1.0 V Precision Low Noise Shunt Voltage Reference

FEATURES

Precision 1.000 V voltage reference

Ultracompact $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ SOT- 23 package
No external capacitor required
Low output noise: $\mathbf{4 \mu V} \mathbf{p - p}$ (0.1 Hz to 10 Hz)
Initial accuracy: $\pm 0.35 \%$ maximum
Temperature coefficient: $70 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum
Operating current range: $\mathbf{1 0 0} \mu \mathrm{A}$ to 10 mA
Output impedance: 0.3Ω maximum
Temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

APPLICATIONS

Precision data acquisition systems

Battery-powered equipment
Cellular phone
Notebook computer
PDA
GPS
3 V/5 V, 8-/12-bit data converters
Portable medical instruments
Industrial process control systems
Precision instruments

GENERAL DESCRIPTION

Designed for space critical applications, the ADR510 is a low voltage (1.000 V), precision shunt-mode voltage reference in an ultracompact ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$) SOT-23-3 package. The ADR510 features low temperature drift $\left(70 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$, high accuracy ($\pm 0.35 \%$) , and ultralow noise ($4 \mu \mathrm{~V} p-\mathrm{p}$) performance.

The ADR510 advanced design eliminates the need for an external capacitor, yet it is stable with any capacitive load. The minimum operating current increases from $100 \mu \mathrm{~A}$ to a maximum of 10 mA . This low operating current and ease of use make the ADR510 ideally suited for handheld battery-powered applications.
A TRIM terminal is available on the ADR510 to provide adjustment of the output voltage over $\pm 0.5 \%$ without affecting the temperature coefficient of the device. This feature provides users with the flexibility to trim out any system errors.

PIN CONFIGURATION

Figure 1. 3-Lead SOT-23-3

Figure 2. Typical Operating Circuit
Table 1. ADR510

Part	Output Voltage, $V_{\text {out }}$	Initial Accuracy		Temperature Coefficient
ADR510A	1.000 V	3.5 mV	0.35%	$70 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Rev. B

ADR510

TABLE OF CONTENTS

Features1
Applications. 1
Pin Configuration 1
General Description 1
Revision History 2
Specifications 3
Electrical Characteristics 3
Absolute Maximum Ratings 4
Thermal Resistance 4
ESD Caution 4
Typical Performance Characteristics 5
REVISION HISTORY
9/07—Rev. A to Rev. B
Changes to Adjustable Precision Voltage Source Section 8
Changes to Figure 11 8
Changes to Figure 12. 8
4/07-Rev. 0 to Rev. A
Changes to Table 1 1
Changes to Table 3 and Table 4.
Changes to Figure 4, Figure 5, Figure 6, and Figure 7 5
Changes to Thermal Hysteresis Section 7
Changes to Figure 11 8
Changes to Figure 14 and Equation 5 9
Changes to Ordering Guide 10
8/03-Revision 0: Initial Version
Parameter Definitions 7
Temperature Coefficient 7
Thermal Hysteresis 7
Applications Information 8
Adjustable Precision Voltage Source 8
Output Voltage Trim 8
Using the ADR510 with Precision Data Converters 8
Precise Negative Voltage Reference 9
Outline Dimensions 10
Ordering Guide 10

SPECIFICATIONS
 ELECTRICAL CHARACTERISTICS

$\mathrm{I}_{\mathrm{IN}}=100 \mu \mathrm{~A}$ to $10 \mathrm{~mA} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 2.

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Output Voltage ${ }^{1}$	Vout		0.9965	1.0	1.0035	V
Initial Accuracy	Vouterr		-3.5		+3.5	mV
	Vouterr\%		-0.35		+0.35	\%
Temperature Coefficient, A Grade	TCV ${ }_{\text {out }}$	$0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$			70	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
		$-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$			85	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Output Voltage Change vs.	$\Delta V_{\text {R }}$	$\mathrm{lin}_{\mathrm{N}}=0.1 \mathrm{~mA}$ to 10 mA			3	mV
Dynamic Output Impedance	$\left(\Delta V_{R} / \Delta l_{R}\right)$	$\mathrm{lin}^{\mathrm{N}}=1 \mathrm{~mA} \pm 100 \mu \mathrm{~A}$			0.3	Ω
Minimum Operating Current	In	$0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$	100			$\mu \mathrm{A}$
Voltage Noise	$e_{N} \mathrm{p}-\mathrm{p}$	$\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz		4		$\mu \mathrm{V}$ p-p
Turn-On Settling Time ${ }^{2}$	t_{R}	To within 0.1% of output		10		
Output Voltage Hysteresis	Vout_hrs			50		ppm

[^0]
ADR510

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
Reverse Current	25 mA
Forward Current	20 mA
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec)	$300^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Package power dissipation $=\left(\mathrm{T}_{\text {IMAX }}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$.

Table 4. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}$	$\boldsymbol{\theta}_{\mathbf{J c}}$	Unit
3-Lead SOT-23-3 (RT-3)	230	146	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. Typical Vout vs. Temperature

Figure 5. Turn-On Time with 1μ F Input Capacitor

Figure 6. Turn-Off Time

Figure 7. Turn-Off Time with 1μ F Input Capacitor

Figure 8. Output Response to $100 \mu \mathrm{~A}$ Input Current Change

ADR510

Figure 9. Output Response to $100 \mu \mathrm{~A}$ Input Current Change with 1μ F Capacitor

Figure 10.1 Hz to 10 Hz Noise

PARAMETER DEFINITIONS temperature coefficient

This is the change of output voltage with respect to the operating temperature changes, normalized by the output voltage at $25^{\circ} \mathrm{C}$. This parameter is expressed in parts per million/degrees Celsius ($\mathrm{ppm} /{ }^{\circ} \mathrm{C}$) and can be determined with the following equation:

$$
\begin{equation*}
T C V_{\text {OUT }}\left[\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right]=\frac{V_{\text {OUT }}(T 2)-V_{\text {OUT }}(T 1)}{V_{\text {OUT }}\left(25^{\circ} \mathrm{C}\right) \times(T 2-T 1)} \times 10^{6} \tag{1}
\end{equation*}
$$

where:
$V_{\text {OUT }}\left(25^{\circ} \mathrm{C}\right)$ is the output voltage at $25^{\circ} \mathrm{C}$.
$\operatorname{Vout}\left(T_{1}\right)$ is the output voltage at Temperature 1.
$\operatorname{Vout}\left(T_{2}\right)$ is the output voltage at Temperature 2.

THERMAL HYSTERESIS

Thermal hysteresis is the change of output voltage after the device is cycled through the temperature from $25^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ and back to $25^{\circ} \mathrm{C}$.

$$
\begin{align*}
& V_{\text {OUT_HYS }}=V_{\text {OUT }}\left(25^{\circ} \mathrm{C}\right)-V_{\text {OUT_TC }} \\
& V_{\text {OUT_HYS }}[\mathrm{ppm}]=\frac{V_{\text {OUT }}\left(25^{\circ} \mathrm{C}\right)-V_{\text {OUT_TC }}}{V_{\text {OUT }}\left(25^{\circ} \mathrm{C}\right)} \times 10^{6} \tag{2}
\end{align*}
$$

where:

$V_{\text {OUT_TC }}$ is the output voltage at $25^{\circ} \mathrm{C}$ after temperature cycle at $+25^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and back to $+25^{\circ} \mathrm{C}$.

APPLICATIONS INFORMATION

The ADR510 is a 1.0 V precision shunt voltage reference designed to operate without an external output capacitor between the positive terminal and the negative terminal for stability. An external capacitor can be used for additional filtering of the supply.
As with all shunt voltage references, an external bias resistor ($\mathrm{R}_{\text {BIAS }}$) is required between the supply voltage and the ADR510 (see Figure 2). $\mathrm{R}_{\text {BIAS }}$ sets the current that is required to pass through the load $\left(\mathrm{I}_{\mathrm{L}}\right)$ and the ADR510 $\left(\mathrm{I}_{\mathrm{Q}}\right)$. The load and the supply voltage can vary, thus Rbias is chosen based on the following conditions:

- Rbias must be small enough to supply the minimum IQ current to the ADR510 even when the supply voltage is at minimum value and the load current is at maximum value.
- $\quad R_{\text {bias }}$ also needs to be large enough so that I_{Q} does not exceed 10 mA when the supply voltage is at its maximum value and the load current is at its minimum value.

Given these conditions, $\mathrm{R}_{\text {BIAS }}$ is determined by the supply voltage $\left(\mathrm{V}_{\mathrm{S}}\right)$, the load and operating current $\left(\mathrm{I}_{\mathrm{L}}\right.$ and $\left.\mathrm{I}_{\mathrm{Q}}\right)$ of the ADR510, and the ADR510 output voltage.

$$
\begin{equation*}
R_{B I A S}=\frac{V_{S}-V_{O U T}}{I_{L}+I_{Q}} \tag{3}
\end{equation*}
$$

ADJUSTABLE PRECISION VOLTAGE SOURCE

The ADR510, combined with a precision low input bias op amp such as the AD860x, can be used to output a precise adjustable voltage. Figure 11 illustrates implementation of this application using the ADR510.
Output of the op amp, Vout, is determined by the gain of the circuit, which is completely dependent on the R2 and R1 resistors.

$$
\begin{equation*}
V_{\text {OUT }}=1+\frac{R 2}{R 1} \tag{4}
\end{equation*}
$$

An additional capacitor in parallel with R 2 can be added to filter out high frequency noise. The value of C 2 is dependent on the value of R2.

Figure 11. Adjustable Precision Voltage Source

OUTPUT VOLTAGE TRIM

Using a mechanical or digital potentiometer, the output voltage of the ADR510 can be trimmed $\pm 0.5 \%$. The circuit in Figure 12 illustrates how the output voltage can be trimmed using a $10 \mathrm{k} \Omega$ potentiometer. Note that trimming using other resistor values may not produce an accurate output from the ADR510.

Figure 12. Output Voltage Trim

USING THE ADR510 WITH PRECISION DATA CONVERTERS

The compact ADR510 and its low minimum operating current requirement make it ideal for use in battery-powered portable instruments, such as the AD7533 CMOS multiplying DAC, that use precision data converters.
Figure 13 shows the ADR510 serving as an external reference to the AD7533, a CMOS multiplying DAC. Such a DAC requires a negative voltage input in order to provide a positive output range. In this application, the ADR510 is supplying a -1.0 V reference to the REF input of the AD7533.

Figure 13. ADR510 as a Reference for a 10-Bit CMOS DAC (AD7533)

PRECISE NEGATIVE VOLTAGE REFERENCE

The ADR510 is suitable for use in applications where a precise negative voltage reference is desired, including the application detailed in Figure 13.

Figure 14 shows the ADR510 configured to provide an output of -1.0 V .

Because the ADR510 characteristics resemble those of a Zener diode, the cathode shown in Figure 14 is 1.0 V higher with respect to the anode ($\mathrm{V}+$ with respect to V - on the ADR510 package). Because the cathode of the ADR510 is tied to ground, the anode must be -1.0 V .

R1 in Figure 14 should be chosen so that $100 \mu \mathrm{~A}$ to 10 mA is provided to properly bias the ADR510.

$$
\begin{equation*}
R 1=\frac{-1-\left(-V_{D D}\right)}{I} \tag{5}
\end{equation*}
$$

The R1 resistor should be chosen so that power dissipation is at a minimum. An ideal resistor value can be determined through manipulation of Equation 5.

ADR510

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS TO-236-AB
Figure 15. 3-Lead Small Outline Transistor Package [SOT-23-3] (RT-3)
Dimensions shown in millimeters

ORDERING GUIDE

Model	Output Voltage (Vout)	Initial Accuracy		Temperature Coefficient	Temperature Range	Package Description	Package Option	Ordering Quantity	Branding
ADR510ART-REEL7	1.0 V	3.5 mV	0.35\%	$70 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	3-Lead SOT-23-3	RT-3	3,000	RAA
ADR510ART-R2	1.0 V	3.5 mV	0.35\%	$70 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	3-Lead SOT-23-3	RT-3	250	RAA
ADR510ARTZ-REEL71	1.0 V	3.5 mV	0.35\%	$70 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	3-Lead SOT-23-3	RT-3	3,000	RAA\#
ADR510ARTZ-R2 ${ }^{1}$	1.0 V	3.5 mV	0.35\%	$70 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	3-Lead SOT-23-3	RT-3	250	RAA\#

[^1]\square ADR510

NOTES

ADR510

NOTES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Voltage References category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
REF01J/883 5962-8686103XC NCV431BVDMR2G LT6654AMPS6-2.048\#TRMPBF SCV431AIDMR2G SC431ILPRAG AP432AQG-7 TL431-A MCP1502T-18E/CHY MCP1502T-40E/CHY TL431ACZ KA431SLMF2TF KA431SMF2TF KA431SMFTF LM4041C12ILPR LM4120AIM5-2.5/NOP LM431SCCMFX REF5040MDREP REF3012AIDBZR LM285BXMX-1.2/NOPB LM385BM-2.5/NOPB LM4040AIM3-10.0 LM4040BIM3-4.1 LM4040CIM3-10.0 LM4040CIM3X-2.0/NOPB LM4041BSD-122GT3 LM4041QDIM3-ADJ/NO LM4050QAEM3X4.1/NOPB LM4051BIM3-ADJ/NOPB LM4051CIM3X-1.2/NOPB LM4128CMF-1.8/NOPB LM4132DMF-1.8/NOPB LM4132EMF-1.8/NOPB LM4132EMF-2.0/NOPB LM4140CCMX-1.2/NOPB LM385BD-2.5R2G LM385M-2.5/NOPB LM4030AMF4.096/NOPB LM4040D30ILPR LM4051CIM3X-ADJ/NOPB AP432YG-13 AS431ANTR-G1 AS431BZTR-E1 AN431AN-ATRG1 AP431IBNTR-G1 AS431ARTR-G1 AS431BNTR-G1 TL431AIZ AZ431AN-ATRG1 AZ431AZ-ATRE1

[^0]: ${ }^{1}$ The forward diode voltage characteristic at -1 mA is typically 0.65 V .
 ${ }^{2}$ Measured without a load capacitor.

[^1]: ${ }^{1} Z=$ RoHS Compliant Part. \# denotes lead free, may be top or bottom marked.

