ Capacitors

| Vendor | Type | Model | Case <br> Size | Voltage <br> Rating <br> $(\mathbf{V})$ |
| :--- | :--- | :--- | :--- | :--- |
| Murata | X5R | GRM155B30J105K | 0402 | 6.3 |
| Murata | X5R | GRM155R61A105KE15D | 0402 | 10.0 |
| TDK | X5R | C1005JB0J105KT | 0402 | 6.3 |
| Panasonic | X5R | ECJ0EB0J105K | 0402 | 6.3 |
| Taiyo <br> Yuden | X5R | LMK105BJ105MV-F | 0402 | 10.0 |



Figure 51. Processor System Power Management with PSM/PWM Control

## LDO EXTERNAL COMPONENT SELECTION

## Feedback Resistors

For the adjustable model, the maximum value of Rb is not to exceed $200 \mathrm{k} \Omega$ (see Figure 49).

## Output Capacitor

The ADP5034 LDOs are designed for operation with small, spacesaving ceramic capacitors, but function with most commonly used capacitors as long as care is taken with the ESR value. The ESR of the output capacitor affects stability of the LDO control loop. A minimum of $0.70 \mu \mathrm{~F}$ capacitance with an ESR of $1 \Omega$ or less is recommended to ensure that stability of the ADP5034. Transient response to changes in load current is also affected by output capacitance. Using a larger value of output capacitance improves the transient response of the ADP5034 to large changes in load current.

## Input Bypass Capacitor

Connecting a $1 \mu \mathrm{~F}$ capacitor from VIN3 and VIN4 to ground reduces the circuit sensitivity to printed circuit board (PCB) layout, especially when long input traces or high source impedance is encountered. If greater than $1 \mu \mathrm{~F}$ of output capacitance is required, increase the input capacitor to match it.

## Input and Output Capacitor Properties

Use any good quality ceramic capacitors with the ADP5034 as long as they meet the minimum capacitance and maximum ESR requirements. Ceramic capacitors are manufactured with a variety of dielectrics, each with a different behavior over temperature and applied voltage. Capacitors must have a dielectric adequate to ensure the minimum capacitance over the necessary temperature range and dc bias conditions. X5R or X7R dielectrics with a voltage rating of 6.3 V or 10 V are recommended for best performance. Y 5 V and Z 5 U dielectrics are not recommended for use with any LDO because of their poor temperature and dc bias characteristics.
Figure 52 depicts the capacitance vs. voltage bias characteristic of a $04021 \mu \mathrm{~F}, 10 \mathrm{~V}$, X5R capacitor. The voltage stability of a capacitor is strongly influenced by the capacitor size and voltage rating. In general, a capacitor in a larger package or with higher voltage rating exhibits better stability. The temperature variation of the X5R dielectric is about $\pm 15 \%$ over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range and is not a function of package or voltage rating.


Use the following equation to determine the worst-case capacitance accounting for capacitor variation over temperature, component tolerance, and voltage:

$$
C_{E F F}=C_{B I A S} \times(1-T E M P C O) \times(1-T O L)
$$

where:
$\mathrm{C}_{B I A S}$ is the effective capacitance at the operating voltage. TEMPCO is the worst-case capacitor temperature coefficient. TOL is the worst-case component tolerance.
In this example, the worst-case temperature coefficient (TEMPCO) over $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ is assumed to be $15 \%$ for an X 5 R dielectric. The tolerance of the capacitor (TOL) is assumed to be $10 \%$, and $\mathrm{C}_{\text {bias }}$ is $0.85 \mu \mathrm{~F}$ at 1.8 V as shown in Figure 52.
Substituting these values into the following equation,

$$
C_{E F F}=0.85 \mu \mathrm{~F} \times(1-0.15) \times(1-0.1)=0.65 \mu \mathrm{~F}
$$

Therefore, the capacitor chosen in this example meets the minimum capacitance requirement of the LDO over temperature and tolerance at the chosen output voltage.
To guarantee the performance of the ADP5034, it is imperative that the effects of dc bias, temperature, and tolerances on the behavior of the capacitors be evaluated for each application.

## POWER DISSIPATION AND THERMAL CONSIDERATIONS

The ADP5034 is a highly efficient $\mu$ PMU, and, in most cases, the power dissipated in the device is not a concern. However, if the device operates at high ambient temperatures and maximum loading condition, the junction temperature can reach the maximum allowable operating limit $\left(125^{\circ} \mathrm{C}\right)$.
When the temperature exceeds $150^{\circ} \mathrm{C}$, the ADP5034 turns off all the regulators, allowing the device to cool down. When the die temperature falls below $130^{\circ} \mathrm{C}$, the ADP5034 resumes normal operation.

This section provides guidelines to calculate the power dissipated in the device and ensure that the ADP5034 operates below the maximum allowable junction temperature.
The efficiency for each regulator on the ADP5034 is given by

$$
\begin{equation*}
\eta=\frac{P_{O U T}}{P_{I N}} \times 100 \% \tag{1}
\end{equation*}
$$

where:
$\eta$ is the efficiency.
$P_{I N}$ is the input power.
$P_{\text {out }}$ is the output power.
Power loss is given by

$$
\begin{equation*}
P_{\text {LOSS }}=P_{\text {IN }}-P_{\text {out }} \tag{2a}
\end{equation*}
$$

or

$$
\begin{equation*}
P_{\text {Loss }}=P_{\text {out }}(1-\eta) / \eta \tag{2b}
\end{equation*}
$$

Power dissipation can be calculated in several ways. The most intuitive and practical is to measure the power dissipated at the input and all the outputs. Perform the measurements at the worst-case conditions (voltages, currents, and temperature). The difference between input and output power is dissipated in the device and the inductor. Use Equation 4 to derive the power lost in the inductor and, from this, use Equation 3 to calculate the power dissipation in the ADP5034 buck converter.

A second method to estimate the power dissipation uses the efficiency curves provided for the buck regulator, and the power lost on each LDO can be calculated using Equation 12. When the buck efficiency is known, use Equation $2 b$ to derive the total power lost in the buck regulator and inductor, use Equation 4 to derive the power lost in the inductor, and then calculate the power dissipation in the buck converter using Equation 3. Add the power dissipated in the buck and in the two LDOs to find the total dissipated power.

Note that the buck efficiency curves are typical values and may not be provided for all possible combinations of $\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\text {out }}$, and Iour. To account for these variations, it is necessary to include a safety margin when calculating the power dissipated in the buck.
A third way to estimate the power dissipation is analytical and involves modeling the losses in the buck circuit provided by Equation 8 to Equation 11 and the losses in the LDO provided by Equation 12.

## BUCK REGULATOR POWER DISSIPATION

The power loss of the buck regulator is approximated by

$$
\begin{equation*}
P_{\text {LOSS }}=P_{D B U C K}+P_{L} \tag{3}
\end{equation*}
$$

where:
$P_{\text {DBUCK }}$ is the power dissipation on one of the ADP5034 buck regulators.
$P_{L}$ is the inductor power losses.
The inductor losses are external to the device, and they do not have any effect on the die temperature.

The inductor losses are estimated (without core losses) by

$$
\begin{equation*}
P_{L} \approx I_{o U T 1(R M S)^{2}} \times D C R_{L} \tag{4}
\end{equation*}
$$

where:
$D C R_{L}$ is the inductor series resistance.
Iouti(RMS) is the rms load current of the buck regulator.

$$
\begin{equation*}
I_{O U T 1(R M S)}=I_{O U T 1} \times \sqrt{1+\frac{r}{12}} \tag{5}
\end{equation*}
$$

where $r$ is the normalized inductor ripple current.

$$
\begin{equation*}
r=V_{\text {OUT1 }} \times(1-D) /\left(I_{\text {IOUT } 1} \times L \times f_{\text {SW }}\right) \tag{6}
\end{equation*}
$$

where:
$L$ is the inductance.
$f_{S W}$ is the switching frequency.
$D$ is the duty cycle.

$$
\begin{equation*}
D=V_{\text {out } 1} / V_{I N 1} \tag{7}
\end{equation*}
$$

ADP5034 buck regulator power dissipation, $\mathrm{P}_{\mathrm{DBUCK}}$, includes the power switch conductive losses, the switch losses, and the transition losses of each channel. There are other sources of loss, but these are generally less significant at high output load currents, where the thermal limit of the application is. Equation 8 captures the calculation that must be made to estimate the power dissipation in the buck regulator.

$$
\begin{equation*}
P_{\text {DBUCK }}=P_{\text {COND }}+P_{S W}+P_{\text {TRAN }} \tag{8}
\end{equation*}
$$

The power switch conductive losses are due to the output current, Iout1, flowing through the P-MOSFET and the N-MOSFET power switches that have internal resistance, $\mathrm{RDS}_{\text {on-p }}$ and RDSon-n. The amount of conductive power loss is found by
$P_{\text {COND }}=\left[R D S_{\text {ON }-P} \times D+R D S_{\text {ON-N }} \times(1-D)\right] \times I_{\text {OUTI }}(R M S)^{2}$
where $R D S_{O N-P}$ is approximately $0.2 \Omega$, and $R D S_{O N-N}$ is approximately $0.16 \Omega$ at $25^{\circ} \mathrm{C}$ junction temperature and VIN1 $=\mathrm{VIN} 2=$ 3.6 V. At VIN1 $=\mathrm{VIN} 2=2.3 \mathrm{~V}$, these values change to $0.31 \Omega$ and $0.21 \Omega$, respectively, and at $\mathrm{VIN} 1=\mathrm{VIN} 2=5.5 \mathrm{~V}$, the values are $0.16 \Omega$ and $0.14 \Omega$, respectively.

Switching losses are associated with the current drawn by the driver to turn on and turn off the power devices at the switching frequency. The amount of switching power loss is given by

$$
\begin{equation*}
P_{S W}=\left(C_{G A T E-P}+C_{G A T E-N}\right) \times V_{I N 1^{2}} \times f_{S W} \tag{10}
\end{equation*}
$$

where:
$C_{G A T E-P}$ is the P-MOSFET gate capacitance.
$C_{\text {GAte-N }}$ is the N-MOSFET gate capacitance.
For the ADP5034, the total of ( $\left.C_{G A T E-P}+C_{G A T E-N}\right)$ is approximately 150 pF .

The transition losses occur because the P-channel power MOSFET cannot be turned on or off instantaneously, and the SW node takes some time to slew from near ground to near Vouti (and from Vouti to ground). The amount of transition loss is calculated by

$$
\begin{equation*}
P_{\text {TRAN }}=V_{I N 1} \times I_{o U T 1} \times\left(t_{R I S E}+t_{F A L L}\right) \times f_{S W} \tag{11}
\end{equation*}
$$

where $t_{\text {RISE }}$ and $t_{\text {FALL }}$ are the rise time and the fall time of the switching node, SW. For the ADP5034, the rise and fall times of SW are in the order of 5 ns .

If the preceding equations and parameters are used for estimating the converter efficiency, it must be noted that the equations do not describe all of the converter losses, and the parameter values given are typical numbers. The converter performance also depends on the choice of passive components and board layout; therefore, a sufficient safety margin should be included in the estimate.

## LDO Regulator Power Dissipation

The power loss of a LDO regulator is given by

$$
\begin{equation*}
P_{D L D O}=\left[\left(V_{I N}-V_{\text {OUT }}\right) \times I_{\text {LOAD }}\right]+\left(V_{I N} \times I_{G N D}\right) \tag{12}
\end{equation*}
$$

where:
$I_{L O A D}$ is the load current of the LDO regulator.
$V_{\text {IN }}$ and $V_{\text {out }}$ are input and output voltages of the LDO, respectively.
$I_{G N D}$ is the ground current of the LDO regulator.
Power dissipation due to the ground current is small and it can be ignored.

The total power dissipation in the ADP5034 simplifies to

$$
\begin{equation*}
P_{D}=P_{D B U C K I}+P_{D B U C K 2}+P_{D L D O 1}+P_{D L D O 2} \tag{13}
\end{equation*}
$$

## JUNCTION TEMPERATURE

In cases where the board temperature, $T_{A}$, is known, the thermal resistance parameter, $\theta_{J A}$, can be used to estimate the junction temperature rise. $T_{J}$ is calculated from $T_{A}$ and $P_{D}$ using the formula

$$
\begin{equation*}
T_{J}=T_{A}+\left(P_{D} \times \theta_{J A}\right) \tag{14}
\end{equation*}
$$

Refer to Table 7 for the thermal resistance values of the LFCSP and TSSOP packages. A very important factor to consider is that $\theta_{\text {IA }}$ is based on a 4-layer $4 \mathrm{in} \times 3 \mathrm{in}, 2.5 \mathrm{oz}$ copper, as per JEDEC standard, and real applications may use different sizes and layers. It is important to maximize the copper used to remove the heat from the device. Copper exposed to air dissipates heat better than copper used in the inner layers. The exposed pad should be connected to the ground plane with several vias.

If the case temperature can be measured, the junction temperature is calculated by

$$
\begin{equation*}
T_{J}=T_{C}+\left(P_{D} \times \theta_{J C}\right) \tag{15}
\end{equation*}
$$

where $T_{C}$ is the case temperature and $\theta_{J C}$ is the junction-to-case thermal resistance provided in Table 7.
When designing an application for a particular ambient temperature range, calculate the expected ADP5034 power dissipation ( $\mathrm{P}_{\mathrm{D}}$ ) due to the losses of all channels by using the Equation 8 to Equation 13. From this power calculation, the junction temperature, $\mathrm{T}_{\mathrm{J}}$, can be estimated using Equation 14.
The reliable operation of the converter and the two LDO regulators can be achieved only if the estimated die junction temperature of the ADP5034 (Equation 14) is less than $125^{\circ}$ C. Reliability and mean time between failures (MTBF) are highly affected by increasing the junction temperature. Additional information about product reliability can be found from the ADI Reliability Handbook, which can be found at www.analog.com/reliability_handbook.

## PCB LAYOUT GUIDELINES

Poor layout can affect ADP5034 performance, causing electromagnetic interference (EMI) and electromagnetic compatibility (EMC) problems, ground bounce, and voltage losses. Poor layout can also affect regulation and stability. A good layout is implemented using the following guidelines. Also, refer to the UG-271 and UG-439 user guide.

- Place the inductor, input capacitor, and output capacitor close to the IC using short tracks. These components carry high switching frequencies, and large tracks act as antennas.
- Route the output voltage path away from the inductor and SW node to minimize noise and magnetic interference.
- Maximize the size of ground metal on the component side to help with thermal dissipation.
- Use a ground plane with several vias connecting to the component side ground to further reduce noise interference on sensitive circuit nodes.
- Connect VIN1, VIN2, and AVIN together close to the IC using short tracks.


## TYPICAL APPLICATION SCHEMATICS



Figure 53. ADP5034 Fixed Output Voltages with Enable Pins


Figure 54. ADP5034 Adjustable Output Voltages with Enable Pins

## BILL OF MATERIALS

Table 13.

| Reference | Value | Part Number | Vendor | Package or Dimension (mm) |
| :--- | :--- | :--- | :--- | :--- |
| CAVIN | $0.1 \mu \mathrm{~F}, \mathrm{X} 5 \mathrm{R}, 6.3 \mathrm{~V}$ | JMK105BJ104MV-F | Taiyo-Yuden | 0402 |
| C3, C4, C7, C8 | $1 \mu \mathrm{~F}, \mathrm{X} 5 \mathrm{R}, 6.3 \mathrm{~V}$ | LMK105BJ105MV-F | Taiyo-Yuden | 0402 |
| C1, C2 | $4.7 \mu \mathrm{~F}, \mathrm{X} 5 \mathrm{R}, 6.3 \mathrm{~V}$ | ECJ-0EB0J475M | Panasonic-ECG | 0402 |
| C5, C6 | $10 \mu \mathrm{~F}, \mathrm{X} 5 \mathrm{R}, 6.3 \mathrm{~V}$ | JMK107BJ106MA-T | Taiyo-Yuden | 0603 |
| L1, L2 | $1 \mu \mathrm{H}, 0.18 \Omega, 850 \mathrm{~mA}$ | BRC1608T1R0M | Taiyo-Yuden | 0603 |
|  | $1 \mu \mathrm{H}, 0.085 \Omega, 1400 \mathrm{~mA}$ | LQM2MPN1R0NG0B | Murata | $2.0 \times 1.6 \times 0.9$ |
|  | $1 \mu \mathrm{H}, 0.09 \Omega, 1500 \mathrm{~mA}$ | LQM2HPN1R0MJOL | Murata | $2.5 \times 2.0 \times 1.1$ |
|  | $1 \mu \mathrm{H}, 0.059 \Omega, 900 \mathrm{~mA}$ | EPL2014-102ML | Coilcraft | $2.0 \times 2.0 \times 1.4$ |
|  | $1 \mu \mathrm{H}, 0.086 \Omega, 1350 \mathrm{~mA}$ | MDT2520-CN | Toko | $2.5 \times 2.0 \times 1.2$ |
| IC1 | Four-regulator micro PMU | ADP5034 | Analog Devices | $24-l e a d$ LFCSP |

## OUTLINE DIMENSIONS



COMPLIANT TO JEDEC STANDARDS MO-220-WGGD-8.
Figure 55. 24-Lead Lead Frame Chip Scale Package [LFCSP_WQ]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body, Very Very Thin Quad
(CP-24-10)
Dimensions shown in millimeters


Figure 55. 28-Lead Thin Shrink Small Outline with Exposed Pad Package [TSSOP_EP]
$9.7 \mathrm{~mm} \times 6.4 \mathrm{~mm}$ Body, (RE-28-1)
Dimensions shown in millimeters

## ORDERING GUIDE

| Model ${ }^{1}$ | Temperature Range | Output <br> Voltage (V) ${ }^{\mathbf{2}}$ | UVLO ${ }^{3}$ | Active PullDown ${ }^{4}$ | Package Description | Package Option |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ADP5034ACPZ-R2 | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | Adjustable | Low | Enabled on buck channels only | 24-Lead Lead Frame Chip Scale Package (LFCSP_WQ) | CP-24-10 |
| ADP5034ACPZ-R7 | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | Adjustable | Low | Enabled on buck channels only | 24-Lead Lead Frame Chip Scale Package (LFCSP_WQ) | CP-24-10 |
| ADP5034ACPZ-1-R7 | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $\begin{aligned} & \text { VOUT1 }=1.2 \mathrm{~V} \\ & \text { VOUT2 }=3.3 \mathrm{~V} \\ & \text { VOUT3 }=2.8 \mathrm{~V} \\ & \text { VOUT4 }=1.8 \mathrm{~V} \end{aligned}$ | Low | Enabled on buck channels only | 24-Lead Lead Frame Chip Scale Package (LFCSP_WQ) | CP-24-10 |
| ADP5034ACPZ-2-R7 | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | Adjustable | High | Enabled on buck channels only | 24-Lead Lead Frame Chip Scale Package (LFCSP_WQ) | CP-24-10 |
| ADP5034ACPZ-3-R7 | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | Adjustable | High | Enabled on all channels | 24-Lead Lead Frame Chip Scale Package (LFCSP_WQ) | CP-24-10 |
| ADP5034AREZ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | Adjustable | Low | Enabled on all channels | 28-Lead TSSOP Package (TSSOP_EP) | RE-28-1 |
| ADP5034AREZ-R7 | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | Adjustable | Low | Enabled on all channels | 28-Lead TSSOP Package (TSSOP_EP) | RE-28-1 |
| ADP5034AREZ-1 | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | Adjustable | High | Enabled on all channels | 28-Lead TSSOP Package (TSSOP_EP) | RE-28-1 |
| ADP5034AREZ-1-R7 | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | Adjustable | High | Enabled on all channels | 28-Lead TSSOP Package (TSSOP_EP) | RE-28-1 |
| ADP5034-1-EVALZ ADP5034RE-EVALZ |  |  |  |  | Evaluation Board for ADP5034ACPZ-R7 Evaluation Board for ADP5034AREZ-R7 |  |

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.
${ }^{2}$ For additional options, contact a local sales or distribution representative. Additional options available are:
BUCK1 and BUCK2: 3.3 V, 3.0 V, 2.8 V, 2.5 V, 2.3 V, 2.0 V, 1.8 V, 1.6 V, 1.5 V, 1.4 V, 1.3 V, 1.2 V, 1.1 V, 1.0 V, 0.9 V , or adjustable. LDO1 and LDO2: 3.3 V, 3.0 V, 2.8 V, 2.5 V, 2.25 V, 2.0 V, 1.8 V, 1.7 V, 1.6 V, 1.5 V, 1.2 V, 1.1 V, 1.0 V, 0.9 V, 0.8 V, or adjustable.
${ }^{3}$ UVLO: low or high.
${ }^{4}$ BUCK1, BUCK2, both LDO1 and LDO2: Active pull-down resistor is programmable to be either enabled or disabled.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

