Data Sheet

FEATURES

Matched pair of programmable filters and VGAs
Continuous gain control range: -5 dB to +45 dB
6-pole filter
1 MHz to $\mathbf{3 0} \mathbf{~ M H z}$ in 1 MHz steps, 0.5 dB corner frequency SPI programmable
6 dB front-end gain step
IMD3: >55 dBc for $\mathbf{1 . 5} \mathrm{V}$ p-p composite output
HD2, HD3: >60 dBc for $\mathbf{1 . 5} \mathrm{V}$ p-p output
Differential input and output
Adjustable output common-mode voltage
Optional dc output offset correction
Power-down feature
Single 5 V supply operation

APPLICATIONS

Baseband I/Q receivers

Diversity receivers
ADC drivers

GENERAL DESCRIPTION

The ADRF6510 is a matched pair of fully differential low noise and low distortion programmable filters and variable gain amplifiers (VGAs). Each channel is capable of rejecting large out-ofband interferers while reliably boosting the wanted signal, thus reducing the bandwidth and resolution requirements on the analog-to-digital converters (ADCs). The excellent matching between channels and their high spurious-free dynamic range over all gain and bandwidth settings makes the ADRF6510 ideal for quadrature-based (IQ) communication systems with dense constellations, multiple carriers, and nearby interferers.
The filters provide a six-pole Butterworth response with 0.5 dB corner frequencies programmable through the SPI port from 1 MHz to 30 MHz in 1 MHz steps. The preamplifier that precedes the filters offers a pin-programmable option of either 6 dB or 12 dB of gain. The preamplifier sets a differential input impedance of 400Ω and has a common-mode voltage that defaults to 2.1 V but can be driven from 1.5 V to 2.5 V .

Rev. B
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2010-2017 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Timing Diagrams 5
Absolute Maximum Ratings 6
ESD Caution 6
Pin Configuration and Function Descriptions 7
Typical Performance Characteristics 8
Theory of Operation 15
Input Buffers 15
Programmable Filters 15
Variable Gain Amplifiers (VGAs) 16
Output Buffers/ADC Drivers 16
DC Offset Compensation Loop 16
Programming the Filters 17
Noise Characteristics 17
REVISION HISTORY
9/2017—Rev. A to Rev. B
Changed CP-32-2 to CP-32-7 Throughout
Updated Outline Dimensions 29
Changes to Ordering Guide 29
10/2011—Rev. 0 to Rev. A
Changes to Figure 2 and Figure 3 5
Changes to Table 3 7
Changes to Figure 48, Changes to Error Vector Magnitude (EVM) Performance Section 20
Deleted Low IF Image Rejection Section, and Example
Baseband Interface Section, Figure 50, and Figure 51; Renumbered Subsequent Figures 20
Changes to Figure 49
Changes to Figure 49 21 21
Distortion Characteristics 18
Maximizing the Dynamic Range 18
Key Parameters for Quadrature-Based Receivers 19
Applications Information 20
Basic Connections 20
Error Vector Magnitude (EVM) Performance 20
EVM 21
Effect of Filter Bandwidth on EVM 21
Effect of Output Voltage Levels on EVM 21
Effect of Cofs on EVM 22
Anti-Aliasing Filter 22
Evaluation Board 24
Evaluation Board Control Software 24
Schematics and Artwork 24
Evaluation Board Configuration Options 27
Outline Dimensions 29
Ordering Guide 29
Added EVM Section, Effect of Filter Bandwidth on EVMSection, Effect of Output Voltage Levels on EVM Section, andEffect of Cofs on EVM Section.. 2
Added Anti-Aliasing Filter Section. 22
Changes to Figure 54 22
Changes to Figure 58 24
Changes to Figure 61 25
Changes to Figure 62 and Figure 63 26
Changes to Table 5 27

4/2010-Revision 0: Initial Version

SPECIFICATIONS

VPS $=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Z}_{\text {SOURCE }}=400 \Omega, \mathrm{Z}_{\mathrm{LOAD}}=1 \mathrm{k} \Omega$, Vout $=1.5 \mathrm{~V}$ p-p, bandwidth setting $=30 \mathrm{MHz}$, GNSW $=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

TIMING DIAGRAMS

NOTES

1. THE FIRST DATA BIT DETERMINES WHETHER THE PART IS WRITING TO OR READING FROM THE INTERNAL CORNER FREQUENCY WORD REGISTER. FOR A WRITE OPERATION, THE FIRST BIT SHOULD BEA LOGIC 1. THE CORNER FREQUENCY WORD BIT IS THEN REGISTERED INTO THE DATA PIN ON CONSECUTIVE RISING EDGES OF THE CLOCK.

Figure 2. Write Mode Timing Diagram

Figure 3. Read Mode Timing Diagram

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltages, VPS, VPSD	5.25 V
ENBL, GNSW, OFDS, LE, CLK, DATA, SDO	VPS +0.6 V
INP1, INM1, INP2, INM2	VPS +0.6 V,
	GND -0.6 V
OPP1, OPM1, OPP2, OPM2	VPS +0.6 V
OFS1, OFS2	VPS +0.6 V
GAIN	VPS +0.6 V
Internal Power Dissipation	1.4 W
θ_{JA} (Exposed Pad Soldered to Board)	$37.4^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 60 sec$)$	$300^{\circ} \mathrm{C}$

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	VPSD	Digital Positive Supply Voltage: 4.75 V to 5.25 V .
2	COMD	Digital Common. Connect to external circuit common using the lowest possible impedance.
3	LE	Latch Enable. SPI programming pin. CMOS levels: $\mathrm{V}_{\text {Low }}<0.8 \mathrm{~V}, \mathrm{~V}_{\text {HIGH }}>2 \mathrm{~V}$.
4	CLK	SPI Port Clock. CMOS levels: $\mathrm{V}_{\text {Low }}<0.8 \mathrm{~V}, \mathrm{~V}_{\text {HIGH }}>2 \mathrm{~V}$.
5	DATA	SPI Data Input. CMOS levels: $\mathrm{V}_{\text {Low }}<0.8 \mathrm{~V}, \mathrm{~V}_{\text {HIGH }}>2 \mathrm{~V}$.
6	SDO	SPI Data Output. CMOS levels: $\mathrm{V}_{\text {Low }}<0.8 \mathrm{~V}, \mathrm{~V}_{\text {HIGH }}>2 \mathrm{~V}$.
7, 9, 13, 19, 22, 28	COM	Analog Common. Connect to external circuit common.
$8,12,16,25,29$	VPS	Analog Positive Supply Voltage: 4.75 V to 5.25 V .
10, 11, 30, 31	INP2, INM2, INM1, INP1	Differential Inputs. 400Ω input impedance. Common-mode range is 1.5 V to 2.5 V ; default is 2.1 V .
14	OFDS	Offset Correction Loop Disable. Pull high to disable the offset correction loop.
15, 26	OFS2, OFS1	Offset Correction Loop Compensation Capacitors. Connect capacitors to circuit common.
17, 18, 23, 24	OPP2, OPM2, OPM1, OPP1	Differential Outputs. 20Ω output impedance. Common-mode range is 1.5 V to 3 V ; default is $\mathrm{VPS} / 2$.
20	VOCM	Output Common-Mode Setpoint. Defaults to VPS/2 if left open.
21	GAIN	Analog Gain Control. 0 V to $2 \mathrm{~V}, 30 \mathrm{mV} / \mathrm{dB}$ gain scaling.
27	GNSW	Front-End Gain Switch, 6 dB or 12 dB . Pull low for 6 dB ; pull high for 12 dB .
32	ENBL	Chip Enable. Pull high to enable.
	EP	Exposed Paddle. Connect the exposed paddle to a low impedance ground pad.

ADRF6510

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{VPS}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Z}_{\text {SOURCE }}=400 \Omega, \mathrm{Z}_{\text {LOAD }}=1 \mathrm{k} \Omega$, Vout $=1.5 \mathrm{~V}$ p-p, GNSW $=0 \mathrm{~V}$, unless otherwise noted.

Figure 5. In-Band Gain vs. V GAIN over Supply and Temperature (Bandwidth Setting $=30 \mathrm{MHz}$)

Figure 6. Gain vs. Frequency by $V_{G A I N}$ (Bandwidth Setting $=30 \mathrm{MHz}$)

Figure 7. Gain Matching vs. VGAIN (Bandwidth Setting $=30 \mathrm{MHz})$

Figure 8. Gain Conformance vs. $V_{\text {GAIN }}$ over Supply and Temperature (Bandwidth Setting $=30 \mathrm{MHz}$)

Figure $9.6 d B$ Gain Step and Gain Error vs. Frequency (Bandwidth Setting $=30 \mathrm{MHz}, V_{\text {GAIN }}=0 \mathrm{~V}$)

Figure 10. Output P1dB vs. GAIN at 15 MHz (Bandwidth Setting $=30 \mathrm{MHz}$)

Figure 11. Frequency Response vs. Bandwidth Setting (Gain =30 dB), Log Scale

Figure 12. Frequency Response vs. Bandwidth Setting (Gain =30 dB), Linear Scale

Figure 13. Frequency Response over Temperature (Gain $=26 \mathrm{~dB}$, Bandwidth Setting $=30 \mathrm{MHz}$)

Figure 14. Group Delay vs. Frequency (Gain = 20 dB)

Figure 15. Group Delay Mismatch vs. Frequency (Bandwidth Setting $=30 \mathrm{MHz}$)

Figure 16. IQ Group Delay Mismatch vs. Frequency (Bandwidth Setting $=1 \mathrm{MHz}$)

Figure 17. IQ Amplitude Mismatch vs. Frequency

Figure 18. HD2 vs. Gain over Supply and Temperature (Bandwidth Setting $=30 \mathrm{MHz}$)

Figure 19. HD2 vs. Gain over Output Common-Mode Voltage (Bandwidth Setting $=30 \mathrm{MHz}$)

Figure 20. HD3 vs. Gain over Supply and Temperature (Bandwidth Setting $=30 \mathrm{MHz}$)

Figure 21. HD3 vs. Gain over Output Common-Mode Voltage (Bandwidth Setting $=30 \mathrm{MHz}$)

Figure 22. In-Band OIP3 vs. Gain (Bandwidth Setting $=30 \mathrm{MHz}$)

Figure 23. In-Band OIP3 vs. Gain over Temperature $($ Preamp Gain $=6 d B$, Bandwidth Setting $=30 \mathrm{MHz})$

Figure 24. In-Band Third-Order Intermodulation Distortion $($ Preamp Gain $=6 d B$, Bandwidth Setting $=30 \mathrm{MHz}$)

Figure 25. In-Band Third-Order Intermodulation Distortion (Preamp Gain $=12 \mathrm{~dB}$, Bandwidth Setting $=30 \mathrm{MHz}$)

Figure 26. Out-of-Band IIP2: IMD2 Tone at Midband (Bandwidth Setting $=30 \mathrm{MHz}$)

Figure 27. Out-of-Band IIP3: IMD3 Tone at Midband
(Bandwidth Setting $=30 \mathrm{MHz}$)

Figure 28. Noise Figure vs. Gain over Bandwidth Setting, Preamp Gain = $6 d B$ (Noise Figure at $1 / 2$ Bandwidth)

Figure 29. Noise Figure vs. Gain over Bandwidth Setting, Preamp Gain = $12 d B$ (Noise Figure at 1/2 Bandwidth)

Figure 30. Output Noise Density vs. Gain by Bandwidth Setting, Preamp Gain $=6 d B$ (Noise at 1/2 Bandwidth)

Figure 31. Output Noise Density vs. Gain by Bandwidth Setting, Preamp Gain = $12 d B$ (Noise at $1 / 2$ Bandwidth)

Figure 32. Output Noise Density vs. Frequency (Bandwidth Setting $=1 \mathrm{MHz}$)

Figure 33. Output Noise Density vs. Frequency (Bandwidth Setting $=20 \mathrm{MHz}$)

Figure 34. Output Noise Density vs. Blocker Level (Bandwidth Setting $=30 \mathrm{MHz}$, Blocker at 150 MHz)

Figure 35. Input Impedance vs. Frequency (Bandwidth Setting = 30 MHz)

Figure 36. Output Impedance vs. Frequency (Bandwidth Setting $=30 \mathrm{MHz}$)

Figure 37. Channel Isolation, Output to Output, vs. Frequency (Bandwidth Setting $=30 \mathrm{MHz}$)

Figure 38. Current Consumption vs. Bandwidth Setting (Gain $=20 \mathrm{~dB}$)

Figure 39. Current Consumption vs. Temperature over Supply (Bandwidth Setting $=30 \mathrm{MHz}$)

Figure 40. Common-Mode Rejection Ratio vs. Frequency
(Bandwidth Setting $=30 \mathrm{MHz}$)

Figure 41. Gain Step Response

THEORY OF OPERATION

The ADRF6510 consists of a matched pair of buffered, programmable filters followed by variable gain amplifiers and output ADC drivers. The block diagram of a single channel is shown in Figure 42. The programmability of the bandwidth and of the pre- and post-filtering gain offers great flexibility when coping with signals of varying levels in the presence of noise and large, undesired signals nearby. The entire differential signal chain is dc-coupled with flexible interfaces at the input and output. The bandwidth and gain setting controls for the two channels are shared, ensuring close matching of their magnitude and phase responses. The ADRF6510 can be fully disabled through the ENBL pin.

Figure 42. Signal Path Block Diagram for a Single Channel of the ADRF6510
Filtering and amplification are fundamental operations in any signal processing system. Filtering is necessary to select the intended signal while rejecting out-of-band noise and interferers. Amplification increases the level of the desired signal to overcome noise added by the system. When used together, filtering and amplification can extract a low level signal of interest in the presence of noise and out-of-band interferers. Such analog signal processing alleviates the requirements on the analog, mixed signal, and digital components that follow.

INPUT BUFFERS

The input buffers provide a convenient interface to the sensitive filter sections that follow. They set a differential input impedance of 400Ω and sit at a nominal common-mode voltage of VPS/2. The inputs can be dc-coupled or ac-coupled. If using direct dc-coupling, the common-mode voltage, V_{CM}, can range from 1.5 V to 3 V . A current flows into or out of the input pins to accommodate the difference in common-mode voltages. The current into each pin is given by

$$
\left(\mathrm{V}_{\mathrm{CM}}-(\mathrm{VPS} / 2)\right) / 200 \Omega
$$

The input buffers in both channels can be configured simultaneously to a gain of 6 dB or 12 dB through the GNSW pin. When configured for a 6 dB gain, the buffers support up to a 1 V p-p differential input level with $>50 \mathrm{dBc}$ harmonic distortion. For a 12 dB gain setting, the buffers support 0.5 V p-p inputs.

PROGRAMMABLE FILTERS

The integrated programmable filter is the key signal processing function in the ADRF6510. The filters follow a six-pole Butterworth prototype response that provides a compromise between
band rejection, ripple, and group delay. The 0.5 dB bandwidth is programmed from 1 MHz to 30 MHz in 1 MHz steps via the serial programming interface (SPI) as described in the Programming the Filters section.
The filters are designed so that the Butterworth prototype filter shape and group delay responses vs. frequency are retained for any bandwidth setting. Figure 43 and Figure 44 illustrate the ideal six-pole Butterworth gain and group delay responses, respectively. The group delay, τ_{g}, is defined as

$$
\tau_{\mathrm{g}}=-\partial \varphi / \partial \omega
$$

where:
φ is the phase in radians.
$\omega=2 \pi f$ is the frequency in radians/second.
Note that for a frequency scaled filter prototype, the absolute magnitude of the group delay scales inversely with the bandwidth; however, the shape is retained. For example, the peak group delay for a 28 MHz bandwidth setting is $14 \times$ less than for a 2 MHz setting.

Figure 43. Sixth-Order Butterworth Magnitude Response for 0.5 dB Bandwidths; Programmed from 2 MHz to 29 MHz in 1 MHz Steps

Figure 44. Sixth-Order Butterworth Group Delay Response for 0.5 dB Bandwidths; Programmed to 2 MHz and 28 MHz

The corner frequency of the filters is defined by RC products, which can vary by $\pm 30 \%$ in a typical process. Therefore, all the parts are factory calibrated for corner frequency, resulting in a residual $\pm 10 \%$ corner frequency variation over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. Although absolute accuracy requires calibration, the matching of RC products between the pair of channels is better than 1% by observing careful design and layout practices. Calibration and excellent matching ensure that the magnitude and group delay responses of both channels track together, a critical requirement for digital IQ-based communication systems.

VARIABLE GAIN AMPLIFIERS (VGAs)

The VGAs are implemented using the Analog Devices, Inc., patented X-AMP ${ }^{\ominus}$ architecture, consisting of a tapped 50 dB attenuator followed by a fixed-gain amplifier. The X-AMP architecture generates a linear-in- dB monotonic gain response with low ripple. The gain is controlled through the high impedance GAIN pin with an accurate slope of $30 \mathrm{mV} / \mathrm{dB}$. The gain response shown in Figure 45 shows the GAIN pin voltage range and the absence of gain foldback at high Vgain.

Figure 45. Linear-in-dB Gain Control Response of the X-AMP VGA Showing Consistent Slope and Low Error

OUTPUT BUFFERS/ADC DRIVERS

The low impedance (20Ω) output buffers of the ADRF6510 are designed to drive either ADC inputs or subsequent amplifier stages. They are capable of delivering up to 4 V p-p composite two-tone signals into 500Ω differential loads with $>60 \mathrm{dBc}$ IM3. The output common-mode voltage defaults to VPS/2, but it can be adjusted from 1.5 V to 3.0 V without loss of drive capability by presenting the VOCM pin with the desired common-mode voltage. The high input impedance of VOCM allows the ADC reference output to be connected directly. Even though the signal path is fully dc-coupled and the dc offset compensation loop can remove undesired dc offsets (see the DC Offset Compensation Loop section), the output buffers can be accoupled to the next stage by properly selecting the coupling capacitors according to the load impedance.

DC OFFSET COMPENSATION LOOP

In many signal processing applications, no information is carried in the dc level. In fact, dc voltages and other low frequency disturbances can often dominate the intended signal and consume precious dynamic range in the analog path and bits in the data converters. These dc voltages can be present with the desired input signal or can be generated inside the signal path by inherent dc offsets or other unintended signaldependent processes such as self-mixing or rectification.
Because the ADRF6510 is fully dc-coupled, it may be necessary to remove these offsets to realize the maximum signal-to-noise ratio (SNR). This can be achieved with ac-coupling capacitors at the input and output pins, but that requires large values because the impedances are fairly low, and high-pass corners may need to be $<10 \mathrm{~Hz}$ in some cases. To address the issue of dc offsets, the ADRF6510 provides an offset correction loop that nulls the output differential dc level as shown in Figure 46. If the correction loop is not required, it can be disabled through the OFDS pin.

Figure 46. Offset Compensation Loop Operation around the VGA and Output Buffer
The offset control loop creates a high-pass corner, f_{HP}, that is superimposed on the normal Butterworth filter response. Typically, f_{HP} is many orders of magnitude lower than the lower programmed filter bandwidth so that there is no interaction between them. Setting $f_{H P}$ is accomplished with capacitors, Cofs, from the OFS1 and OFS2 pins to ground. Because the correction loop works around the VGA section, f_{HP} is also dependent on the gain of the VGA. In general, the expression for $f_{H P}$ is given by

$$
f_{H P}(\mathrm{~Hz})=1.2 \times\left(\text { Gain } / \mathrm{C}_{\text {OFS }}\right)
$$

where:
Gain is expressed in linear terms, not in decibels (dB). Cofs is expressed in microfarads ($\mu \mathrm{F}$).
Note that f_{HP} increases in proportion to the gain. For this reason, Cofs should be chosen at the highest operating gain to guarantee that f_{HP} is always below the maximum limit required by the system.

PROGRAMMING THE FILTERS

The 0.5 dB corner frequencies for both filters are programmed simultaneously through the SPI port. A 5-bit register stores the codes for corner frequencies of 1 MHz through 30 MHz (see Table 4). The SPI protocol not only allows frequency codes to be written to the DATA pin but also allows the stored code to be read back from the SDO pin.
The latch enable (LE) pin must first go to a Logic 0 for a read or write cycle to begin. On the next rising edge of the clock (CLK), a Logic 1 on the DATA pin initiates a write cycle, whereas a Logic 0 on the DATA pin initiates a read cycle. In a write cycle, the next five CLK rising edges latch the frequency code, LSB first. When LE goes high, the write cycle is completed and the frequency code is presented to the filter. In a read cycle, the next five CLK falling edges present the stored frequency code, LSB first. When LE goes high, the read cycle is completed. Detailed timing diagrams are shown in Figure 2 and Figure 3.

Table 4. Frequency Code vs. Corner Frequency Lookup Table

5-Bit Binary Frequency Code ${ }^{1}$	Corner Frequency (MHz)
00000	1
00001	2
00010	3
00011	4
00100	5
00101	6
00110	7
00111	8
01000	9
01001	10
01010	11
01011	12
01100	13
01101	14
01110	15
01111	16
10000	17
10001	18
10010	19
10011	20
10100	21
10101	22
10110	23
10111	24
11000	25
11001	26
11010	27
11011	28
11100	29
11101	30
11110	30
11111	30

${ }^{1}$ MSB first.

NOISE CHARACTERISTICS

The output noise behavior of the ADRF6510 depends on the gain and bandwidth settings. Both the filter sections and the VGAs contribute to the total noise at the output. The filter contributes a noise spectral density profile that is flat at low frequencies, peaks near the corner frequency, and then rolls off as the filter poles roll off the gain. The magnitude of the noise spectral density, expressed in $n V / \sqrt{H z}$, varies inversely with the square root of the bandwidth setting, resulting in a total integrated noise in nV that is nearly constant with bandwidth setting.
The X-AMP type VGAs used in the ADRF6510 contribute a fixed noise spectral density to the output, independent of the gain setting, of $-130 \mathrm{dBV} / \sqrt{ } \mathrm{Hz}$, which is equivalent to $316 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$. Although the VGA noise contribution to the output is fixed, the gain of the VGA controls the relative contribution of the filter noise.

Figure 47 and Figure 48 show the total output noise spectral density vs. frequency for different bandwidth settings. At low values of VGA gain, the noise at the output is the flat spectral density contributed by the VGA because the filter noise is suppressed by the VGA attenuation. As the gain increases, more of the filter noise appears at the output. Because the filter noise increases at lower bandwidth settings, it overwhelms the VGA noise floor. In either case, the noise density asymptotically approaches the $-130 \mathrm{dBV} / \sqrt{ } \mathrm{Hz}$ limit set by the VGA at the highest frequencies. For other values of VGA gain and bandwidth setting, the detailed shape of the noise spectral density changes.

Figure 47. Total Output Noise with a 20 MHz Corner Frequency for Three Different Gain Settings

Figure 48. Total Output Noise with a 1 MHz Corner Frequency for Three Different Gain Settings

Note that the noise spectral density outside the filter bandwidth is limited by the fixed VGA output noise. It may be necessary to use an external, fixed-frequency, passive filter prior to an analog-to-digital conversion to prevent noise aliasing from degrading the signal-to-noise ratio. The higher the sampling rate relative to the maximum ADRF6510 corner frequency setting to be used, the lower the order of the external filter.

DISTORTION CHARACTERISTICS

The distortion performance of the ADRF6510 is similar to its noise performance. The filters and the VGAs contribute to the overall distortion and signal handling capabilities. Furthermore, the front end must also cope with out-of-band signals that can be larger than the in-band signals. These out-of-band signals are filtered before reaching the VGA. It is important to understand the signals presented to the ADRF6510 and to match these signals with the input and output characteristics of the part.
When the gain is low, the distortion is typically limited by the input section because the output is not driven to its maximum capacity. When the gain is high, the distortion is likely limited by the output section because the input is not driven to its maximum capacity. An exception to this is when the input is driven with a small desired signal in combination with a large out-of-band signal. In this case, the out-of-band signal may drive the input to distort. As long as the input is not overdriven, the out-of-band signal is removed by the filter. A high VGA gain is still needed to raise the small desired signal to a higher level at the output. The overall distortion introduced by the part depends on the input drive level, including the out-of-band signals, and the desired output signal level.

As noted in the Input Buffers section, the input section can handle a total signal level of 1 V p-p for a 6 dB preamplifier and 500 mV p-p for a 12 dB preamplifier with $>50 \mathrm{dBc}$ harmonic distortion. This includes both in-band and out-of-band signals.

To distinguish and quantify the distortion performance of the input section, two different IP3 specifications are presented. The first is called in-band IP3 and refers to a two-tone test where the signals are inside the filter bandwidth. This is exactly the same figure of merit familiar to communications engineers in which the third-order intermodulation level, IM3, is measured.

To quantify the effect of out-of-band signals, a new out-of-band (OOB) IIP3 figure of merit is introduced. This test also involves a two-tone stimulus; however, the two tones are placed out-ofband so that the lower IM3 product lands in the middle of the filter pass band. At the output, only the IM3 product is visible because the original two tones are filtered out. To calculate the OOB IP3 at the input, the IM3 level is referred to the input by the overall gain. The OOB IIP3 allows the user to predict the impact of out-of-band blockers or interferers at an arbitrary signal level on the in-band performance. The ratio of the desired input signal level to the input-referred IM3 at a given blocker level represents a signal-to-distortion limit imposed by the out-of-band signals.

MAXIMIZING THE DYNAMIC RANGE

The role of the ADRF6510 is to increase the level of a variable in-band signal while minimizing out-of-band signals. Ideally, this is achieved without degrading the SNR of the incoming signal or introducing distortion to the incoming signal.
The first goal is to maximize the output signal swing, which can be defined by the ADC input range or the input signal capacity of the next analog stage. For the complex waveforms often encountered in communication systems, the peak-to-average ratio, or crest factor, must be considered when choosing the peak-to-peak output. From the chosen output signal and the maximum gain of the ADRF6510, the minimum input level can be defined. Lower signal levels do not yield the maximum output and suffer a greater degradation in SNR.

As the input signal level increases, the VGA gain is reduced from its maximum gain point to maintain the desired fixed output level. The output noise, initially dominated by the filter, follows the gain reduction, yielding a progressively better SNR. At some point, the VGA gain drops sufficiently that the constant VGA noise becomes dominant, resulting in a constant SNR from that point. From the perspective of SNR alone, the maximum input level is reached when the VGA reaches its minimum gain.
Distortion must also be considered when maximizing the dynamic range. At low and moderate signal levels, the output distortion is constant and assumed to be adequate for the selected output level. At some point, the input signal becomes large enough that distortion at the input limits the system. The maximum tolerable input signal depends on whether the input distortion becomes unacceptably large or the minimum gain is reached.

ADRF6510

The most challenging scenario in terms of dynamic range is the presence of a large out-of-band blocker accompanying a weaker in-band wanted signal. In this case, the maximum input level is dictated by the blocker and its inclination to cause distortion. After filtering, the weak wanted signal must be amplified to the desired output level, possibly requiring maximum gain. Both the distortion limits associated with the blocker at the input and the SNR limits created by the weaker signal and higher gains are present simultaneously. Furthermore, not only does the blocker scenario degrade the dynamic range but it also reduces the range of input signals that can be handled because a larger part of the gain range is used to simply extract the weak desired signal from the stronger blocker.

KEY PARAMETERS FOR QUADRATURE-BASED RECEIVERS

The majority of digital communication receivers makes use of quadrature signaling, in which bits of information are encoded onto pairs of baseband signals that then modulate in-phase (I)
and quadrature (Q) sinusoidal carriers. Both the baseband and modulated signals appear quite complex in the time domain with dramatic peaks and valleys. In a typical receiver, the goal is to recover the pair of quadrature baseband signals in the presence of noise and interfering signals after quadrature demodulation. In the process of filtering out-of-band noise and unwanted interferers and restoring the levels of the wanted I and Q baseband signals, it is critical to retain their gain and phase integrity over the bandwidth.

The ADRF6510 delivers flat in-band gain and group delay, consistent with a six-pole Butterworth prototype filter as described in the Programmable Filters section. Furthermore, careful design ensures excellent matching of these parameters between the I and Q channels. Although absolute gain flatness and group delay can be corrected with digital equalization, mismatch introduces quadrature errors and intersymbol interference that degrade bit error rates in digital communication systems.

APPLICATIONS INFORMATION
 BASIC CONNECTIONS

Figure 49 shows the basic connections for operating the ADRF6510. A voltage from 4.75 V to 5.25 V should be applied to the supply pins. Each supply pin should be decoupled with at least one low inductance, surface-mount ceramic capacitor of $0.1 \mu \mathrm{~F}$ placed as close as possible to the device.
The input buffers provide an interface to the sensitive filter sections that follow. They set a differential input impedance of 400Ω and sit at a nominal common-mode voltage of VPS/2. The inputs can be dc-coupled or ac-coupled. If using direct dc-coupling, the common-mode voltage, V_{CM}, can range from 1.5 V to 3 V .

The output buffers of the ADRF6510 are low impedance $(\sim 20 \Omega)$ designed to drive either ADC inputs or subsequent amplifier stages. The output common-mode voltage defaults to VPS/2 but can be adjusted from 1.5 V to 3.0 V without loss of drive capability by presenting the VOCM pin with the desired common-mode voltage. The high input impedance of VOCM allows the ADC reference output to be connected directly.
To enable the ADRF6510, the ENBL pin must be pulled high. Taking ENBL low disables the device, reducing current consumption to approximately 2 mA at ambient temperature.

ERROR VECTOR MAGNITUDE (EVM) PERFORMANCE

Error vector magnitude (EVM) is a measure used to quantify the performance of a digital radio transmitter or receiver by measuring the fidelity of the digital signal transmitted or received. Various imperfections in the link, such as magnitude and phase imbalance, noise, and distortion, cause the constellation points to deviate from their ideal locations.

In general, a receiver exhibits three distinct EVM limitations vs. received input signal power. As signal power increases, the distortion components increase.

- At large enough signal levels, where the distortion components due to the harmonic nonlinearities in the device dominate, EVM degrades as signal levels increase.
- At medium signal levels, where the signal chain behaves in a linear manner and the signal is well above any notable noise contributions, EVM has a tendency to reach an optimal level determined dominantly by either the quadrature accuracy and I/Q gain match of the signal chain or the precision of the test equipment.
- As signal levels decrease, such that noise is a major contributor, EVM performance vs. the signal level exhibits a decibel-for-decibel degradation with decreasing signal levels. At these lower signal levels, where noise is the dominant limitation, decibel EVM is directly proportional to the SNR.

Figure 49. Basic Connections

EVM

The basic setup to test EVM for the ADRF6510 consisted of an Agilent E4438C used as a RF signal source with an Agilent InfiniiVision DSO7104B oscilloscope in conjunction with the Agilent 89600 VSA software to sample the signal and compute the EVM. The E4438C RF output drove the RF port of the ADL5380 IQ demodulater, which in turn drove the baseband differential inputs of the ADRF6510.
The I and Q outputs of the ADRF6510 were taken differentially into two AD8130 difference amplifiers to convert them into single-ended signals. The single-ended signals were connected to the input channels of the oscilloscope, which captured the modulated waveforms.

An overall baseband EVM performance was measured on the ADRF6510. A modulation setting of 4 QAM and, unless otherwise noted, a 5 MHz symbol rate were used, with a pulse shaping filter alpha of 0.35 . The analog gain of the ADRF6510 was adjusted to maintain 1.5 V p-p into a $1 \mathrm{k} \Omega$ differential load impedance. Figure 50 shows EVM vs. input power for three different IF frequencies. The input power is the integrated input power over the bandwidth of the modulated signal.
In Figure 50, the ADRF6510 shows excellent EVM of better than --35 dB over a 50 dB range at a 0 Hz IF. The user can chose to use a complex IF of 5 MHz to achieve even a better EVM of at least -40 dB over a 50 dB range.

Figure 50. EVM vs. RF Input Power Level; OFDS Pulled Low, Cofs $=1 \mu F$

EFFECT OF FILTER BANDWIDTH ON EVM

Care should be taken when selecting the filter bandwidth. In a digital transceiver, the modulated signal is filtered by a pulse shaping filter (such as a root-raised cosine filter) at both the transmit and receive ends to guard against intersymbol interference (ISI). If additional filtering of the modulated signal is done, the signal must be within the pass band of the filter. When the corner frequency of the ADRF6510 filter begins to encroach on the modulated signal, ISI is introduced and degrades EVM, which can lead to loss of signal lock.

While low-pass filtering with the ADRF6510 to reject out-ofband undesired signals (blockers), more rejection of the undesired signals may be required. If the filter bandwidth is set to approximately the same as the signal bandwidth, the user may trade some degradation of EVM for a gain in rejection of the out-of-band undesired signals, by lowering the low-pass filter bandwidth corner (for example, by 1 MHz).
Lowering the filter bandwidth to gain more rejection works progressively better the lower the signal and filter bandwidths are set to (see Figure 43). A 1 MHz change from 3 MHz filter bandwidth to 2 MHz filter bandwidth yields about 20 dB more rejection. Compare that to a 1 MHz change from 29 MHz filter band-width to 28 MHz filter bandwidth, which will yield about 1 dB more in rejection.

Figure 51 shows that degradation of EVM as signal bandwidth (positive frequency only) is swept while keeping the filter bandwidth set to 5 MHz . Three different Cofs capacitor values were used.

Figure 51. EVM vs. Signal Bandwidth over Cofs Values While Maintaining a Filter Bandwidth of 5 MHz

EFFECT OF OUTPUT VOLTAGE LEVELS ON EVM

Output voltage level can affect EVM greatly when the signal is compressed. When changing the output voltage levels of the ADRF6510, take care that the output signal is not in compression, which causes EVM degradation.

Figure 52. EVM vs. RF Input Power over Output Voltage Levels, IF = 5 MHz , OFDS Pulled High

Figure 52 shows EVM degradation as the signal level nears compression. At 2.25 V p-p the signal is already degraded a few decibels. When the output level is near the absolute limits of the output stage, the EVM becomes much more erratic over the RF input power level.

EFFECT OF Cofs ON EVM

When enabled, the dc offset compensation loop effectively nulls any information below the high-pass corner set by the Cofs capacitor. However, loss of the low frequency information of the modulated signal can degrade the EVM in some cases.
As the signal bandwidth becomes larger, the percentage of information that is corrupted by the high-pass corner becomes smaller. In such cases, it is important to select a Cofs capacitor large enough to minimize the high-pass corner frequency, which prevents loss of information and degraded EVM.

Figure 53 shows the effect of Cofs values at a single signal bandwidth of $6.75 \mathrm{MHz}=1.35 \times 5 \mathrm{MHz}$ over input power.
Figure 54 shows that EVM can be improved by using a bigger Cofs value and/or increasing the signal bandwidth. Increasing signal bandwidth will improve EVM to a point after which the bandwidth limitations of the source, the part, and/or the receiver will start to dominate and degrade EVM.

Figure 54. EVM vs. Signal BW over Cofs Values

ANTI-ALIASING FILTER

The noise spectral density of the ADRF6510 outside the filter bandwidth is limited by the fixed VGA output noise. It may be necessary to use an external, fixed-frequency, passive filter prior to an analog-to-digital conversion to prevent noise aliasing from degrading the signal-to-noise ratio. As shown in Figure 47 and Figure 48, the noise density at higher frequencies tends to be flat, and any higher IF noise aliasing into the Nyquist zone has minimal effects.
When designing an antialiasing filter, it is necessary to consider the overall source and load impedance presented by the ADRF6510 and the ADC input to design the filter network. The differential baseband output impedance of the ADRF6510 is 20Ω and is designed to drive a high impedance ADC input. It may be desirable to terminate the ADC input to a lower impedance by using a terminating resistor, such as 500Ω. The terminating resistor helps to better define the input impedance at the ADC input at the cost of a slightly reduced gain.
The order and type of filter network depend on the desired high frequency rejection required, the pass-band ripple, and the group delay. Filter design tables provide outlines for various filter types and orders, illustrating the normalized inductor and capacitor values for a 1 Hz cutoff frequency and 1Ω load.

After scaling the normalized prototype element values by the actual desired cutoff frequency and load impedance, the series reactance elements are halved to realize the final balanced filter network component values.
As an example, a second-order Butterworth, low-pass filter design is shown in Figure 55 where the differential load impedance is 500Ω and the source impedance is 50Ω. The normalized series inductor value for the 10 -to- 1 , load-to-source impedance ratio is 0.074 H , and the normalized shunt capacitor is 14.814 F . For a 31 MHz cutoff frequency, the single-ended equivalent circuit consists of a $0.191 \mu \mathrm{H}$ series inductor followed by a 152 pF shunt capacitor.

Figure 53. EVM vs. RF Input Power over Cofs Values

The balanced configuration is realized as the $0.191 \mu \mathrm{H}$ inductor is split in half to achieve the network that is shown in Figure 55.

Figure 55. Second-Order Butterworth, Low-Pass Filter Design Example
A complete design example is shown in Figure 56. A third-order Chebyshev differential filter with a 31 MHz corner frequency interfaces the output of the ADRF6510 to that of an ADC input. The 20Ω source impedance reflects the impedance of the output buffer stage. The 500Ω load resistor defines the input impedance of the ADC. The filter adheres to a 0.1 dB in-band flatness and offers sufficient out-of-band rejection to act as an antialiasing filter.

Figure 56. Third-Order Chebyshev Differential Filter Design Example
Figure 57 and Figure 58 show the measured frequency response and group delay of the third-order Chebyshev differential filter.

Figure 57. Third-Order Baseband Filter Response

Figure 58. Third-Order Baseband Filter Group Delay Response

EVALUATION BOARD

The ADRF6510 evaluation board is available with software control to program the filter bandwidth. It is a 4-layer board with split ground plane for analog and digital sections. Special care is taken to place the power decoupling capacitors close to the device pins. The board is designed for easy single-ended (through a Mini-Circuits ${ }^{\otimes}$ ADT8-1T+ 8:1 balun) or differential configuration for each channel.

EVALUATION BOARD CONTROL SOFTWARE

The ADRF6510 evaluation board is configured with a USBfriendly interface to program the filter bandwidth of the ADRF6510. The software GUI (see Figure 59) allows users to select a particular frequency to write to the device and also to read back data from the SDO pin that shows the currently programmed filter setting. The software setup files can be downloaded from the ADRF6510 product page at www.analog.com.

SCHEMATICS AND ARTWORK

Figure 60. Evaluation Board Schematic

Figure 62. Top Layer Silkscreen

Figure 63. Component Side Layout
Rev. B|Page 26 of 32

EVALUATION BOARD CONFIGURATION OPTIONS

Table 5 lists the components of the main section of the ADRF6510 evaluation board.
Table 5.

Components	Function	Default Conditions
$\begin{aligned} & \text { C1, C2, C4, C5, C11, C12, } \\ & \text { C15, C16, L1, L2 } \end{aligned}$	Power supply and ground decoupling. Nominal supply decoupling consists of a $0.1 \mu \mathrm{~F}$ capacitor to ground.	$\begin{aligned} & \mathrm{C} 1, \mathrm{C} 2=10 \mu \mathrm{~F}(\text { Size 1210 }) \\ & \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 11, \mathrm{C} 12, \mathrm{C} 15, \mathrm{C} 16=0.1 \mu \mathrm{~F} \\ & \text { (Size 0603) } \\ & \mathrm{L} 1, \mathrm{~L} 2=33 \mu \mathrm{H}(\text { Size 1812 }) \\ & \mathrm{R} 2=0 \Omega(\text { Size } 0402) \end{aligned}$
T1, T2, C3, C6, C7 to C10, R15 to R18, R31, R32, R43 to R58	Input interface. Input SMAs INM1_SE_P and INP2_SE_P are used to drive the baluns in a single-ended fashion. The default configuration of the evaluation board is for single-ended operation. T 1 and T 2 are $8: 1$ impedance ratio baluns to transform a 50Ω, single-ended input into a 400Ω balanced differential signal. R31, R32, and R47 to R50 are populated for appropriate balun interface. R51 to R58 are provided for generic placement of matching components. C3 and C6 are balun decoupling capacitors. R15 to R18 and R43 to R46 can be populated with 0Ω, and the balun interfacing resistors can be removed to bypass T 1 and T 2 for differential interfacing. C7 to C10 can be used for ac coupling with differential interfacing.	T1, T2 = ADT8-1T+ (Mini-Circuits) C3, C6 = $0.1 \mu \mathrm{~F}$ (Size 0402) C7 to C10 $=100 \mathrm{nF}$ (Size 0402) R15 to R18, R43 to R46, R51, R52, R55, R56 = open (Size 0402) R31, R32, R47 to R50, R53, R54, R57, R58 $=0 \Omega$ (Size 0402)
T3, T4, C19 to C24, R7 to R14, R19 to R24, R35 to R42	Output interface. Output SMAs OPP1_SE_P and OPM2_SE_P are used to drive the baluns in a single-ended fashion. The default configuration of the evaluation board is for single-ended operation. T3 and T4 are 8:1 impedance ratio baluns to transform a 50Ω, single-ended output into a 400Ω balanced differential load. R19, R20, R35, R36, R41, and R42 are populated for appropriate balun interface. R7 to R14 are provided for generic placement of matching components. R7 to R10 are set to 300Ω to present a $1 \mathrm{k} \Omega$ load (with the balun used) at the DUT output. C19 to C22 are used for ac coupling when differential outputs are used. C23 and C24 are balun decoupling capacitors. R21 to R24 and R37 to R40 can be populated with 0Ω, and the balun interfacing resistors can be removed to bypass T 3 and T 4 for differential interfacing.	T3, T4 = ADT8-1T+ (Mini-Circuits) C19 to C22 $=100 \mathrm{nF}$ (Size 0402) C23, C24 $=0.1 \mu \mathrm{~F}$ (Size 0402) R7 to R10 $=300 \Omega$ (Size 0402) R11 to R14 = open R19, R20, R35, R36, R41, R42 = 0Ω (Size 0402) R21 to R24, R37 to R40 = open (Size 0402)
P2	Enable interface. The ADRF6510 is powered up by applying a logic high voltage to the ENBL pin (Jumper P2 is connected to VPS).	P2 = installed for enable
$\begin{aligned} & \text { C27, C28, R1, R29, R30, } \\ & \text { R33, R34 } \end{aligned}$	Serial interface control. The digital interface sets the corner frequency of the device using the serial interface via the LE, CLK, DATA, and SDO pins.	$\begin{aligned} & \text { R1 }=10 \mathrm{k} \Omega(\text { Size 0402) } \\ & \text { C27, C28 }=330 \mathrm{pF}(\text { Size 0402 }) \\ & \text { R29, R30 }=100 \Omega \text { (Size 0402) } \\ & \text { R33, R34 }=0 \Omega(\text { Size 0402) } \end{aligned}$
P4, C13, C14, R3	DC offset correction loop compensation. The dc offset correction loop is enabled (low) with Jumper P4. When enabled, the capacitors are connected to circuit common. The high-pass corner frequency is expressed as follows: $f_{H P}(\mathrm{~Hz})=1.2 \times\left((\right.$ Linear Gain $\left.) / C_{\text {OFS }}(\mu \mathrm{F})\right)$.	$\begin{aligned} & \text { P4 = installed } \\ & C 13, C 14=1000 \mathrm{pF}(\text { Size 0402 }) \\ & \mathrm{R} 3=10 \mathrm{k} \Omega(\text { Size } 0402) \end{aligned}$
C18, R6	Output common-mode setpoint. The output common-mode voltage can be set externally when applied to the VOCM pin. If the VOCM pin is left open, the output common-mode voltage defaults to VPS/2.	$\begin{aligned} & \mathrm{C} 18=0.1 \mu \mathrm{~F}(\text { Size 0402 }) \\ & \mathrm{R} 6=0 \Omega(\text { Size } 0402) \end{aligned}$
C17, R5	Analog gain control. 0 V to $2 \mathrm{~V}, 30 \mathrm{mV} / \mathrm{dB}$ gain scaling.	$\begin{aligned} & \mathrm{C} 17=0.1 \mu \mathrm{~F}(\text { Size 0402 }) \\ & \mathrm{R} 5=0 \Omega(\text { Size 0402) } \end{aligned}$
P3, R4	Front-end 6 dB or 12 dB gain switch. Pull low for 6 dB ; pull high for 12 dB .	$\begin{aligned} & \text { P3 }=\text { installed } \\ & \text { R4 }=10 \mathrm{k} \Omega \text { (Size 0402) } \end{aligned}$

ADRF6510

USB Section Configuration Options

Table 6 lists the components of the USB section of the ADRF6510 evaluation board.
Table 6.

Components	Default Conditions
XC1, XC2, XC6	22 pF (Size 0603)
XC3 to XC5, XC7, XC8, XC12 to XC19	$0.1 \mu \mathrm{~F}$ (Size 0402)
XC9 to XC11	10 pF (Size 0402)
XD1	Green LED (Panasonic LNJ308G8TRA)
XJ1	USB SMT connector (Hirose Electric UX60A-MB-5ST 240-0003-4)
XR1, XR2	$2 \mathrm{k} \Omega$ (Size 0603)
XR3	$1 \mathrm{k} \Omega$ (Size 0603)
XR4, XR5	$100 \mathrm{k} \Omega$ (Size 0603)
XR6	0Ω (Size 0603)
XU1	USB microcontroller (Cypress CY7C68013A-56LFXC)
XU2	64 kb EEPROM (Microchip 24LC64-I/SN)
XU3	Low dropout regulator (Analog Devices ADP3303ARZ-3.3)
XY1	24 MHz crystal oscillator (AEL Crystals X24M000000S244)

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-220-WHHD
Figure 64. 32-Lead Lead Frame Chip Scale Package [LFCSP]
$5 \mathrm{~mm} \times 5 \mathrm{~mm}$ Body and 0.75 mm Package Height
(CP-32-7)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADRF6510ACPZ-R7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$32-L e a d ~ L F C S P, ~ 7 " T a p e ~ a n d ~ R e e l ~$ Evaluation Board	CP-32-7

${ }^{1} Z=$ RoHS Compliant Part.

NOTES
\square
Data Sheet ADRF6510

NOTES

NOTES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Development Tools category:
Click to view products by Analog Devices manufacturer:

Other Similar products are found below :
MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT\# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT\# MAX2692EVKIT\# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 119197HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB

