Data Sheet

FEATURES

Nonreflective $\mathbf{5 0 \Omega} \Omega$ design
Positive control range: 0 V to 3.3 V
Low insertion loss: 0.8 dB at 8.0 GHz
High isolation: $\mathbf{3 4} \mathbf{~ d B}$ at $8.0 \mathbf{~ G H z}$
High power handling
33 dBm through path
27 dBm termination path
High linearity
1 dB compression (P1dB): 37 dBm typical
Input third-order intercept (IIP3): 58 dBm typical at 8.0 GHz
ESD rating: 4 kV human body model (HBM)
$4 \mathrm{~mm} \times 4 \mathrm{~mm}, 24$-lead LFCSP package
No low frequency spurious
RF settling time ($\mathbf{0 . 0 5} \mathbf{d B}$ margin of final RFout): $9 \boldsymbol{\mu s}$

APPLICATIONS

Test instrumentation

Microwave radios and very small aperture terminals (VSATs)
Military radios, radars, and electronic counter measures (ECMs)
Fiber optics and broadband telecommunications

GENERAL DESCRIPTION

The ADRF5040 is a general-purpose, broadband high isolation, nonreflective single-pole, quad-throw (SP4T) switch in an LFCSP surface-mount package. Covering the 9 kHz to 12.0 GHz range, the switch offers high isolation and low insertion loss. The switch features 34 dB isolation and 0.8 dB insertion loss up to

8.0 GHz , and a $9 \mu \mathrm{~s}$ settling time of 0.05 dB margin of the final radio frequency output ($\mathrm{RF}_{\text {out }}$). The switch operates using positive control voltage of 3.3 V and 0 V and requires +3.3 V and -3.3 V supplies. The ADRF5040 is packaged in a $4 \mathrm{~mm} \times 4 \mathrm{~mm}$, surface-mount LFCSP package.

Rev. B

TABLE OF CONTENTS

Features 1
Applications.
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Electrical Specifications 3
Digital Control Voltage Specifications 4
Bias and Supply Current Specifications 4
Absolute Maximum Ratings 5
ESD Caution 5
Pin Configuration and Function Descriptions 6
REVISION HISTORY
7/2017—Rev. A to Rev. B
Changes to Figure 2, Figure 3, and Figure 4 5
2/2017—Rev. 0 to Rev. A
Changes to Ordering Guide 14
Interface Schematics 7
Typical Performance Characteristics 8
Insertion Loss, Return Loss, and Isolation 8
Input Power Compression and Input Third-Order Intercept ... 10
Input Power Compression and Input Third-Order Intercept,10 kHz to 1 GHz11
Theory of Operation 12
Applications Information 13
Evaluation Board 13
Outline Dimensions 14
Ordering Guide 14

SPECIFICATIONS

ELECTRICAL SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-3.3 \mathrm{~V}, \mathrm{~V}_{1}$ and $\mathrm{V}_{2}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 50 \Omega$ system, unless otherwise noted.
Table 1.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
INSERTION LOSS	9 kHz to 4.0 GHz 9 kHz to 8.0 GHz 9 kHz to 10.0 GHz 9 kHz to 12.0 GHz		$\begin{aligned} & 0.7 \\ & 0.8 \\ & 1.1 \\ & 2 \end{aligned}$		dB dB dB dB
ISOLATION, RFC TO RF1 TO RF4 (WORST CASE)	9 kHz to 4.0 GHz 9 kHz to 8.0 GHz 9 kHz to 10.0 GHz 9 kHz to 12.0 GHz		$\begin{aligned} & 44 \\ & 34 \\ & 29.2 \\ & 20 \end{aligned}$		dB dB dB dB
RETURN LOSS On State Off State	9 kHz to 4.0 GHz 9 kHz to 8.0 GHz 9 kHz to 10.0 GHz 9 kHz to 12.0 GHz 9 kHz to 4.0 GHz 9 kHz to 8.0 GHz 9 kHz to 10.0 GHz 9 kHz to 12.0 GHz		$\begin{aligned} & 21 \\ & 19 \\ & 13.5 \\ & 8 \\ & 25 \\ & 18.6 \\ & 15.5 \\ & 14.5 \end{aligned}$		dB dB
RADIO FREQUENCY (RF) SETTLING TIME	$50 \% \mathrm{~V}_{1} / \mathrm{V}_{2}$ to 0.05 dB margin of final RFout $50 \% \mathrm{~V}_{1} / \mathrm{V}_{2}$ to 0.1 dB margin of final RF out		7		$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
SWITCHING SPEED $\mathrm{t}_{\text {RISE }} / \mathrm{t}_{\text {fall }}$ ton/toff	10\% to 90\% RFout $50 \% \mathrm{~V}_{1} / \mathrm{V}_{2}$ to $90 \% / 10 \% \mathrm{RF}$		$\begin{aligned} & 1.3 \\ & 3.5 \end{aligned}$		$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
INPUT POWER 1 dB Compression (P1dB) 0.1 dB Compression (P0.1dB)	9 kHz to 12.0 GHz		$\begin{aligned} & 37 \\ & 34 \end{aligned}$		dBm dBm
INPUT THIRD-ORDER INTERCEPT (IIP3)	```Two-tone input power \(=14 \mathrm{dBm}\) at each tone 1 MHz to 2.0 GHz 1 MHz to 8.0 GHz 1 MHz to 12.0 GHz```		$\begin{aligned} & 62 \\ & 58 \\ & 53 \end{aligned}$		dBm dBm dBm
RECOMMENDED OPERATING CONDITIONS Positive Supply Voltage (VD) Negative Supply Voltage (Vss) Control Voltage ($\mathrm{V}_{1}, \mathrm{~V}_{2}$) Range RF Input Power Through Path Termination Path Hot Switch Power Level Case Temperature Range (TCASE)	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \text {, frequency }=2 \mathrm{GHz}$ $V_{D D}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \text {, frequency }=2 \mathrm{GHz}$	3.0 -3.6 0 -40		$\begin{aligned} & 3.6 \\ & -3.0 \\ & \mathrm{~V}_{\mathrm{DD}} \\ & \\ & 33 \\ & 27 \\ & 27 \\ & +85 \end{aligned}$	V V V dBm dBm dBm ${ }^{\circ} \mathrm{C}$

DIGITAL CONTROL VOLTAGE SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {SS }}=-3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\text {CASE }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.
Table 2.

Parameter	Symbol	Min	Typ	Max	Unit	Test Condition/Comments
INPUT CONTROL VOLTAGE $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right)$						$<1 \mu \mathrm{~A}$ typical
Low	V_{IL}	0	0.8	V		
High	V_{H}	1.4	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V		

BIAS AND SUPPLY CURRENT SPECIFICATIONS

$\mathrm{T}_{\text {CASE }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Symbol	Min	Typ	Max
SUPPLY CURRENT				Unit
$V_{D D}=3.3 \mathrm{~V}$	IDD	20	100	$\mu \mathrm{~A}$
$\mathrm{~V}_{S S}=-3.3 \mathrm{~V}$	$\mathrm{I}_{S S}$	20	100	$\mu \mathrm{~A}$

ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Rating
Positive Supply Voltage $\left(\mathrm{V}_{\mathrm{DD}}\right)$ Range	-0.3 V to +3.7 V
Negative Supply Voltage $\left(\mathrm{V}_{\mathrm{SS}}\right)$ Range	-3.7 V to +0.3 V
Control Voltage $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right)$ Range	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
RF Input Power $\left(\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{1}, \mathrm{~V}_{2}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\right.$	
$\quad-3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$, Frequency $\left.=2 \mathrm{GHz}\right)$	
Through Path	34 dBm
\quad Termination Path	28 dBm
Hot Switch Power Level $\left(\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}\right.$,	30 dBm
$\quad \mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$, Frequency $\left.=2 \mathrm{GHz}\right)$	
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Channel Temperature	$135^{\circ} \mathrm{C}$
Thermal Resistance (Channel to Package	
\quad Bottom)	$83^{\circ} \mathrm{C} / \mathrm{W}$
Through Path	$100^{\circ} \mathrm{C} / \mathrm{W}$
\quad Terminated Path	$\mathrm{MSL3}$
MSL Rating	
ESD Sensitivity	$4 \mathrm{kV}(\mathrm{Class} 3)$
\quad Human Body Model (HBM)	1.25 kV
Charged Device Model (CDM)	

${ }^{1}$ For the recommended operating conditions, see Table 1.
Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Figure 2. Power Derating for Through Path

Figure 3. Power Derating for Terminated Path

Figure 4. Power Derating for Hot Switching Power

ESD CAUTION

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

	¢	
GND 1	-	18 GND
GND 2	-	17 V DD
RFC 3	ADRF5040	$16 \mathrm{~V}_{1}$
GND 4	TOP VIEW (Not to Scale)	$15 \mathrm{~V}_{2}$
GND 5	-	14 V S
GND 6		13 GND
		PACKAGE BASE
		GND
NOTES		
1. EXPOSED	PAD. THE EXPOSED P	AD MUST BE
CONNECTE	TED TO THE RFIDC GR	UND OF THE
PRINTED C	CIRCUIT BOARD (PCB).	

Figure 5. Pin Configuration
Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
$\begin{aligned} & 1,2,4 \text { to } 7,9,10,12,13, \\ & 18,19,21,22,24 \end{aligned}$	GND	Ground. The package bottom has an exposed metal pad that must connect to the printed circuit board (PCB) RF/dc ground. See Figure 6 for the GND interface schematic.
3	RFC	RF Common Port. This pin is dc-coupled and matched to 50Ω. A dc blocking capacitor is required if the RF line potential is not equal to 0 Vdc .
8	RF4	RF4 Port. This pin is dc-coupled and matched to 50Ω. A dc blocking capacitor is required if the RF line potential is not equal to 0 Vdc .
11	RF3	RF3 Port. This pin is dc-coupled and matched to 50Ω. A dc blocking capacitor is required if the RF line potential is not equal to 0 Vdc .
14	$\mathrm{V}_{\text {Ss }}$	Negative Supply Voltage Pin.
15	V_{2}	Control Input Pin 2. See Table 2 and Table 6.
16	V_{1}	Control Input Pin 1. See Table 2 and Table 6.
17	$V_{\text {DD }}$	Positive Supply Voltage.
20	RF2	RF2 Port. This pin is dc-coupled and matched to 50Ω. A dc blocking capacitor is required if the RF line potential is not equal to 0 Vdc .
23	RF1	RF1 Port. This pin is dc-coupled and matched to 50Ω. A dc blocking capacitor is required if the RF line potential is not equal to 0 Vdc .
	EPAD	Exposed Pad. The exposed pad must be connected to the RF/dc ground of the PCB.

Table 6. Truth Table

Digital Control Inputs		
$\mathbf{V}_{\mathbf{1}}$	$\mathbf{V}_{\mathbf{2}}$	Signal Path State
Low	Low	RFC to RF1
High	Low	RFC to RF2
Low	High	RFC to RF3
High	High	RFC to RF4

Data Sheet ADRF5040

INTERFACE SCHEMATICS

Figure 6. GND Interface Schematic

Figure 8. V_{1} Interface Schematic

Figure 7. V2 Interface Schematic

TYPICAL PERFORMANCE CHARACTERISTICS

INSERTION LOSS, RETURN LOSS, AND ISOLATION

$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-3.3 \mathrm{~V}, \mathrm{~T}_{\text {CASE }}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Figure 9. Insertion Loss vs. Frequency

Figure 10. Insertion Loss vs. Frequency, RFC to RF2 On or RFC to RF3 On

Figure 11. Isolation vs. Frequency, RFC to RF2 On

Figure 12. Insertion Loss vs. Frequency, RFC to RF1 On or RFC to RF4 On

Figure 13. Isolation vs. Frequency, RFC to RF1 On

Figure 14. Isolation vs. Frequency, RFC to RF3 On
$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-3.3 \mathrm{~V}, \mathrm{~T}_{\text {CASE }}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Figure 15. Isolation vs. Frequency, RFC to RF4 On

Figure 16. Return Loss vs. Frequency, RFC to RF4 On

Figure 17. Channel to Channel Isolation vs. Frequency, RFC to RF1 On

Figure 18. Return Loss vs. Frequency, RFC to RF4 On

INPUT POWER COMPRESSION AND INPUT THIRD-ORDER INTERCEPT

$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-3.3 \mathrm{~V}, \mathrm{~T}_{\text {CASE }}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Figure 19. 0.1 dB Compression Point vs. Frequency over Temperature,
$V_{D D}=3.3 \mathrm{~V}, V_{S S}=-3.3 \mathrm{~V}$

Figure 20.1 dB Compression Point vs. Frequency over Temperature, $V_{D D}=3.3 \mathrm{~V}, V_{S S}=-3.3 \mathrm{~V}$

Figure 21. Input Third-Order Intercept (IIP3) vs. Frequency over Temperature, $V_{D D}=3.3 \mathrm{~V}, V_{S S}=-3.3 \mathrm{~V}$

Figure 22. 0.1 dB Compression Point vs. Frequency over Voltage, $T_{\text {CASE }}=25^{\circ} \mathrm{C}$

Figure 23. 1 dB Compression Point vs. Frequency over Voltage, $T_{\text {CASE }}=25^{\circ} \mathrm{C}$

Figure 24. Input Third-Order Intercept (IIP3) vs. Frequency over Voltage, $T_{\text {CASE }}=25^{\circ} \mathrm{C}$

Data Sheet

INPUT POWER COMPRESSION AND INPUT THIRD-ORDER INTERCEPT, 10 kHz TO 1 GHz

$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-3.3 \mathrm{~V}$ at $\mathrm{T}_{\text {CASE }}=25^{\circ} \mathrm{C}$.

Figure 25. Input Compression Point vs. Frequency

Figure 26. Input Third-Order Intercept (IIP3) vs. Frequency

ADRF5040

THEORY OF OPERATION

The ADRF5040 requires a positive supply voltage applied to the $V_{D D}$ pin and a negative voltage supply applied to the $V_{s s}$ pin. Bypassing capacitors are recommended on the supply lines to minimize RF coupling.
The ADRF5040 is controlled via two digital control voltages applied to the V_{1} pin and the V_{2} pin. A small value bypassing capacitor is recommended on these digital signal lines to improve the RF signal isolation.

The ADRF5040 is internally matched to 50Ω at the RF input port (RFC) and the RF output ports (RF1, RF2, RF3, and RF4); therefore, no external matching components are required. The

RF1 through RF4 pins are dc-coupled, and dc blocking capacitors are required on the RF paths. The design is bidirectional; the input and outputs are interchangeable.
The ADRF5040 does not need any special power-up sequencing, and the relative order to power up the $V_{D D}$ and $V_{\text {SS }}$ supplies is not important. The V_{1} and V_{2} control signals can be applied only after $V_{D D}$ is powered up; this sequence avoids forward biasing and causing damage to the internal ESD protection circuits. Turn on the RF signal after the device supply settles to a steady state.

APPLICATIONS INFORMATION

EVALUATION BOARD

The ADRF5040-EVALZ evaluation board shown in Figure 27 is designed using proper RF circuit design techniques. Signal lines at the RF port have 50Ω impedance, and the package ground
leads and backside ground slug must be connected directly to the ground plane. The evaluation board is available from Analog Devices, Inc. upon request.

Table 7. Bill of Materials for the ADRF5040-EVALZ Evaluation Board

Item	Description
J1 to J5	PC mount SMA RF connectors
TP1 to TP5	Through hole mount test points
C1, C6	100 pF capacitors, 0402 package
U1	ADRF5040 SP4T switch
PCB	$600-00598-00-3$ evaluation PCB, Rogers 4350 circuit board material

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-8.
Figure 28. 24-Lead Lead Frame Chip Scale Package [LFCSP]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body and 0.85 mm Package Height (CP-24-16)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	MSL Rating ${ }^{2}$	Package Description	Package Option	Branding ${ }^{\mathbf{3}}$
ADRF5040BCPZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MSL3	24-Lead Lead Frame Chip Scale Package [LFCSP]	CP-24-16	ADRF
					5040
ADRF5040BCPZ-R7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MSL3	24-Lead Lead Frame Chip Scale Package [LFCSP]	CP-24-16	\#XXXXX
					5040
ADRF5040-EVALZ					\#XXXXX

${ }^{1}$ These models are RoHS Compliant Parts.
${ }^{2}$ See the Absolute Maximum Ratings section.
${ }^{3} \mathrm{XXXXX}$ is the 5 -digit lot number.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Development Tools category:
Click to view products by Analog Devices manufacturer:

Other Similar products are found below :
MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT\# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT\# MAX2692EVKIT\# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 119197HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB

