Data Sheet

FEATURES

Reflective design

Low insertion loss: 1.1 dB
High isolation: $\mathbf{3 8} \mathbf{d B}$
High input linearity
P0.1dB: $\mathbf{3 7}$ dBm
IP3: 65 dBm
High RF input power handling $\mathbf{2 8 d B m}$ average
36 dBm peak
3.3 V single-supply operation Internal negative voltage generator
RF settling time ($\mathbf{0 . 1} \mathbf{d B}$ final RF output): 70 ns
20-terminal, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$, RoHS-compliant, land grid array package

APPLICATIONS

Industrial scanner
Test instrumentation
Cellular infrastructure: 5G millimeter wave
Military radios, radars, electronic counter measures (ECMs)
Microwave radios and very small aperture terminals (VSATs)

GENERAL DESCRIPTION

The ADRF5300 is a reflective, SPDT switch manufactured in the silicon process.

The ADRF5300 is developed for 5G applications ranging from 24 GHz to 32 GHz . The ADRF5300 has a low insertion loss of 1.1 dB , a high isolation of 38 dB , and an RF input power handling capability of 28 dBm average and 36 dBm peak

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

ADRF5300

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Timing Specifications 3
Absolute Maximum Ratings 4
Thermal Resistance 4
Electrostatic Discharge (ESD) Ratings 4
ESD Caution 4
Pin Configuration and Function Descriptions 5
Interface Schematics 5
Typical Performance Characteristics 6
Insertion Loss, Return Loss, and Isolation 6
Input Power Compression and Third-Order Intercept 7
Theory of Operation 8
RF Input and Output 8
Power Supply. 8
Timing Requirements 8
Applications Information 9
Layout Considerations 9
RF and Digital Controls 9
Probe Matrix Board 9
Outline Dimensions 11
Ordering Guide 11

REVISION HISTORY

9/2020-Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, control voltage $\left(\mathrm{V}_{\mathrm{CTRL}}\right)=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}, \mathrm{T}_{\mathrm{CASE}}=25^{\circ} \mathrm{C}$, and a 50Ω system, unless otherwise noted.
Table 1.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
FREQUENCY RANGE		24		32	GHz
INSERTION LOSS Between RFC and RF1 or RFC and RF2			1.1		dB
ISOLATION Between RFC and RF1 or RFC and RF2 Between RF1 and RF2			$\begin{aligned} & 38 \\ & 38 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
RETURN LOSS RFC, RF1 (On) and RF2 (On)			22		dB
SWITCHING CHARACTERISTICS Rise Time (trise) and Fall Time ($\mathrm{t}_{\text {FALL }}$) On Time (ton) and Off Time (toff) RF Settling Time 0.1 dB 0.05 dB	10% to 90% of RF output $50 \% \mathrm{~V}_{\text {CTRL }}$ to 90% of RF output $50 \% \mathrm{~V}_{\text {CTRL }}$ to 0.1 dB of final RF output $50 \% \mathrm{~V}_{\text {ctrl }}$ to 0.05 dB of final RF output		$\begin{aligned} & 25 \\ & 60 \\ & 70 \\ & 80 \end{aligned}$		ns ns ns
INPUT LINEARITY 0.1 dB Power Compression (PO.1dB) Input Third-Order Intercept (IP3)	$\mathrm{f}=24 \mathrm{GHz} \text { to } 32 \mathrm{GHz}$ Two-tone input power $=20 \mathrm{dBm}$ per tone, $\Delta \mathrm{f}=1 \mathrm{MHz}$		$\begin{aligned} & 37 \\ & 65 \end{aligned}$		$\begin{aligned} & \mathrm{dBm} \\ & \mathrm{dBm} \end{aligned}$
SUPPLY CURRENT Positive Supply Current (lod)	VDD pin		450		$\mu \mathrm{A}$
DIGITAL CONTROL INPUTS Input Voltage Low (Vinl) High (VINH) Input Current Low (linl) High (lınн)	CTRL pin	$\begin{aligned} & 0 \\ & 1.2 \end{aligned}$	<1 ~ 11	$\begin{aligned} & 0.8 \\ & 3.3 \end{aligned}$	V $\mu \mathrm{A}$ $\mu \mathrm{A}$
RECOMMENDED OPERATING CONDITIONS VD Digital $\mathrm{V}_{\text {CTRL }}$ RF Input (RFin) Power ${ }^{2}$ Steady State Average Steady State Peak Hot Switching Average Hot Switching Peak TCASE	$\mathrm{f}=24 \mathrm{GHz}$ to $32 \mathrm{GHz}, \mathrm{T}_{\text {CASE }}=85^{\circ} \mathrm{C}$, input at RFC, RF1, or RF2	3.15 0 -40		3.45 VD 28 36 28 36 $+105$	V V dBm dBm dBm dBm ${ }^{\circ} \mathrm{C}$

${ }^{1}$ Performance is limited by the test setup.
${ }^{2}$ For $105^{\circ} \mathrm{C}$ operation, the power handling degrades from the $\mathrm{T}_{\text {CASE }}=85^{\circ} \mathrm{C}$ specification by 3 dB .

TIMING SPECIFICATIONS

See Figure 14 for the timing diagram.
Table 2.

Parameter	Description	Min	Typ	Max
tpowerup 1	Minimum wait time after power-up	50		
thold $^{\text {tsLew }}$	Minimum control switching time	40		

[^0]
ABSOLUTE MAXIMUM RATINGS

For the recommended operating conditions, see Table 1.
Table 3.

Parameter	Rating
Positive Supply Voltage	-0.3 V to +3.6 V
Digital Control Inputs	-0.3 V to $\mathrm{V} D \mathrm{DD}+0.3 \mathrm{~V}$
Voltage	3 mA
Current	
RF Input Power $(\mathrm{V} D \mathrm{DD}=3.3 \mathrm{~V}, \mathrm{f}=24 \mathrm{GHz}$ to	
32 GHz at $\left.\mathrm{T}_{\mathrm{CASE}}=85^{\circ} \mathrm{C}\right)$	28.5 dBm
Average	36.5 dBm
Peak	
RF Input Power Under Unbiased	28 dBm
Condition $\left(\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}\right)$	36 dBm
Average	
Peak	$135^{\circ} \mathrm{C}$
Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction	$260^{\circ} \mathrm{C}$
Storage	
Reflow	

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal performance is linked directly to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.
θ_{JC} is the junction to case bottom (channel to package bottom) thermal resistance.

Table 4. Thermal Resistance

Package Type	$\boldsymbol{\theta} \boldsymbol{\jmath} \mathbf{c}$	Unit
CC-20-9	385	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTROSTATIC DISCHARGE (ESD) RATINGS

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.
Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.
Field induced charged device model (FICDM) per ANSI/ESDA/ JEDEC JS-002.
ESD Ratings for ADRF5300
Table 5. ADRF5300, 20-Terminal LGA

ESD Model	Withstand Threshold (V)
HBM	
\quad All Pins	± 1000
\quad Supply and Control Pins	± 4000
FICDM	± 1250

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 6. Pin Function Descriptions

Pin No.	Mnemonic	Description
$1,2,4$ to 7,9 to 11,13, 15 to $17,19,20$	GND	Ground. The GND pins must be connected to the RF and dc ground of the PCB.
3	RFC	RF Common Port. The RFC pin is dc-coupled to 0 V and ac matched to 50Ω. No dc blocking capacitor is required when the RF line potential is equal to 0 V dc. See Figure 3 for the interface schematic. RF Throw Port 1 . The RF1 pin is dc-coupled to 0 V and ac matched to 50Ω. No dc blocking capacitor is required when the RF line potential is equal to 0 V dc. See Figure 3 for the interface schematic.
8	RF1	Positive Supply Voltage Input. See Figure 5 for the interface schematic. Control Voltage Input. See Figure 4 for the interface schematic.
14	VDD	RF2
18	EPAD	RF Throw Port 2. The RF2 pin is dc-coupled to 0 V and ac matched to 50Ω. No dc blocking capacitor is required when the RF line potential is equal to 0 V dc. See Figure 3 for the interface schematic. Exposed Pad. The exposed pad must be connected to the RF and dc ground of the PCB.

INTERFACE SCHEMATICS

Figure 3. RFC, RF1, and RF2 Pins Interface Schematic

Figure 4. CTRL Pin Interface Schematic

TYPICAL PERFORMANCE CHARACTERISTICS

INSERTION LOSS, RETURN LOSS, AND ISOLATION

$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTRL}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}, \mathrm{T}_{\text {CASE }}=25^{\circ} \mathrm{C}$, and a 50Ω system, unless otherwise noted. Measured on the probe matrix board using ground signal ground (GSG) probes close to the RFC, RF1, and RF2 pins.

Figure 6. Insertion Loss vs. Frequency

Figure 7. Isolation vs. Frequency

Figure 8. Insertion Loss vs. Frequency, RF1 Selected

Figure 9. Return Loss vs. Frequency

INPUT POWER COMPRESSION AND THIRD-ORDER INTERCEPT

$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTRL}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}, \mathrm{T}_{\mathrm{CASE}}=25^{\circ} \mathrm{C}$, and a 50Ω system, unless otherwise noted. All of the large signal performance parameters are measured on the ADRF5300-EVALZ.

Figure 10. Input P0.1dB vs. Frequency, RF1 Selected

Figure 11. Input IP3 vs. Frequency, RF1 Selected

Figure 12. Input P0.1dB vs. Frequency, RF2 Selected

Figure 13. Input IP3 vs. Frequency, RF2 Selected

THEORY OF OPERATION

The ADRF5300 incorporates a driver to perform logic functions internally and to provide the user with the advantage of a simplified positive voltage control interface. The driver features a single digital control input pin (CTRL) that controls the state of the RF paths. The logic level applied to the CTRL pin determines which RF port is in the insertion loss state and which port is in the isolation state (see Table 7).

RF INPUT AND OUTPUT

All of the RF ports (RFC, RF1, and RF2) are dc-coupled to 0 V . When the RF line potential is equal to 0 V , no dc blocking capacitor is required at the RF ports.
The RF ports are internally matched to 50Ω. Therefore, external matching networks are not required.

The ADRF5300 is bidirectional with equal power handling capabilities. An RF input signal $\left(\mathrm{RF}_{\mathrm{IN}}\right)$ can be applied to the RFC port, RF1 port, or RF2 port.
The insertion loss path conducts the RF signal between the selected RF throw port and the RF common port. The isolation path provides high loss between the insertion loss path and the unselected, reflective RF throw port.

POWER SUPPLY

The ADRF5300 operates on a positive single supply and includes an NVG with ultralow spurious performance. Bypassing capacitors are recommended on the supply lines to filter high frequency noise.

The power-up sequence is as follows:

1. Connect GND to ground.
2. Power up the supply input, VDD.
3. Apply the digital control input, CTRL. Applying CTRL before applying the VDD supply inadvertently forward biases and damages the internal ESD protection structures. To avoid this damage, use a series $1 \mathrm{k} \Omega$ resistor to limit the current flowing into the CTRL pin. Pull the CTRL pin to VDD or GND using a resistor if the controller output is in a high impedance state after VDD is powered up and the CTRL pin is not driven to a valid logic state.
4. Apply the RF input signal.

The power-down sequence is the reverse order of the power-up sequence.

TIMING REQUIREMENTS

There are timing requirements for the proper operation of the bias and control circuits. See Table 2 for the timing specifications. See Figure 14 for the timing requirements.
After VDD reaches the operating range, tpowerup defines the wait time before the recommended maximum RF power can be applied. During this time, a maximum of 10 dBm RF input power can be applied.

The minimum wait time before switching states is defined by thoь.
The maximum rise and fall time of the CTRL pulse is defined by tslew.

Figure 14. Timing Requirements
Table 7. Control Voltage Truth Table

Digital Control Input	RF Paths	
CTRL	RF1 to RFC	RF2 to RFC
High	Insertion loss (on)	Isolation (off)
Low	Isolation (off)	Insertion loss (on)

APPLICATIONS INFORMATION

LAYOUT CONSIDERATIONS

The design of the ADRF5300-EVALZ serves as a layout recommendation for the ADRF5300 application.
The ADRF5300-EVALZ is a 4-layer evaluation board. The outer copper (Cu) layers are $0.5 \mathrm{oz}(0.7 \mathrm{mil})$ plated to 1.5 oz (2.2 mil) separated by dielectric materials. Figure 15 shows the ADRF5300-EVALZ stack up.

For additional information on application circuit design, see the ADRF5300-EVALZ user guide.

Figure 15. ADRF5300-EVALZ Stack Up
All RF and dc traces are routed on the top copper layer, whereas the inner and bottom layers are grounded planes that provide a solid ground for the RF transmission lines. The top dielectric material is 8 mil Rogers RO4003, offering optimal high frequency performance. The middle and bottom dielectric materials provide mechanical strength. The total board thickness is 62 mil, which allows 2.4 mm RF launchers to connect at the board edges.

RF AND DIGITAL CONTROLS

The RF transmission lines are designed using a coplanar waveguide (CPWG) model, with a trace width of 14 mil and a ground clearance of 7 mil to have a characteristic impedance of 50Ω. For optimal RF and thermal grounding, as many plated through vias as possible are arranged around transmission lines and under the exposed pad of the package.

The RF ports (RFC, RF1, and RF2) connect through 50Ω transmission lines to the 2.4 mm RF launchers. On the VDD pin, a 100 pF bypass capacitor filters high frequency noise.
Figure 16 shows the simplified application circuit for the ADRF5300-EVALZ.

Figure 16. ADRF5300-EVALZ Simplified Application Circuit

PROBE MATRIX BOARD

The probe matrix board is a 4-layer evaluation board. This board also uses an 8 mil Rogers RO4003 dielectric. The outer copper (Cu) layers are $0.5 \mathrm{oz}(0.7 \mathrm{mil})$ plated to $1.5 \mathrm{oz}(2.2 \mathrm{mil})$. The RF transmission lines were designed using a CPWG model with a width of 14 mil and a ground spacing of 7 mil to have a characteristic impedance of 50Ω.

Figure 17 shows the probe matrix board stack up, which is the same as the ADRF5300-EVALZ, but with a different layout that is designed to perform measurements using GSG probes at close proximity to the RFC, RF1, and RF2 pins. Probing reduces the reflections caused by mismatch arising from the connectors, cables, and board layout, which results in a more accurate measurement of the insertion loss and the return loss. Signal coupling between the RF probes limits the isolation measurement. Figure 18 shows the top view of the probe matrix board layout.

Figure 18. Probe Matrix Board, Top Layer

The probe matrix board includes a through reflect line (TRL) calibration kit allowing board loss de-embedding. The actual board duplicates the same layout in matrix form, which allows multiple devices to assemble at once. Insertion loss and return loss measurements are made on the probe matrix board, whereas isolation measurements are made on the ADRF5300-EVALZ.

OUTLINE DIMENSIONS

Figure 19. 20-Terminal Land Grid Array [LGA]
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Body and 0.75 mm Package Height (CC-20-9)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Marking Code
ADRF5300BCCZN	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	$20-$ Terminal Land Grid Array $[\mathrm{LGA}]$	$\mathrm{CC}-20-9$	S 50
ADRF5300BCCZN-RL	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	20 -Terminal Land Grid Array $[\mathrm{LGA}]$	CC-20-9	S 50
ADRF5300BCCZN-R7	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	$20-$ Terminal Land Grid Array $[\mathrm{LGA}]$	CC-20-9	S 50
ADRF5300-EVALZ		Evaluation Board		

${ }^{1} Z=$ RoHS Compliant Part.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT\# MAX2692EVKIT\# SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB SKY13380-350LF-EVB SKY13373-460LF-EVB

[^0]: ${ }^{1}$ A maximum of 10 dBm RF input power can be applied during the tpowerup wait time.

