Data Sheet

FEATURES

Reflective, 50Ω design

Low insertion loss
0.6 dB typical to 2.0 GHz
0.7 dB typical to 3.5 GHz

High isolation
50 dB typical to 2.0 GHz
46 dB typical to 3.5 GHz
High power handling
RF input power, continuous wave (CW) at $\mathrm{T}_{\text {CASE }}=85^{\circ} \mathrm{C}$
43 dBm maximum operating
46.5 dBm absolute maximum rating

High linearity
0.1 dB compression (P 0.1 dB): $\mathbf{4 6 ~ d B m}$ typical

Input third-order intercept (IP3)
68 dBm typical to $2 \mathbf{~ G H z}$
65 dBm typical to 3.5 GHz
ESD ratings
Human body model (HBM): 2 kV, Class 2
Charged device model (CDM): 1.25 kV
Single positive supply: $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$
Positive control, TTL-compatible: $\mathrm{V}_{\text {ctL }}=\mathbf{0} \mathrm{V}$ or V_{DD}
24-lead, $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP package ($16 \mathrm{~mm}^{2}$)

APPLICATIONS

Cellular/4G infrastructure

Wireless infrastructure

Military and high reliability applications
Test equipment
Pin diode replacement

GENERAL DESCRIPTION

The ADRF5130 is a high power, reflective, 0.7 GHz to 3.8 GHz , silicon, single-pole, double-throw (SPDT) switch in a leadless, surface-mount package. The switch is ideal for high power and cellular infrastructure applications, like long-term evolution (LTE) base stations.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

The ADRF5130 has high power handling of 43 dBm (maximum) and 0.1 dB compression (P 0.1 dB) of 46 dBm , with a low insertion loss of 0.6 dB at 2 GHz and 0.7 dB at 3.5 GHz . On-chip circuitry operates at a single, positive supply voltage of 5 V and typical supply current of 1.06 mA , making the ADRF5130 an ideal alternative to pin diode-based switches.
The device comes in a RoHS compliant, compact, 24-lead, $4 \mathrm{~mm} \times$ 4 mm LFCSP package.

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 4
ESD Caution 4
Pin Configuration and Function Descriptions 5
REVISION HISTORY
6/2020—Rev. B to Rev. C
Changed Operating Frequency from 0.7 GHz to 3.5 GHz to
0.7 GHz to 3.8 GHz Throughout
Changes to Data Sheet Title, Features Section, and General Description Section 1
Changes to Table 1 3
Interface Schematics 5
Typical Performance Characteristics 6
Insertion Loss, Isolation, Return Loss, and IP3 6
Theory of Operation 7
Applications Information 8
Evaluation Board 8
Outline Dimensions 10
Ordering Guide 10
5/2018-Rev. A to Rev. B
Change to RFC to RF2 Column, Table 5 7
Updated Outline Dimensions 10
1/2017—Rev. 0 to Rev. AChanges to Ordering Guide.10

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTL}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 50 \Omega$ system, unless otherwise noted.
Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
FREQUENCY RANGE			0.7		3.8	GHz
INSERTION LOSS		0.7 GHz to 2.0 GHz 2.0 GHz to 3.5 GHz 3.5 GHz to 3.8 GHz		$\begin{aligned} & \hline 0.6 \\ & 0.7 \\ & 0.75 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$
ISOLATION RFC to RF1 or RF2 (Worst Case) RF1 to RF2 (Worst Case)		0.7 GHz to 2.0 GHz 2.0 GHz to 3.8 GHz 0.7 GHz to 2.0 GHz 2.0 GHz to 3.8 GHz		$\begin{aligned} & 50 \\ & 46 \\ & 51 \\ & 40 \end{aligned}$		dB dB dB dB
RETURN LOSS RFC RFC to RF1 or RF2		0.7 GHz to 2.0 GHz 2.0 GHz to 3.5 GHz 3.5 GHz to 3.8 GHz 0.7 GHz to 2.0 GHz 2.0 GHz to 3.5 GHz 3.5 GHz to 3.8 GHz		$\begin{aligned} & 23 \\ & 17 \\ & 15 \\ & 21 \\ & 17 \\ & 16 \end{aligned}$		dB dB dB dB dB dB
SWITCHING SPEED Time Rise and Fall On and Off	$\mathrm{t}_{\text {RISE, }} \mathrm{t}_{\text {FALL }}$ ton, toff	90% to 10% of RF output $50 \% \mathrm{~V}_{\text {ct }}$ to 10% to 90% of RF output		$\begin{aligned} & 155 \\ & 750 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
RADIO FREQUENCY (RF) SETTLING TIME		$50 \% \mathrm{~V}$ ctL to 0.1 dB margin of final RF output		1.8		$\mu \mathrm{s}$
INPUT POWER 0.1 dB Compression	P0.1dB			46		dBm
INPUT THIRD-ORDER INTERCEPT	IP3	Two-tone input power $=25 \mathrm{dBm} /$ tone 0.7 GHz to 2 GHz 2 GHz to 3.8 GHz		$\begin{aligned} & 68 \\ & 65 \end{aligned}$		$\begin{aligned} & \mathrm{dBm} \\ & \mathrm{dBm} \end{aligned}$
RECOMMENDED OPERATING CONDITIONS Voltage Range Bias Control Maximum RF Input Power $\mathrm{T}_{\text {CASE }}=105^{\circ} \mathrm{C}$ TCASE $=85^{\circ} \mathrm{C}$ $\mathrm{T}_{\text {CASE }}=25^{\circ} \mathrm{C}$ Case Temperature Range	$V_{D D}$ $V_{\text {ctL }}$ Tcase	Continuous wave Continuous wave 8 dB peak to average ratio (PAR) LTE, average 8 dB PAR LTE, single event ($<10 \mathrm{sec}$), average Continuous wave	$\begin{aligned} & 4.5 \\ & 0 \end{aligned}$ -40		5.4 VD 41 43 38 44 44.5 +105	V V dBm dBm dBm dBm dBm ${ }^{\circ} \mathrm{C}$
DIGITAL INPUT CONTROL VOLTAGE Low Range High Range	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V} \text { to } 5.4 \mathrm{~V}, \mathrm{~T}_{\text {CASE }}=-40^{\circ} \mathrm{C} \text { to }+105^{\circ} \mathrm{C} \text { at }<1 \mu \mathrm{~A}$ typical	$\begin{aligned} & 0 \\ & 1.3 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 5.0 \end{aligned}$	
SUPPLY CURRENT	IDD	$V_{D D}=5 \mathrm{~V}$		1.06		mA

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Bias Voltage Range (VDD)	-0.3 V to +5.5 V
Control Voltage Range (VCTL)	-0.3 V to +5.5 V
RF Input Power, Continuous Wave	46.5 dBm
Channel Temperature	$135^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Peak Reflow Temperature (MSL3) ${ }^{2}$	$260^{\circ} \mathrm{C}$
Thermal Resistance (Channel to Package	$17^{\circ} \mathrm{C} / \mathrm{W}$
\quad Bottom)	
Electrostatic Discharge (ESD) Sensitivity	$2 \mathrm{kV}(\mathrm{Class} 2)$
\quad HBM	1.25 kV
CDM	

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

[^0]
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
1,2,4 to 9, 11 to 15,17 to 20, 23, 24	GND	Ground. The package bottom has an exposed metal pad that must connect to the printed circuit board (PCB) RF/dc ground. See Figure 3 for the GND interface schematic.
3	RF1	RF Output Port 1. This pin is dc-coupled and matched to 50Ω. A dc blocking capacitor is required on this pin.
10	RFC	RF Input Common Port. This pin is dc-coupled and matched to 50Ω. A dc blocking capacitor is required on this pin.
16	RF2	RF Output Port 2. This pin is dc-coupled and matched to 50Ω. A dc blocking capacitor is required on this pin.
21	$\mathrm{V}_{\text {ctL }}$	Control Input. See Figure 4 for the V ст interface schematic. Refer to Table 4 and the recommended digital input control voltage range in Table 1.
22	VD EPAD	Supply Voltage. See Figure 4 for the $V_{D D}$ interface schematic. Exposed Pad. Exposed pad must be connected to RF/dc ground.

Table 4. Truth Table

Control Input $\left(V_{\text {crı }}\right)$ State	Signal Path State	
	RFC to RF1	RFC to RF2
	Off	On
High	On	Off

INTERFACE SCHEMATICS

Figure 3. GND Interface Schematic

Figure 4. Control Interface Schematic

TYPICAL PERFORMANCE CHARACTERISTICS

INSERTION LOSS, ISOLATION, RETURN LOSS, AND IP3

Figure 5. Insertion Loss of RF1 and RF2 vs. Frequency at $V_{D D}=5 \mathrm{~V}$

Figure 6. Isolation Between RFC to RF1 or RF2 vs. Frequency at $V_{D D}=5 \mathrm{~V}$

Figure 7. Return Loss vs. Frequency at $V_{D D}=5 \mathrm{~V}$ (RFC, RF1, and RF2)

Figure 8. Insertion Loss vs. Frequency over Temperature at $V_{D D}=5 \mathrm{~V}$

Figure 9. Isolation Between RF1 and RF2 vs. Frequency at $V_{D D}=5 \mathrm{~V}$, Switch Mode On

Figure 10. IP3 vs. Frequency over Temperature, $V_{D D}=5 \mathrm{~V}$

THEORY OF OPERATION

The ADRF5130 requires a single-supply voltage applied to the $V_{\text {DD }}$ pin. Bypass capacitors are recommended on the supply line to minimize RF coupling.
A digital control voltage applied to the $V_{\text {CTL }}$ pin controls the ADRF5130. A small bypassing capacitor is recommended on these digital signal lines to improve the RF signal isolation.

The ADRF5130 is internally matched to 50Ω at the RF input port (RFC) and the RF output ports (RF1 and RF2); therefore, no external matching components are required. The RFx pins are dc-coupled, and dc blocking capacitors are required on the RF lines. The design is bidirectional; the input and outputs are interchangeable.

The ideal power-up sequence of the ADRF5130 is as follows:

1. Connect to GND.
2. Power up $V_{D D}$.
3. Power up the digital control input. Powering the digital control input before the $V_{D D}$ supply can inadvertently forward-bias and damage the ESD protection structures.
4. Power up the RF input. Depending on the logic level applied to the $\mathrm{V}_{\text {CTL }}$ pin, one RF output port (for example, RF1) is set to on mode, by which an insertion loss path is provided from the input to the output, while the other RF output port (for example, RF2) is set to off mode, by which the output is isolated from the input.

Table 5. Switch Operation Mode

Digital Control Input (VCrL)	Switch Mode	
	RFC to RF1	RFC to RF2
1	Off mode: the RF1 port is isolated from the RFC port and is internally terminated to a 50Ω load to absorb the applied RF signals. On mode: a low insertion loss path from the RFC port to the RF1 port.	On mode: a low insertion loss path from the RFC port to the RF2 port.
Off mode: the RF2 port is isolated from the RFC port and becomes open reflective.		

APPLICATIONS INFORMATION

Generate the evaluation PCB used in the application circuit shown in Figure 11 with proper RF circuit design techniques. Signal lines at the RF port must have a 50Ω impedance, and the package ground leads and backside ground slug must connect directly to the ground plane, as shown in Figure 14.

Figure 11. Application Circuit

EVALUATION BOARD

The ADRF5130 evaluation board has eight metal layers and dielectrics between each layer (see Figure 12). The top and the bottom metal layers have copper thickness of $2 \mathrm{oz}(2.7 \mathrm{mil})$, whereas the metal layers in between them have 1 oz copper (1.3 mil) thickness. The top dielectric material is 10 mil Rogers RO4350, which exhibits a very low thermal coefficient, offering control over thermal rise of the board. The dielectrics between other metal layers are FR-4. The overall board thickness achieved is 62 mil.

Figure 13 shows the top view of the ADRF5130 evaluation board.
The top copper layer has all RF and dc traces, whereas the other seven layers provide good ground and help to handle the thermal rise on the evaluation board caused by the high power of the ADRF5130. In addition, for proper thermal grounding, many via holes are provided around the transmission lines and under the exposed pad of the package. RF transmission lines on the ADRF5130 evaluation board are coplanar wave guide design with an 18 mil width and a ground spacing of 13 mil. For controlling the thermal rise of the ADRF5130 evaluation board at high temperatures and power levels, it is recommended to use a heat sink and a mini dc fan.

Figure 12. Evaluation Board Cross-Sectional View

Figure 13. Evaluation Board Top View

Figure 14 shows the ADRF5130 evaluation board with all components populated. The VDD supply port connects to TP1. The VDD supply trace has three bypass capacitors $100 \mathrm{pF}, 1 \mu \mathrm{~F}$, and 1 nF . The TP2 test point connects to the control voltage port (VCTL). The control trace has a 100 pF bypass capacitor and 0Ω resistor. The ground reference connects to GND. A 100 pF dc blocking capacitor is used on all RF traces that connect the RF1, RF2, and RFC ports to the J1, J2, and J3 connectors,
respectively. The connectors used are 2.9 mm end launch SMA connectors. Unpopulated capacitor positions are available on all RF traces to provide extra matching. A through transmission line (THRU CAL) is available on the ADRF5130 evaluation board that can measure board loss on the printed circuit board (PCB).

Table 6 shows the bill of materials for the ADRF5130 evaluation board. The evaluation board shown in Figure 14 is available from Analog Devices, Inc., upon request.

Figure 14. ADRF5130-EVALZ Evaluation Board
Table 6. Bill of Materials for the ADRF5130-EVALZ Evaluation Board

Reference Designator	Description
J1 to J3	PCB mount SMA connectors
C1 to C4, C7	100 pF capacitors, 0402 package
C5	1 nF capacitor, 0402 package
C6	$1 \mu \mathrm{~F}$ capacitor, 0402 package
C8 to C15, C18 to C21	Do not insert (DNI)
R1	0Ω resistor, 0402 package
TP1, TP2, TP3	Surface-mount test points
U1	ADRF5130 SPDT switch
PCB	$600-01532-00-2^{1}$ evaluation PCB; circuit board material: Rogers RO4350 or Arlon 25FR

[^1]
OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-8
Figure 15. 24-Lead Lead Frame Chip Scale Package [LFCSP]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body and 0.85 mm Package Height (CP-24-16)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	MSL Rating $^{\mathbf{2}}$	Package Description	Package Option
ADRF5130BCPZ	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	MSL3	24-Lead Lead Frame Chip Scale Package [LFCSP]	CP-24-16
ADRF5130BCPZ-R7	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	MSL3	24-Lead Lead Frame Chip Scale Package [LFCSP]	CP-24-16
ADRF5130-EVALZ	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		Evaluation Board	

${ }^{1} Z=$ RoHS Compliant Part.
${ }^{2}$ See the Absolute Maximum Ratings section.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT\# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT\# MAX2692EVKIT\# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1

[^0]: ${ }^{1}$ For the recommended operating conditions, see Table 1.
 ${ }^{2}$ See the Ordering Guide section.

[^1]: ${ }^{1}$ Reference this evaluation board number when ordering the complete evaluation board.

