0.1 GHz to 6 GHz Silicon SP5T Switch

Data Sheet

FEATURES

Nonreflective $\mathbf{5 0 \Omega} \mathbf{\Omega}$ design

Low insertion loss: $\mathbf{1 . 5 ~ d B ~ a t ~} \mathbf{4 ~ G H z}$
High isolation: $\mathbf{5 0 ~ d B}$ at $\mathbf{4 ~ G H z}$
High input linearity
0.1 dB compression (P 0.1 dB): $\mathbf{3 4 ~ d B m}$ typical

Third-order intercept (IP3): 57 dBm typical
High power handling at $85^{\circ} \mathrm{C}$
33 dBm through path
27 dBm terminated path
ESD rating
3.5 kV HBM, Class 2

Single-supply or dual-supply operation
Optional internal negative voltage generator (NVG)
1.8 V logic-compatible control
$4 \mathrm{~mm} \times 4 \mathrm{~mm}, 24$-lead LFCSP

APPLICATIONS

Cellular/4G infrastructure
Wireless infrastructure

Mobile radios

Test equipment

GENERAL DESCRIPTION

The ADRF5250 is a general-purpose, single-pole, five-throw (SP5T), nonreflective switch manufactured using a silicon process. The ADRF5250 is available in a $4 \mathrm{~mm} \times 4 \mathrm{~mm}$, 24-lead lead frame chip scale package (LFCSP) and provides high isolation and low insertion loss from 100 MHz to 6 GHz .

Figure 1.

The ADRF5250 incorporates a negative voltage generator to operate with a single positive supply voltage from 3.3 V to 5 V applied to the VDD pin when the VSS pin is connected to ground. The negative voltage generator can be disabled when an external negative supply voltage of -3.3 V is applied to the VSS pin. The ADRF5250 provides a 1.8 V logic-compatible, 3-pin control interface.

Rev. 0

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 5
ESD Caution 5
Pin Configuration and Function Descriptions 6
Interface Schematics7
Typical Performance Characterics 8
Insertion Loss, Return Loss, And Isolation 8
Input Power Compression and Third-Order Intercept (IP3) 9
Theory of Operation 11
Applications Information 12
Evaluation Board 12
Outline Dimensions 14
Ordering Guide 14

REVISION HISTORY

6/2017—Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}=0 \mathrm{~V} / \mathrm{V}_{\mathrm{DD}}, \mathrm{T}_{\mathrm{CASE}}=25^{\circ} \mathrm{C}, 50 \Omega$ system, unless otherwise noted.
Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
FREQUENCY RANGE	f		0.1		6	GHz
INSERTION LOSS Between RFC and RFx (On)		0.1 GHz to 2 GHz 2 GHz to 4 GHz 4 GHz to 6 GHz		$\begin{aligned} & 1.3 \\ & 1.5 \\ & 1.8 \end{aligned}$		dB dB dB
ISOLATION Between RFC and RFx (Off)		0.1 GHz to 2 GHz 2 GHz to 4 GHz 4 GHz to 6 GHz		$\begin{aligned} & 55 \\ & 50 \\ & 46 \end{aligned}$		dB dB dB
RETURN LOSS RFC and RFx (On) RFx (Off)		0.1 GHz to 2 GHz 2 GHz to 4 GHz 4 GHz to 6 GHz 0.1 GHz to 2 GHz 2 GHz to 4 GHz 4 GHz to 6 GHz		$\begin{aligned} & 15 \\ & 13 \\ & 13 \\ & 17 \\ & 15 \\ & 8 \\ & \hline \end{aligned}$		dB dB dB dB dB dB
SWITCHING Rise Time Fall Time On and Off Time Settling Time (RFx to RFx) 0.1 dB 0.05 dB	trise teall ton, toff	10% to 90% of radio frequency (RF) output 10% to 90% of RF output 50% of digital control voltage $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}\right)$ to 90% of RF output 50% of V_{1}, V_{2}, V_{3} to 0.1 dB of final RF output 50% of $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$ to 0.05 dB of final RF output		$\begin{aligned} & 40 \\ & 80 \\ & 150 \\ & \\ & 400 \\ & 500 \end{aligned}$		ns ns ns ns ns
INPUT LINEARITY 0.1 dB Compression Third-Order Intercept	$\begin{aligned} & \text { P0.1dB } \\ & \text { IP3 } \end{aligned}$			$\begin{aligned} & 34 \\ & 57 \end{aligned}$		dB dBm
SUPPLY CURRENT Positive Negative	IDD Iss	VDD, VSS pins NVG enabled $\left(\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}\right)$ NVG disabled ($\mathrm{V}_{\mathrm{ss}}=-3.3 \mathrm{~V}$) NVG disabled ($\mathrm{V}_{\mathrm{ss}}=-3.3 \mathrm{~V}$)		$\begin{aligned} & 360 \\ & 280 \\ & -60 \end{aligned}$		$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
DIGITAL CONTROL INPUTS Voltage Low High Current Low and High	$V_{\text {INL }}$ $\mathrm{V}_{\mathrm{INH}}$ linl, linh	$\begin{aligned} & \mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 3 \text { pins } \\ & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ & \mathrm{~V} D=5 \mathrm{~V} \\ & \mathrm{~V} D \mathrm{DD} \\ & \mathrm{~V}=3.3 \mathrm{~V} \\ & \mathrm{VD}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \text { to } 5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1.3 \\ & 1.6 \end{aligned}$	<1	$\begin{aligned} & 0.8 \\ & 1.2 \\ & 3.3 \\ & 5 \end{aligned}$	V V V V V $\mu \mathrm{A}$

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
RECOMMENDED OPERATING CONDITIONS						
Supply Voltage						
Positive	VD		3.0		5.25	V
Negative	$\mathrm{V}_{\text {SS }}$		-3.45		-3.15	V
Digital Control Voltage	$\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$		0		$V_{D D}$	V
Maximum RF Input Power ${ }^{1}$	PIN					
$\mathrm{T}_{\text {CASE }}=105^{\circ} \mathrm{C}$		Through path ($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ to 5 V)			30	dBm
		Terminated path			24	dBm
		Hot switching			24	dBm
$\mathrm{T}_{\text {CASE }}=85^{\circ} \mathrm{C}$		Through path ($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ to 5 V)			33	dBm
		Terminated path			27	dBm
		Hot switching			27	dBm
Case Temperature	$\mathrm{T}_{\text {CASE }}$		-40		+105	${ }^{\circ} \mathrm{C}$

[^0]
ADRF5250

ABSOLUTE MAXIMUM RATINGS

For recommended operating conditions, see Table 1.
Table 2.

Parameter	Rating
Positive Supply Voltage $\left(\mathrm{V}_{\mathrm{DD}}\right)$	-0.3 V to +5.5 V
Negative Supply Voltage $\left(\mathrm{V}_{s s}\right)$	-3.6 V to +0.3 V
Digital Control Input Voltage $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}\right)$	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
RF Input Power	
\quad Through Path	35 dBm
Terminated Path	34 dBm
All Off State, RFC as Input	24 dBm
Hot Switching	
\quad RFC as Input	32 dBm
\quad RFx to RFx	24 dBm
\quad All Off to RFx	
\quad RFx as Input	34 dBm
\quad RFx to RFx	34 dBm
\quad All Off to RFx	
Temperature	$135^{\circ} \mathrm{C}$
\quad Junction, T,	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage	$260^{\circ} \mathrm{C}$
Reflow (MSL3 Rating)	
Junction to Case Thermal Resistance, θ_{Jc}	$90^{\circ} \mathrm{C} / \mathrm{W}$
Through Path	$100^{\circ} \mathrm{C} / \mathrm{W}$
Terminated Path	3.5 kV (Class 2)
ESD Sensitivity	1.25 kV (Class IV)
Human Body Model (HBM)	
Field Induced Device Model (FICDM)	

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES

1. EXPOSED PAD. THE EXPOSED PAD MUST BE CONNECTED TO THE RFIDC GROUND OF THE PCB.

Figure 2. Pin Configuration
Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
$\begin{aligned} & 1,3,4,6,7,9 \\ & 10,12,13,15 \\ & 21,23,24 \end{aligned}$	GND	Ground. These pins must be connected to the RF/dc ground of the printed circuit board (PCB).
2	RF5	RF Throw Port 5. This pin is dc coupled and no dc blocking capacitor is necessary when the RF line potential is within 0 V dc .
5	RF4	RF Throw Port 4. This pin is dc coupled and no dc blocking capacitor is necessary when the RF line potential is within 0 V dc .
8	RF3	RF Throw Port 3. This pin is dc coupled and no dc blocking capacitor is necessary when the RF line potential is within 0 V dc .
11	RF2	RF Throw Port 2. This pin is dc coupled and no dc blocking capacitor is necessary when the RF line potential is within 0 V dc .
14	RF1	RF Throw Port 1. This pin is dc coupled and no dc blocking capacitor is necessary when the RF line potential is within 0 V dc .
16	VDD	Positive Supply Voltage.
17	V1	Digital Input Voltage Applied to the Least Significant Bit (LSB) of Digital Interface for Controlling RF Path State. See Table 5.
18	V2	Digital Input Voltage Applied to the Second Bit of Digital Interface for Controlling RF Path State. See Table 5.
19	V3	Digital Input Voltage Applied to the Most Significant Bit (MSB) of Digital Interface for Controlling RF Path State. See Table 5.
20	VSS	Optional Negative Supply Voltage. This pin can be connected to ground to operate with the internal negative voltage generator. The internal negative voltage generator is disabled when this pin is connected to an external 3.3 V supply.
22	RFC	RF Common Port. This pin is dc-coupled and no dc blocking capacitor is necessary when the RF line potential is within 0 V dc.
	EPAD	Exposed Pad. The exposed pad must be connected to the RF/dc ground of the PCB.

Data Sheet ADRF5250

INTERFACE SCHEMATICS

$$
\underset{\text { RF1 TO RF5 }}{\text { RFC, }}
$$

Figure 3. RF Pin Interface Schematic

Figure 4. Digital Pin Interface Schematic

TYPICAL PERFORMANCE CHARACTERICS

INSERTION LOSS, RETURN LOSS, AND ISOLATION

Figure 5. Insertion Loss on RF Paths at Room Temperature

Figure 6. Return Loss on Selected RFx Ports and RFC

Figure 7. Return Loss on Terminated RFx Ports

Figure 8. Insertion Loss on RF Paths over Temperature

Figure 9. Worst Case Isolation on RF Paths

INPUT POWER COMPRESSION AND THIRD-ORDER INTERCEPT (IP3)

Figure 10. Input 0.1 dB Power Compression (P0.1dB) vs. Frequency, $V_{D D}=3.3 \mathrm{~V}, V_{S S}=0 \mathrm{~V}$

Figure 11. Input $0.1 d B$ Power Compression (P0.1dB) vs. Frequency, $V_{D D}=5 \mathrm{~V}, V_{S S}=0 \mathrm{~V}$

Figure 12. Input IP3 vs. Frequency, $V_{D D}=5 \mathrm{~V}, V_{S S}=0 \mathrm{~V}$

Figure 13. Input 0.1 dB Power Compression vs. Frequency over Temperature, $V_{D D}=3.3 \mathrm{~V}, V_{S S}=0 \mathrm{~V}$

Figure 14. Input 0.1 dB Power Compression (P0.1dB) vs. Frequency over Temperature, $V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$

Figure 15. Input IP3 vs. Frequency over Temperature, $V_{D D}=5 \mathrm{~V}, V_{S S}=0 \mathrm{~V}$

Figure 16. Input IP3 vs. Frequency, $V_{D D}=3.3 \mathrm{~V}, V_{S S}=0 \mathrm{~V}$

Figure 17. Input IP3 vs. Frequency over Temperature, $V_{D D}=3.3 \mathrm{~V}, V_{S S}=0 \mathrm{~V}$

THEORY OF OPERATION

The ADRF5250 requires a positive supply voltage applied to the VDD pin and 0 V or -3.3 V supply voltage applied to the VSS pin. Bypass capacitors are recommended on the supply and digital control lines to minimize RF coupling. An incorporated negative supply generator is enabled or disabled depending on the applied Vss supply voltage. Table 4 describes the operation mode of that negative supply generator.

Table 4. Negative Voltage Generator Operation Mode

$\mathbf{V}_{\text {ss }}$	Test Conditions/Comments
0 V	The incorporated negative voltage generator is enabled
-3.3 V	The incorporated negative voltage generator is disabled

The ADRF5250 is internally matched to 50Ω at the RF common port (RFC) and the RF throw ports (RF1 to RF5); therefore, no external matching components are required. All of the RF ports are dc-coupled to 0 V , and no dc blocking is required at the RF ports when the RF line potential is equal to 0 V . The design is bidirectional; the RF input signal can be applied to the RFC port while the RF throw port (RF1 to RF5) is output, or vice versa.
The ADRF5250 has a 3-bit, 1.8 V logic-compatible control interface that is controlled through the V1, V2, and V3 digital control voltage pins. A small bypassing capacitor is recommended on these digital signal lines to improve the RF signal isolation. The V1 and V3 test points correspond to the LSB and MSB of the digital control interface of the ADRF5250. The modes of the RF paths are determined as shown in Table 5.

When an RF path is on, the RF signal is conducted equally well in both directions between its throw port (RFx) and common port (RFC). Otherwise, each RFx path is terminated to an internal 50Ω resistor that provides high loss between the insertion loss path and its throw ports.

Table 5. Control Voltage Truth Table

$\mathbf{V}_{\mathbf{3}}$	$\mathbf{V}_{\mathbf{2}}$	$\mathbf{V}_{\mathbf{1}}$	Mode
Low	Low	Low	All Off
Low	Low	High	RF1 on
Low	High	Low	RF2 on
Low	High	High	RF3 on
High	Low	Low	RF4 on
High	Low	High	RF5 on
High	High	Low	All off
High	High	High	All off

The ideal power-up sequence is as follows:

1. Power up GND.
2. Power up VDD and VSS. The relative order is not important.
3. Power up the digital control inputs. The relative order of the logic control inputs is not important. However, powering the digital control inputs before the VDD supply can inadvertently forward bias and damage the internal ESD protection structures.
4. Apply an RF input signal.

APPLICATIONS INFORMATION

EVALUATION BOARD

Figure 18 and Figure 19 show the top and cross sectional views of the evaluation board, which uses 4-layer construction with a copper thickness of $0.5 \mathrm{oz}(0.7 \mathrm{mil})$ and dielectric materials between each copper layer.

Figure 18. Evaluation Board Layout Top View

Figure 19. Evaluation Board Cross Sectional View
All RF traces are routed on Layer 2; the V1, V3, and VSS dc traces are routed on Layer 3; the V2 and VDD dc traces are routed on the top layer; and the other remaining layers are grounded planes that provide a solid ground for RF transmission lines. The top and bottom dielectric material are Rogers 4350B, offering low loss performance. The middle dielectric material is Rogers 4450F and is used to achieve an overall board thickness of 30 mil. The RF transmission lines were designed using a
coplanar waveguide (CPWG) model with a width of 8 mil and ground spacing of 10 mil for a characteristic impedance of 50Ω. For optimal RF and thermal grounding, as many plated through vias as possible are arranged around the transmission lines and under the exposed pad of the package.
Figure 20 shows the actual ADRF5250 evaluation board with component placement. Two power supply ports are connected to the VDD and VSS test points, TP3 and TP5, and the ground reference is connected to the GND test point, TP6. On the digital control and VDD supply traces, bypass capacitors are used.

Figure 20. ADRF5250-EVALZ Evaluation Board
Three control ports are connected to the V1, V2, and V3 test points, TP1, TP2, and TP4, respectively. On each control trace, a resistor position is available to improve the isolation between the RF and control signals. The RF ports are connected to the RFC, RF1, RF2, RF3, RF4, and RF5 connectors (J6, J8, J7, J5, J2, and J1), which are end launch jack SMA RF connectors. A through transmission line that connects unpopulated RF connectors (J 3 and J4) is also available to measure the loss of the PCB. Figure 22 and Table 6 show the evaluation board schematic and bill of materials, respectively.
The evaluation board shown in Figure 20 is available for order from the Analog Devices, Inc., website at www.analog.com.

Figure 21. Pb-Free Reflow Solder Profile

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-220-WGGD-6.

Figure 23. 24-Lead Lead Frame Chip Scale Package [LFCSP]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body and 0.75 mm Package Height (CP-24-23)
Dimensions shown in millimeters

NOTES:

1. MEASURED FROM THE CENTERLINE OF SPROCKET HOLE TO CENTERLINE OF THE

POCKET HOLE
2. 10 SPROCKET HOLE PITCH CUMUL ATIVE TOLERANCE IS ± 0.20
3. THICKNESS IS APPLICABLE AS MEASURED AT EDGE OF TAPE
4. BLACK POLYSTYRENE M ATERIAL
5. ALLOWABLE CAMBER TO BE 1 mm PER 100 mm IN LENGHT, NON-CUMULATIVE OVER 250 mm
6. MEASUREMENT POINT TO BE 0.3 mm FROM BOTTOM POCKET
6. MEASUREMENT POINT TO BE 0.3 mm FROM BO
7. SURFACE RESISTIVITY FROM $10^{5} \mathrm{TO} 10^{11} \Omega /$ SQ
7. SURFACE RESISTIVITY FROM 10^{5} TO $10^{11} \Omega /$ SQ
8. KO MEASUREMENT POINT SHOULD NOT BE REFERED ON POCKET RIDGE

Figure 24. LFCSP Tape and Reel Outline Dimensions
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADRF5250BCPZ	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	24-Lead Lead Frame Chip Scale Package [LFCSP]	CP-24-23
ADRF5250BCPZ-R7	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	24-Lead Lead Frame Chip Scale Package [LFCSP], 7 "Tape and Reel	CP-24-23
ADRF5250BCPZRL	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	24-Lead Lead Frame Chip Scale Package [LFCSP], 13" Tape and Reel	CP-24-23
ADRF5250-EVALZ		Evaluation Board	

[^1]Data Sheet ADRF5250

NOTES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSX210MA18E6327XTSA1 SKY13446-374LF SW-227-PIN CG2185X2 CG2415M6
MA4SW410B-1 MASW-002102-13580G MASW-008543-001SMB MASW-008955-TR3000 TGS4307 BGS 12PL6 E6327
BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8
SKY13374-397LF SKY13453-385LF CG2415M6-C2 HMC986A-SX SW-314-PIN UPG2162T5N-E2-A SKY13416-485LF MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588-TR3000 MASW-004103-13655P MASW-00310213590G MASWSS0202TR-3000 MA4SW310B-1 MA4SW110 SW-313-PIN CG2430X1 SKY13321-360LF SKY13405-490LF SKYA21001 BGSF 18DM20 E6327 SKY13415-485LF MMS008PP3 BGS13PN10E6327XTSA1 SKY13319-374LF

BGS14PN10E6327XTSA1 SKY12213-478LF SKY13404-466LF MASW-011060-TR0500 SKYA21024 SKY85601-11

[^0]: ${ }^{1}$ Exposure to levels between the recommended operating conditions and the absolute maximum rating conditions for extended period may affect device reliability.

[^1]: ${ }^{1} Z=$ RoHS Compliant Part.

