Nonreflective, 9 kHz to 44 GHz Silicon SP4T Switch

Data Sheet

FEATURES

Ultrawideband frequency range: $\mathbf{9} \mathbf{~ k H z}$ to $\mathbf{4 4} \mathbf{~ G H z}$
Nonreflective 50Ω design
Low insertion loss
1.5 dB up to 18 GHz
2.4 dB up to 40 GHz
2.5 dB up to 44 GHz

High isolation
44 dB up to 18 GHz
39 dB up to 40 GHz
36 dB up to 44 GHz
High input linearity
P0.1dB: 26 dBm typical
IP3: $\mathbf{4 8} \mathbf{d B m}$ typical
High power handling
24 dBm through path
$\mathbf{2 4 ~ d B m}$ terminated path
All off state control
Logic select control
No low frequency spurs
Settling time ($\mathbf{0 . 1} \mathrm{dB}$ final RF output): $6 \mu \mathrm{~s}$
24-terminal, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ LGA package
Pin compatible with ADRF5042, fast switching version

APPLICATIONS

Industrial scanners

Test instrumentation
Cellular infrastructure-millimeterwave (mmWave) 5G
Military radios, radars, electronic counter measures (ECMs)
Microwave radios and very small aperture terminals (VSATs)

GENERAL DESCRIPTION

The ADRF5043 is a nonreflective, SP4T switch manufactured in the silicon on insulator (SOI) process.
The ADRF5043 operates from 9 kHz to 44 GHz with an insertion loss of lower than 2.5 dB and an isolation of higher than 36 dB . The device has a RF input power handling capability of 24 dBm for both through and terminated paths.

The ADRF5043 requires a dual-supply voltage of +3.3 V and -3.3 V . The device employs CMOS- and low voltage transistor to transistor logic (LVTTL)-compatible controls.

The ADRF5043 has enable and logic select controls to feature all off state and port mirroring, respectively.
The ADRF5043 is pin compatible with the ADRF5042 fast switching version, which operates from 100 MHz to 44 GHz .

The ADRF5043 comes in a 24 -terminal, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$, RoHS compliant, land grid array (LGA) package and can operate from $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.

ADRF5043

TABLE OF CONTENTS

REVISION HISTORY

7/2020—Revision 0: Initial Version
Pin Configuration and Function Descriptions 6
Interface Schematics 6
Typical Performance Characteristics 7
Insertion Loss, Return Loss, and Isolation 7
Input Power Compression and Third-Order Intercept9
Theory of Operation 10
Application Information 11
Evaluation Board 11
Outline Dimensions 12
Ordering Guide 12

SPECIFICATIONS

Positive supply voltage $\left(\mathrm{V}_{\mathrm{DD}}\right)=3.3 \mathrm{~V}$, negative supply voltage $(\mathrm{V}$ Ss $)=-3.3 \mathrm{~V}$, V 1 pin voltage $\left(\mathrm{V}_{1}\right)=0 \mathrm{~V}$ or $3.3 \mathrm{~V}, \mathrm{~V} 2$ pin voltage $\left(\mathrm{V}_{2}\right)=0 \mathrm{~V}$ or 3.3 V , LS $=0 \mathrm{~V}$ or 3.3 V , $\mathrm{EN}=0 \mathrm{~V}$ or 3.3 V , and $\mathrm{T}_{\text {CASE }}=25^{\circ} \mathrm{C}$ on a 50Ω system, unless otherwise noted. RFx refers to RF1 to RF4. VCTL is the digital control inputs voltage.

Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
FREQUENCY RANGE	f		0.009		44,000	MHz
INSERTION LOSS Between RFC and RFx (On)		9 kHz to 18 GHz 18 GHz to 26 GHz 26 GHz to 35 GHz 35 GHz to 40 GHz 40 GHz to 44 GHz		$\begin{aligned} & 1.5 \\ & 1.8 \\ & 2.1 \\ & 2.4 \\ & 2.5 \end{aligned}$		dB dB dB dB dB
ISOLATION Between RFC and RFx (Off)		9 kHz to 18 GHz 18 GHz to 26 GHz 26 GHz to 35 GHz 35 GHz to 40 GHz 40 GHz to 44 GHz		$\begin{aligned} & 44 \\ & 43 \\ & 40 \\ & 39 \\ & 36 \end{aligned}$		dB dB dB dB dB
RETURN LOSS RFC and RFx (On) RFx (Off)		9 kHz to 18 GHz 18 GHz to 26 GHz 26 GHz to 35 GHz 35 GHz to 40 GHz 40 GHz to 44 GHz 9 kHz to 18 GHz 18 GHz to 26 GHz 26 GHz to 35 GHz 35 GHz to 40 GHz 40 GHz to 44 GHz		$\begin{aligned} & 15 \\ & 15 \\ & 14 \\ & 13 \\ & 13 \\ & 23 \\ & 20 \\ & 17 \\ & 15 \\ & 14 \end{aligned}$		dB dB
SWITCHING Rise and Fall Time On and Off Time Settling Time 0.1 dB 0.05 dB	$\mathrm{t}_{\text {RISE, }} \mathrm{t}_{\text {fALL }}$ ton, toff	10% to 90% of RF output 50% V стL to 90% of RF output $50 \% \mathrm{~V}_{\text {cтL }}$ to 0.1 dB of final RF output $50 \% \mathrm{~V}_{\text {cTL }}$ to 0.05 dB of final RF output		$\begin{aligned} & 1.1 \\ & 2.8 \\ & 6 \\ & 7.8 \end{aligned}$		$\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$
INPUT LINEARITY ${ }^{1}$ 0.1 dB Power Compression 1 dB Power Compression Third-Order Intercept Second-Order Intercept	$\begin{aligned} & \text { P0.1dB } \\ & \text { P1dB } \\ & \text { IP3 } \\ & \text { IP2 } \end{aligned}$	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz} \text { to } 40 \mathrm{GHz} \\ & \mathrm{f}=1 \mathrm{MHz} \text { to } 40 \mathrm{GHz} \end{aligned}$ Two-tone input power $=15 \mathrm{dBm}$ each tone, $\mathrm{f}=1 \mathrm{MHz}$ to $40 \mathrm{GHz}, \Delta \mathrm{f}=1 \mathrm{MHz}$ Two-tone input power $=15 \mathrm{dBm}$ each tone, $\mathrm{f}=10 \mathrm{GHz}, \Delta \mathrm{f}=1 \mathrm{MHz}$		$\begin{aligned} & 26 \\ & 27 \\ & 48 \\ & 120 \end{aligned}$		dBm dBm dBm dBm
VIDEO FEEDTHROUGH ${ }^{2}$				3		mV p-p
SUPPLY CURRENT Positive Supply Current Negative Supply Current	$\begin{aligned} & \text { lod } \\ & \mathrm{I}_{\mathrm{SS}} \end{aligned}$	VDD, VSS pins		$\begin{aligned} & 370 \\ & -100 \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
DIGITAL CONTROL INPUTS Voltage Low High	$\begin{aligned} & \mathrm{V}_{\mathrm{INL}} \\ & \mathrm{~V}_{\mathrm{INH}} \end{aligned}$	V1, V2, EN, LS pins	$\begin{aligned} & 0 \\ & 1.2 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 3.3 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
Current Low High	$\begin{aligned} & \text { IINL } \\ & \text { IINH } \\ & \hline \end{aligned}$			$\begin{aligned} & 3 \\ & 6 \end{aligned}$		$\mu \mathrm{A}$ $\mu \mathrm{A}$
RECOMMENDED OPERATING CONDITONS Supply Voltage Positive Negative Digital Control Inputs Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{S S} \\ & \mathrm{~V}_{\mathrm{CTL}} \\ & \hline \end{aligned}$		$\begin{aligned} & 3.15 \\ & -3.45 \\ & 0 \end{aligned}$		$\begin{aligned} & 3.45 \\ & -3.15 \\ & V_{\mathrm{DD}} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
RFx Input Power ${ }^{3}$ Through Path Terminated Path Hot Switching Case Temperature	Pin $\mathrm{T}_{\text {CASE }}$	$\mathrm{f}=1 \mathrm{MHz} \text { to } 44 \mathrm{GHz}, \mathrm{~T}_{\text {CASE }}=85^{\circ} \mathrm{C}^{4}$ Average Peak Average Peak Average Peak	-40		24 24 24 24 24 24 +105	dBm dBm dBm dBm dBm dBm ${ }^{\circ} \mathrm{C}$

${ }^{1}$ For input linearity performance over frequency, see Figure 18 to Figure 21.
${ }^{2}$ Video feedthrough is the spurious dc transient measured at the RF ports in a 50Ω test setup, without an RF signal present while switching the control voltage.
${ }^{3}$ For power derating over frequency, see Figure 2.
${ }^{4}$ For $105^{\circ} \mathrm{C}$ operation, the power handling degrades from the $\mathrm{T}_{\text {CASE }}=85^{\circ} \mathrm{C}$ specification by 3 dB .

ABSOLUTE MAXIMUM RATINGS

For recommended operating conditions, see Table 1.
Table 2.

Parameter	Rating
Supply Voltage	
Positive	-0.3 V to +3.6 V
Negative	-3.6 V to +0.3 V
Digital Control Inputs ${ }^{1}$	-0.3 V to $\mathrm{VDD}+0.3 \mathrm{~V}$ or 3.3 mA,
whichever occurs first	
RFx Input Power $\left(\mathrm{f}^{2}=1 \mathrm{MHz}\right.$ to	
$\left.44 \mathrm{GHz}, \mathrm{T}_{\text {CASE }}=85^{\circ} \mathrm{C}^{3}\right)$	
Through Path	26 dBm
\quad Average	26 dBm
\quad Peak	
Terminated Path	25 dBm
\quad Average	25 dBm
\quad Peak	
Hot Switching	25 dBm
\quad Average	25 dBm
Peak	
Temperature	$135^{\circ} \mathrm{C}$
Junction, T	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Range	$260^{\circ} \mathrm{C}$
Reflow	

${ }^{1}$ Overvoltages at digital control inputs are clamped by internal diodes.
Current must be limited to the maximum rating given.
${ }^{2}$ For power derating over frequency, see Figure 2.
${ }^{3}$ For $105^{\circ} \mathrm{C}$ operation, the power handling degrades from the $\mathrm{T}_{\text {CASE }}=85^{\circ} \mathrm{C}$ specification by 3 dB .

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.
θ_{JC} is the junction to case bottom (channel to package bottom) thermal resistance.

Table 3. Thermal Resistance

Package Type	$\boldsymbol{\theta} \mathbf{s c}^{1}$	Unit
CC-24-12		
Through Path	468	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Terminated Path	200	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1} \theta_{\mathrm{fc}}$ was determined by simulation under the following conditions: the heat transfer is due solely to thermal conduction from the channel through the ground pad to the PCB, and the ground pad is held constant at the operating temperature of $85^{\circ} \mathrm{C}$.

ELECTROSTATIC DISCHARGE (ESD) RATINGS

The following ESD information is provided for handling of ESD sensitive devices in an ESD protected area only.

Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.
ESD Ratings for ADRF5043
Table 4. ADRF5043, 24-Terminal LGA

ESD Model	Withstand Threshold (V)
HBM	
RFx Pins	1000
Supply and Digital Control Pins	2000

POWER DERATING CURVES

Figure 2. Power Derating vs. Frequency, Low Frequency Detail, $T_{\text {CASE }}=85^{\circ} \mathrm{C}$

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ADRF5043

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

		N	へ̀	$\stackrel{-1}{\underline{x}}$	\sum_{0}^{0}	2		
EN	1	24	23	22	[2]	[20	[19]	GND
V1	2						[18]	RF2
GND	3	ADRF5043 TOP VIEw (Not to Scale)					[17]	GND
RFC	4						[16]	GND
GND	5						15]	GND
VSS	6						[14]	RF3
LS	7		9	10	11		[13]	GND
		$\stackrel{0}{\mathrm{O}}$	$\underset{0}{2}$	$\underset{\substack{\underset{\sim}{x}}}{\underset{\sim}{4}}$	Q	$\underset{0}{2}$		

NOTES

1. EXPOSED PAD. THE EXPOSED PAD MUST BE
EXPOSED PAD. THE EXPOSED PAD MOUND.
CONNECTED TO THE RF AND DC GROUND.

Figure 3. Pin Configuration (Top View)
Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	EN	Enable Input. See Table 6 for the truth table. See Figure 5 for the interface schematic.
2	V1	Control Input 1. See Table 6 for the truth table. See Figure 5 for the interface schematic.
$\begin{gathered} 3,5,9,11 \text { to } 13,15 \text { to } \\ 17,19 \text { to } 21,23 \end{gathered}$	GND	Ground. The GND pins must be connected to the RF and dc ground of the PCB.
4	RFC	RF Common Port. RFC is dc-coupled to 0 V and ac matched to 50Ω. No dc blocking capacitor is required when the RF line potential is equal to 0 V dc . See Figure 4 for the interface schematic.
6	VSS	Negative Supply Voltage.
7	LS	Logic Select Input. See Table 6 for the truth table. See Figure 5 for the interface schematic.
8	VDD	Positive Supply Voltage.
10	RF4	RF Throw Port 4. RF4 is dc-coupled to 0 V and ac matched to 50Ω. No dc blocking capacitor is required when the RF line potential is equal to 0 V dc. See Figure 4 for the interface schematic.
14	RF3	RF Throw Port 3. RF3 is dc-coupled to 0 V and ac matched to 50Ω. No dc blocking capacitor is required when the RF line potential is equal to 0 V dc. See Figure 4 for the interface schematic.
18	RF2	RF Throw Port 2. RF2 is dc-coupled to 0 V and ac matched to 50Ω. No dc blocking capacitor is required when the RF line potential is equal to 0 V dc . See Figure 4 for the interface schematic.
22	RF1	RF Throw Port 1. RF1 is dc-coupled to 0 V and ac matched to 50Ω. No dc blocking capacitor is required when the RF line potential is equal to 0 V dc.
24	V2 EPAD	Control Input 2. See Table 6 for the truth table. See Figure 5 for the interface schematic. Exposed Pad. The exposed pad must be connected to the RF and dc ground.

INTERFACE SCHEMATICS

Figure 4. RFC and RF1 to RF4 Pin Interface Schematic

Figure 5. V1, V2, EN, and LS Pin Interface Schematic

TYPICAL PERFORMANCE CHARACTERISTICS

INSERTION LOSS, RETURN LOSS, AND ISOLATION

$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTL}}=0 \mathrm{~V}$ or 3.3 V , and $\mathrm{T}_{\mathrm{CASE}}=25^{\circ} \mathrm{C}$ on a 50Ω system, unless otherwise noted. Measured on the evaluation board.

Figure 6. Insertion Loss for RFC to RFx On vs. Frequency

Figure 7. Return Loss for RFC and RFx On vs. Frequency

Figure 8. Isolation for RFC to RFx Off vs. Frequency, RFC to RF1 Path On

Figure 9. Insertion Loss for RFC to RF1 On vs. Frequency over Various Temperatures

Figure 10. Return Loss for RFx Off vs. Frequency

Figure 11. Isolation for RFC to RFx Off vs. Frequency, RFC to RF2 Path On

Figure 12. Isolation for RFC to RFx Off vs. Frequency, RFC to RF3 Path On

Figure 13. Channel to Channel Isolation vs. Frequency, RFC to RF1 Path On

Figure 14. Channel to Channel Isolation vs. Frequency, RFC to RF3 Path On

Figure 15. Isolation for RFC to RFx Off vs. Frequency, RFC to RF4 Path On

Figure 16. Channel to Channel Isolation vs. Frequency, RFC to RF2 Path On

Figure 17. Channel to Channel Isolation vs. Frequency, RFC to RF4 Path On

INPUT POWER COMPRESSION AND THIRD-ORDER INTERCEPT

$\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTL}}=0 \mathrm{~V}$ or +3.3 V , and $\mathrm{T}_{\text {CASE }}=25^{\circ} \mathrm{C}$ on a 50Ω system, unless otherwise noted. Measured on the evaluation board.

Figure 18. Input P0.1dB vs. Frequency over Various Temperatures

Figure 19. Input IP3 vs. Frequency over Various Temperatures

Figure 20. Input PO.1dB vs. Frequency, Low Frequency Detail over Various Temperatures

Figure 21. Input IP3 vs. Frequency, Low Frequency Detail over Various Temperatures

THEORY OF OPERATION

The ADRF5043 requires a positive supply voltage applied to the VDD pin and a negative supply voltage applied to the VSS pin. Bypassing capacitors are recommended on the supply lines to minimize RF coupling.
All of the RF ports (RFC, RF1 to RF4) are dc-coupled to 0 V , and no dc blocking is required at the RF ports when the RF line potential is equal to 0 V . The RF ports are internally matched to 50Ω. Therefore, external matching networks are not required.

The ADRF5043 integrates a driver to perform logic functions internally and to provide the user with the advantage of a simplified CMOS-/LVTTL-compatible control interface. The driver features four digital control input pins (EN, LS, V1, and V2) that control the state of the RFx paths (see Table 6).
The logic select input (LS) allows the user to define the control input logic sequence for the RF path selections. The logic level applied to the V1 and V2 pins determines which RFx port is in the insertion loss state while the other three paths are in the isolation state.
When the EN pin is logic high, all four RFx paths are in isolation state regardless of the logic state of LS, V1, V2. RFx ports are terminated to internal 50Ω resistors, and RFC becomes reflective.

The insertion loss path conducts the RF signal between the selected RF throw port and the RF common port. The switch design is bidirectional with equal power handling capabilities. The RF input signal can be applied to the RFC port or the selected RF throw port. The isolation paths provide high loss between the insertion loss path and the unselected RF throw ports that are terminated to internal 50Ω resistors.
The ideal power-up sequence is as follows:

1. Connect GND to ground.
2. Power up VDD and VSS. Powering up VSS after VDD avoids current transients on VDD during ramp up.
3. Apply a control voltage to the digital control inputs (EN, LS, V1, and V2). Applying a control voltage to the digital control inputs before the VDD supply can inadvertently forward bias and damage the internal ESD protection structures. Use a series $1 \mathrm{k} \Omega$ resistor to limit the current flowing into the control pin in such cases. If the control pins are not driven to a valid logic state (that is, controller output is in high impedance state) after VDD is powered up, it is recommended to use a pull-up or pull-down resistor.
4. Apply an RF input signal.

The ideal power-down sequence is the reverse order of the power-up sequence.

Table 6. Control Voltage Truth Table

Digital Control Inputs			RFx Paths				
EN	LS	V1	V2	RFC to RF1	RFC to RF2	RFC to RF3	RFC to RF4
Low	Low	Low	Low	Insertion loss (on)	Isolation (off)	Isolation (off)	Isolation (off)
Low	Low	High	Low	Isolation (off)	Insertion loss (on)	Isolation (off)	Isolation (off)
Low	Low	Low	High	Isolation (off)	Isolation (off)	Insertion loss (on)	Isolation (off)
Low	Low	High	High	Isolation (off)	Isolation (off)	Isolation (off)	Insertion loss (on)
Low	High	Low	Low	Isolation (off)	Isolation (off)	Isolation (off)	Insertion loss (on)
Low	High	High	Low	Isolation (off)	Isolation (off)	Insertion loss (on)	Isolation (off)
Low	High	Low	High	Isolation (off)	Insertion loss (on)	Isolation (off)	Isolation (off)
Low	High	High	High	Insertion loss (on)	Isolation (off)	Isolation (off)	Isolation (off)
High	Low or high	Low or high	Low or high	Isolation (off)	Isolation (off)	Isolation (off)	Isolation (off)

APPLICATION INFORMATION
 EVALUATION BOARD

All measurements in this data sheet are measured on the ADRF5043-EVALZ evaluation board. Figure 24 shows the simplified application circuit for ADRF5043-EVALZ evaluation board. See the ADRF5043-EVALZ user guide for more information on using the evaluation board.
The design of the ADRF5043-EVALZ board serves as a layout recommendation. The Gerber files of the ADRF5043-EVALZ evaluation board are available at www.analog.com/EVALADRF5043.
The ADRF5043-EVALZ is a 4-layer evaluation board. The outer copper (Cu) layers are $0.5 \mathrm{oz}(0.7 \mathrm{mil})$ plated to $1.5 \mathrm{oz}(2.2 \mathrm{mil})$ and are separated by dielectric materials. Figure 22 shows the cross sectional view of the evaluation board stackup.

Figure 22. Evaluation Board Cross Sectional View

All RF traces are routed on the top copper layer, whereas the inner and bottom layers are grounded planes that provide a solid ground for the RF transmission lines. The top dielectric material is 8 mil Rogers RO4003, offering optimal high frequency performance. The middle and bottom dielectric materials provide mechanical strength. The total board thickness is 62 mil, which allows 2.4 mm RF launchers to be connected at the board edges.
The RF transmission lines were designed using a coplanar waveguide (CPWG) model, with a trace width of 14 mil and a ground clearance of 7 mil to have a characteristic impedance of 50Ω. The RF transmission lines are tapered at the RFC or RFx pin transition, as shown in Figure 23. For optimal RF and thermal grounding, arrange as many plated through vias as possible around the transmission lines and under the exposed pad of the package.

Figure 23. RF Trasmission Lines

Figure 24. Application Circuit

OUTLINE DIMENSIONS

Figure 25. 24-Terminal Land Grid Array [LGA] $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Body and 0.738 mm Package Height (CC-24-12)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Marking Code
ADRF5043BCCZN	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	$24-$ Terminal Land Grid Array $[\mathrm{LGA}]$	CC-24-12	043
ADRF5043BCCZN-R7	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	$24-$ Terminal Land Grid Array $[\mathrm{LGA}]$	CC-24-12	043
ADRF5043-EVALZ		Evaluation Board		

${ }^{1} Z=$ RoHS Compliant Part.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switch IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-8MSOPEBZ TPS2061EVM-292 MAX4993EVKIT+ ISL54059EVAL1Z MAX4989EVKIT+ MAX14983EEVKIT\# MAX14589EEVKIT\# TPS2051BEVM TPS2560DRCEVM-424 TSU6721EVM BOB-09056 EKIT01-HMC1027BG TPS2561DRCEVM-424 2717 ISL54220IRUEVAL1Z TS3USB221AEVM 126968-HMC857LC5 EVAL-ADGS1212SDZ TPS22924CEVM-532 ASL1101 SIP32102EVB DC858A DC892A-B EVAL-10MSOPEBZ EVAL-14TSSOPEBZ EVAL-16TSSOPEBZ EVAL-28TSSOPEBZ EVAL5SC70EBZ EVAL-ADG4612EBZ EVAL-ADG5243FEBZ EVAL-ADG5249FEBZ EVAL-ADG5298EB1Z EVAL-ADG5412BFEBZ EVAL-ADG5412FEBZ EVAL-ADG5436FEBZ EVAL-ADG5462FEBZ EVAL-ADG788EBZ EVAL-ADG854EBZ EVAL-ADG884EBZ EVAL-ADG888EBZ EVAL-ADGS1208SDZ EVAL-ADGS1209SDZ EVAL-ADGS1409SDZ EVAL-ADGS1412SDZ EVALADGS5414SDZ DFR0576 DG1208EVKIT\# DG1209EVKIT\# MAX12005EVKIT\# MAX14575AEVKIT\#

