Data Sheet

FEATURES

Nonreflective 50Ω design

Low insertion loss: 0.8 dB at $\mathbf{8 ~ G H z}$
High isolation: $\mathbf{4 5} \mathbf{~ d B}$ at $\mathbf{8 ~ G H z}$
High input linearity
P1dB: $\mathbf{3 9} \mathbf{~ d B m}$
IP3: 60 dBm typical
High power handling
35 dBm insertion loss path
27 dBm hot switching
ESD rating: $\mathbf{2}$ kV (Class 2) HBM
No low frequency spurious
0.05 dB RF settling time: 375 ns
0.1 dB RF settling time: $\mathbf{3 0 0}$ ns

16-lead, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ LFCSP
Pin-compatible with HMC1118, low frequency cutoff version

APPLICATIONS

Test instrumentation

Microwave radios and very small aperture terminals (VSATs)
Military radios, radars, and electronic counter measures (ECMs)
Fiber optics and broadband telecommunications

GENERAL DESCRIPTION

The ADRF5019 is a nonreflective, single pole, double throw (SPDT) RF switch manufactured in a silicon process.

The ADRF5019 operates from 100 MHz to 13 GHz with better than 0.8 dB insertion loss and 45 dB of isolation at 8 GHz . The ADRF5019 has a nonreflective design, and the RF ports are internally terminated to 50Ω.
The ADRF5019 switch requires a dual supply voltage of +3.3 V and -2.5 V and positive control voltage inputs. This switch employs complementary metal-oxide semiconductor (CMOS)compatible and low voltage transistor transistor logic (LVTTL)compatible controls.

The ADRF5019 can also operate with a single positive supply voltage (V_{DD}) applied. The negative supply voltage (V_{SS}) is tied to ground. Even in single-supply operation mode, the ADRF5019 can cover the 100 MHz to 13 GHz operating frequency and maintain good power handling performance. See the Applications Information section for more details.

The ADRF5019 is pin-compatible with the HMC1118, the low frequency cutoff version, which operates from 9 kHz to 13.0 GHz .
The ADRF5019 comes in a 16-lead, lead frame chip scale package (LFCSP) and operates from $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.

Rev. 0

ADRF5019

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Electrical Specifications 3
Absolute Maximum Ratings 5
Thermal Resistance 5
Power Derating Curves. 5
ESD Caution 5
Pin Configuration and Function Descriptions. 6
Interface Schematics 6
Typical Performance Characterics7
Insertion Loss, Return Loss, and Isolation 7
Input Compression and Input Third-Order Intercept 8
Theory of Operation 10
RF Input and Output 10
Power Supply 10
Applications Information 11
Layout Considerations 11
Board Layout 11
RF and Digital Controls 11
Outline Dimensions 12
Ordering Guide 12

REVISION HISTORY

8/2019—Revision 0: Initial Version

ADRF5019

SPECIFICATIONS

ELECTRICAL SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-2.5 \mathrm{~V}, \mathrm{LS}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTRL}}=0 \mathrm{~V}$ or 3.3 V , and $\mathrm{T}_{\mathrm{CASE}}=25^{\circ} \mathrm{C}$ in a 50Ω system, unless otherwise noted.
Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
FREQUENCY RANGE	f		100		13,000	MHz
INSERTION LOSS Between RFC and RF1 or RFC and RF2 (On)	IL	100 MHz to 3 GHz 100 MHz to 8 GHz 100 MHz to 10 GHz 100 MHz to 13 GHz		$\begin{aligned} & 0.6 \\ & 0.8 \\ & 1.0 \\ & 1.5 \end{aligned}$		dB dB dB dB
RETURN LOSS Between RFC and RF1 or RFC and RF2 (On) RF1 or RF2 (Off)	RL	100 MHz to 3 GHz 100 MHz to 8 GHz 100 MHz to 13 GHz 100 MHz to 3 GHz 100 MHz to 8 GHz 100 MHz to 13 GHz		$\begin{aligned} & 26 \\ & 22 \\ & 9 \\ & 26 \\ & 14 \\ & 5 \end{aligned}$		
ISOLATION Between RFC and RF1 or RCF and RF2 (Off)		100 MHz to 3 GHz 100 MHz to 8 GHz 100 MHz to 10 GHz 100 MHz to 13 GHz		$\begin{aligned} & 50 \\ & 45 \\ & 35 \\ & 25 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
SWITCHING CHARACTERISTICS Dual Supply Rise Time and Fall Time On Time and Off Time RF Settling Time $0.1 \mathrm{~dB}$ $0.05 \mathrm{~dB}$ Single Supply Rise Time and Fall Time On Time and Off Time	$\mathrm{t}_{\text {RISE, }}, \mathrm{t}_{\text {FALL }}$ ton, toff $\mathrm{t}_{\text {RISE, }} \mathrm{t}_{\text {fall }}$ ton, toff	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-2.5 \mathrm{~V}$ 10% to 90% of RF output 50% of triggered digital control input voltage ($\mathrm{V}_{\text {сть }}$) to 90% of RF output 50% of triggered $\mathrm{V}_{\text {cı }}$ to 0.1 dB of final RF output 50% of triggered $V_{\text {ctı }}$ to 0.05 dB of final RF output $V_{D D}=3.3 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$ 10% to 90% of RF output 50% of triggered $\mathrm{V}_{\text {CTL }}$ to 90% of RF output		$\begin{aligned} & 35 \\ & 150 \\ & \\ & 300 \\ & 375 \\ & \\ & 180 \\ & 285 \end{aligned}$		ns ns ns ns ns ns
INPUT LINEARITY ${ }^{1}$ Dual Supply Input Compression $0.1 \mathrm{~dB}$ 1 dB Intermodulation Distortion Input Third-Order Intercept Single Supply Input Compression 0.1 dB 1 dB Intermodulation Distortion Input Third-Order Intercept	P0.1dB P1dB IIP3 P0.1dB P1dB IIP3	$\begin{aligned} & 100 \mathrm{MHz} \text { to } 13 \mathrm{GHz} \\ & \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-2.5 \mathrm{~V} \end{aligned}$ Two tone input power $=12 \mathrm{dBm}$ each tone, $\begin{aligned} & \Delta \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V} D \mathrm{DD}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \end{aligned}$ Two tone input power $=12 \mathrm{dBm}$ each tone, $\Delta f=1 \mathrm{MHz}$		38 60 25 28 55		dBm dBm dBm dBm dBm dBm
SUPPLY CURRENT Positive Supply Current Negative Supply Current	$\begin{aligned} & \mathrm{lod} \\ & \mathrm{ISS} \\ & \hline \end{aligned}$	V_{DD} pin and $\mathrm{V}_{\text {S }}$ pin		$\begin{aligned} & 20 \\ & 0.5 \\ & \hline \end{aligned}$		$\begin{array}{r} \mu \mathrm{A} \\ \mu \mathrm{~A} \end{array}$

${ }^{1}$ For input linearity performance vs. frequency, see Figure 13 to Figure 20.
${ }^{2}$ For power derating vs. frequency, see Figure 2 and Figure 3. Power derating is applicable for insertion loss path, terminated path, and hot switching power specifications.
${ }^{3}$ For operation at $105^{\circ} \mathrm{C}$, the power handling degrades from the $\mathrm{T}_{\text {CASE }}=85^{\circ} \mathrm{C}$ specification by 3 dB .

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Positive Supply Voltage	-0.3 V to +3.7 V
Negative Supply Voltage	-2.8 V to +0.3 V
Digital Control Inputs	
Voltage	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Current	3 mA
RF Input Power, Dual Supply ${ }^{1}\left(V_{D D}=3.3 \mathrm{~V}\right.$, $\mathrm{V}_{\mathrm{SS}}=-2.5 \mathrm{~V}, \mathrm{f}=2 \mathrm{GHz}$ at $\mathrm{T}_{\text {CASE }}=85^{\circ} \mathrm{C}^{2}$)	
Insertion Loss Path	37 dBm
Isolation Path	28 dBm
Hot Switching	30 dBm
RF Input Power, Dual Supply ${ }^{1}\left(\mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}\right.$, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{f}=2 \mathrm{GHz}$ at $\mathrm{T}_{\text {CASE }}=85^{\circ} \mathrm{C}^{2}$)	
Insertion Loss Path	28 dBm
Isolation Path	23 dBm
Hot Switching	23 dBm
RF Input Power Under Unbiased Condition (VDD, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$)	23 dBm
Temperature	
Junction, $\mathrm{T}^{\text {J }}$	$135^{\circ} \mathrm{C}$
Storage Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Reflow	$260^{\circ} \mathrm{C}$
Electrostatic Discharge (ESD) Sensitivity	
Human Body Model (HBM)	2 kV (Class 2)

${ }^{1}$ For power derating vs. frequency, see Figure 2 and Figure 3. Power derating is applicable for insertion loss path, terminated path, and hot switching power specifications.
${ }^{2}$ For operation at $105^{\circ} \mathrm{C}$, the power handling degrades from the $\mathrm{T}_{\text {CASE }}=85^{\circ} \mathrm{C}$ specification by 3 dB .
Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal resistance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.
θ_{JC} is the junction to case bottom (channel to package bottom) thermal resistance.

Table 3. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathbf{\prime}}$	Unit
CP-16-38		
\quad Through Path	106	${ }^{\circ} \mathrm{C} / \mathrm{W}$
\quad Terminated Path	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$

POWER DERATING CURVES

Figure 2. Power Derating vs. Frequency, Low Frequency Detail, $T_{\text {CASE }}=85^{\circ} \mathrm{C}$

Figure 3. Power Derating vs. Frequency, High Frequency Detail, $T_{\text {CASE }}=85^{\circ} \mathrm{C}$

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 4. Pin Configuration (Top View)
Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1,2, 4 to 6, 8, 13, 15, 16	GND	Ground. These pins must be connected to the RF and dc ground of the PCB.
3	RFC	RF Common Port. This pin is dc-coupled to 0 V and ac matched to 50Ω. No dc blocking capacitor is required when the RF line potential is equal to 0 V dc. See Figure 5 for the interface schematic.
7	RF2	RF Throw Port 2. This pin is dc-coupled to 0 V and ac matched to 50Ω. No dc blocking capacitor is required when the RF line potential is equal to 0 V dc. See Figure 5 for the interface schematic.
9	$\mathrm{V}_{\text {Ss }}$	Negative Supply Voltage Pin. See Figure 8 for the interface schematic.
10	VCTRL	Control Input Pin. See Figure 6 for interface schematic. See Table 5 for the truth table.
11	LS	Logic Select Input Pin. See Figure 6 for the interface schematic. See Table 5 for the truth table.
12	$V_{\text {DD }}$	Positive Supply Voltage Pin. See Figure 7 for the interface schematic.
14	RF1	RF Throw Port 1 . This pin is dc-coupled to 0 V and ac matched to 50Ω. No dc blocking capacitor is required when the RF line potential is equal to 0 V dc. See Figure 5 for the interface schematic.
	EPAD	Exposed Pad. The exposed pad must be connected to the RF and dc ground of the PCB.

INTERFACE SCHEMATICS

Figure 5. RFC, RF1, and RF2 Pin Interface Schematic

Figure 6. Digital Pins Interface Schematic

Figure 7. VDD Pin Interface Schematic

Figure 8. Vss Pin Interface Schematic

TYPICAL PERFORMANCE CHARACTERICS

INSERTION LOSS, RETURN LOSS, AND ISOLATION

$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTRL}}$ and $\mathrm{LS}=0 \mathrm{~V}$ or V_{DD}, and $\mathrm{T}_{\mathrm{CASE}}=25^{\circ} \mathrm{C}$ in a 50Ω system, unless otherwise noted.

Figure 9. Insertion Loss vs. Frequency over Temperature

Figure 10. Return Loss vs. Frequency

Figure 11. Isolation Between RFC and RFx Ports vs. Frequency

Figure 12. Isolation Between RF1 and RF2 Ports vs. Frequency

INPUT COMPRESSION AND INPUT THIRD-ORDER INTERCEPT

$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {CTRL }}$ and $\mathrm{LS}=0 \mathrm{~V}$ or V_{DD}, and $\mathrm{T}_{\text {CASE }}=25^{\circ} \mathrm{C}$ in a 50Ω system, unless otherwise noted. All of the large signal performance parameters are measured on the ADRF5019-EVALZ evaluation board.

Figure 13. P0.1dB and P1dB Input Compression vs. Frequency, $V_{s s}=-2.5 \mathrm{~V}$

Figure 14. P0.1dB and P1dB Input Compression vs. Frequency (Low Frequency Detail), $\mathrm{V}_{\mathrm{ss}}=-2.5 \mathrm{~V}$

Figure 15. P1dB Input Compression Point vs. Frequency over Temperature, $V_{s s}=-2.5 \mathrm{~V}$

Figure 16. P0.1dB and P1dB Input Compression vs. Frequency, Vss $=0 \mathrm{~V}$

Figure 17. P0.1dB and P1dB Input Compression vs. Frequency (Low Frequency Detail), $\mathrm{V} s \mathrm{~s}=0 \mathrm{~V}$

Figure 18. P1dB Input Compression Point vs. Frequency over Temperature (Low Frequency Detail), $V_{s s}=0 \mathrm{~V}$

Figure 19. Input IP3 vs. Frequency over Temperature, $V_{s s}=-2.5 \mathrm{~V}$

Figure 20. Input IP3 vs. Frequency over Temperature (Low Frequency Detail), $V_{S S}=-2.5 \mathrm{~V}$

Figure 21. Input IP3 vs. Frequency over Temperature, $V_{s s}=0 \mathrm{~V}$

Figure 22. Input IP3 vs. Frequency over Temperature (Low Frequency Detail), $V_{s s}=0 \mathrm{~V}$

THEORY OF OPERATION

The ADRF5019 integrates a driver to perform logic functions internally and to provide the user with the advantage of a simplified positive voltage control interface. The driver features two digital control input pins ($\mathrm{V}_{\text {CTRL }}$ and LS) that control the state of the RF paths, determining which RF port is in the insertion loss state and which path is in the isolation state (see Table 5).

RF INPUT AND OUTPUT

The RF ports (RFC, RF1, and RF2) are dc-coupled to 0 V , and no dc blocking is required at the RF ports when the RF line potential is equal to 0 V .
The RF ports are internally matched to 50Ω. Therefore, external matching networks are not required.

The ADRF5019 is bidirectional with equal power handling capabilities. An RF input signal ($\mathrm{RF}_{\text {IN }}$) can be applied to the RFC port or to the RF1 port or the RF2 port.
The insertion loss path conducts the RF signal between the selected RF throw port and the RF common port. The isolation path provides high loss between the insertion loss path and the unselected RF throw port, which is nonreflective, by using an internal 50Ω termination resistor.

POWER SUPPLY

The ADRF5019 requires a positive supply voltage applied to the V_{DD} pin and a negative supply voltage applied to the V_{ss} pin. Bypassing capacitors are recommended on the supply lines to filter high frequency noise.

The ideal power-up sequence is as follows:

1. Connect to GND.
2. Power up the $V_{D D}$ and $V_{S S}$ voltages. Power up $V_{S S}$ after $V_{D D}$ to avoid current transients on $V_{D D}$ during ramp up.
3. Power up the digital control inputs. The order of the digital control inputs is not important. However, powering the digital control inputs before the $V_{D D}$ voltage supply can inadvertantly forward bias and damage the internal ESD protection structures. To avoid this damage, use a series $1 \mathrm{k} \Omega$ resistor to limit the current flowing into the control pin. Use pull-up or pull-down resistors if the controller output is in a high impedance state after the $V_{D D}$ voltage is powered up and the control pins are not driven to a valid logic state.
4. Apply an RF input signal to RFC, RF1, or RF2.

The ideal power-down sequence is the reverse order of the power-up sequence.

Single-Supply Operation

The ADRF5019 can operate with a single positive supply voltage applied to the $V_{D D}$ pin and $V_{S s}$ pin connected to ground. However, some performance degradations can occur in the input compression and input third-order intercept.

Table 5. Control Voltage Truth Table

Digital Control Inputs			RF Paths	
LS	V $_{\text {cTRL }}$	RF1 to RFC	RF2 to RFC	
High	Low	Insertion loss (on)	Isolation (off)	
High	High	Isolation (off)	Insertion loss (on)	
Low	Low	Isolation (off)	Insertion loss (on)	
Low	High	Insertion loss (on)	Isolation (off)	

APPLICATIONS INFORMATION
 LAYOUT CONSIDERATIONS

All measurements in this data sheet are measured on the ADRF5019-EVALZ evaluation board. The design of the ADRF5019-EVALZ board serves as a layout recommendation for ADRF5019 application.
See the ADRF5019-EVALZ user guide for more information on using the evaluation board.

BOARD LAYOUT

The ADRF5019-EVALZ is a 4-layer board. The outer copper (Cu) layers are 0.7 mil to 2.2 mil plated and are separated by dielectric materials. Figure 23 shows the ADRF5019-EVALZ board stack up.

The board layout and stackup shown in Figure 23 are used to make the measurements included in this data sheet.

Figure 23. ADRF5019-EVALZ Stack Up
All RF and dc traces are routed on the top copper layer. The inner and bottom layers are ground planes that provide a solid ground for the RF transmission lines. The top dielectric material (H) is 10 mil Rogers RO4350, which allows optimal RF performance. The middle and bottom dielectric layers provide mechanical strength. The overall evaluation board thickness is approximately 62 mil, which allows Subminiature Version A (SMA) connectors to be connected at the board edges.

RF AND DIGITAL CONTROLS

The RF transmission lines use a coplanar waveguide (CPWG) model with a width of 18 mil and a ground spacing (G) of 13 mil and have a characteristic impedance of 50Ω. For optimal RF and thermal grounding, as many plated through vias as possible are arranged around the transmission lines and under the exposed pad of the package.
The RF input and output ports (RFC, RF1, and RF2) are connected through 50Ω transmission lines to the SMA launchers. On the $V_{D D}$ and $V_{\text {SS }}$ supply traces, a 100 pF bypass capacitor filters high frequency noise.
Figure 24 shows the simplified application circuit for the ADRF5019.

Figure 24. Simplified Application Circuit

OUTLINE DIMENSIONS

*COMPLIANT WITH JEDEC STANDARDS MO-220-VEED-4
WITH THE EXCEPTION OF PACKAGE EDGE TO LEAD EDGE.
Figure 25. 16-Lead Lead Frame Chip Scale Package [LFCSP]
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Body and 0.85 mm Package Height (CP-16-38)
Dimensions shown in millimeters
ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Marking Code
ADRF5019BCPZN	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-38	S4Z
ADRF5019BCPZN-R7	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-38	S4Z
ADRF5019-EVALZ		Evaluation Board		

[^0]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSX210MA18E6327XTSA1 SKY13446-374LF SW-227-PIN CG2185X2 CG2415M6
MA4SW410B-1 MASW-002102-13580G MASW-008543-001SMB MASW-008955-TR3000 TGS4307 BGS 12PL6 E6327
BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8
SKY13374-397LF SKY13453-385LF CG2415M6-C2 HMC986A-SX AS222-92LF SW-314-PIN UPG2162T5N-E2-A SKY13416-485LF MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588-TR3000 MASW-004103-13655P MASW-00310213590G MASWSS0202TR-3000 MA4SW310B-1 MA4SW110 SW-313-PIN CG2430X1 SKY13321-360LF SKY13405-490LF SKYA21001 BGSF 18DM20 E6327 SKY13415-485LF MMS008PP3 BGS13PN10E6327XTSA1 SKY13319-374LF

BGS14PN10E6327XTSA1 SKY12213-478LF SKY13404-466LF MASW-011060-TR0500 SKYA21024

[^0]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

