300 MHz to 2500 MHz Rx Mixer with Integrated Fractional-N PLL and VCO

Data Sheet

FEATURES

Rx mixer with integrated fractional-N PLL
RF input frequency range: $\mathbf{3 0 0} \mathbf{~ M H z}$ to $2500 \mathbf{~ M H z}$
Internal LO frequency range: 750 MHz to 1160 MHz
Input P1dB: 14.5 dBm
Input IP3: $\mathbf{3 1 \text { dBm }}$
IIP3 optimization via external pin
SSB noise figure
IP3SET pin open: 13.5 dB
IP3SET pin at $3.3 \mathrm{~V}: 14.6 \mathrm{~dB}$
Voltage conversion gain: 6.7 dB
Matched 200Ω IF output impedance
IF 3 dB bandwidth: 500 MHz
Programmable via 3-wire SPI interface
40-lead, $6 \mathrm{~mm} \times 6 \mathrm{~mm}$ LFCSP

APPLICATIONS

Cellular base stations

GENERAL DESCRIPTION

The ADRF6601 is a high dynamic range active mixer with an integrated phase-locked loop (PLL) and a voltage controlled oscillator (VCO). The PLL/synthesizer uses a fractional-N PLL to generate a f_{LO} input to the mixer. The reference input can be divided or multiplied and then applied to the PLL phase frequency detector (PFD).

The PLL can support input reference frequencies from 12 MHz to 160 MHz . The PFD output controls a charge pump whose output drives an off-chip loop filter.
The loop filter output is then applied to an integrated VCO. The VCO output at $2 \times \mathrm{f}_{\mathrm{LO}}$ is applied to an LO divider, as well as to a programmable PLL divider. The programmable PLL divider is controlled by a sigma-delta ($\Sigma-\Delta$) modulator (SDM). The modulus of the SDM can be programmed from 1 to 2047.
The active mixer converts the single-ended 50Ω RF input to a 200Ω differential IF output. The IF output can operate up to 500 MHz .

The ADRF6601 is fabricated using an advanced silicon-germanium BiCMOS process. It is available in a 40 -lead, RoHS-compliant, $6 \mathrm{~mm} \times 6 \mathrm{~mm}$ LFCSP with an exposed paddle. Performance is specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Table 1.

	Internal LO Range	$\mathbf{\pm 3 ~ d B}$ RF Bal Balun Range	$\mathbf{\pm 1} \mathbf{~ d B ~ R F}$ Balun Range
ADRF6601	750 MHz	300 MHz	450 MHz
	1160 MHz	2500 MHz	1600 MHz
ADRF6602	1550 MHz	1000 MHz	1350 MHz
	2150 MHz	3100 MHz	2750 MHz
ADRF6603	2100 MHz	1100 MHz	1450 MHz
	2600 MHz	3200 MHz	2850 MHz
ADRF6604	2500 MHz	1200 MHz	1600 MHz
	2900 MHz	3600 MHz	3200 MHz

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2010-2014 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

TABLE OF CONTENTS

Features1
Applications. 1
General Description 1
Functional Block Diagram 1
Revision History 2
Specifications 3
RF Specifications 3
Synthesizer/PLL Specifications 4
Logic Input and Power Specifications 4
Timing Characteristics 5
Absolute Maximum Ratings 6
ESD Caution 6
Pin Configuration and Function Descriptions. 7
Typical Performance Characteristics 9
RF Frequency Sweep 9
IF Frequency Sweep 10
Spurious Performance 15
Register Structure 16
Register 0—Integer Divide Control (Default: 0x0001C0) 16
Register 1—Modulus Divide Control (Default: 0x003001) 16
Register 2—Fractional Divide Control (Default: 0x001802) 17
REVISION HISTORY
1/14—Rev. A to Rev. B
Replaced LO Range with RF Range in Data Sheet Title 1
Updated Outline Dimensions 29
3/11—Rev. 0 to Rev. A
Changes to Features Section, General Description Section, andTable 11
Changes to Table 2 3
Changes to Conditions Statement and the Figure of Merit,Reference Spurs, and Phase Noise Parameters, Table 3;Changes to Conditions Statement and the Supply CurrentParameter, Table 4 ..4
Changes to Table 6 6
Changes to Table 7 7
Replaced Typical Performance Characteristics Section 9
Added Spurious Performance Section 15
Changes to Figure 44 and Figure 45 19
Changes to Theory of Operation Section. 20
Added AC Test Fixture Section and Figure 47;
Renumbered Sequentially 23
Changes to Evaluation Board Control Software Section 24
Changes to Table 10 28
1/10—Revision 0: Initial Version
Register 3- $\Sigma-\Delta$ Modulator Dither Control (Default: 0x10000B) 17
Register 4-PLL Charge Pump, PFD, and Reference Path Control (Default: 0x0AA7E4) 18
Register 5-PLL Enable and LO Path Control (Default: 0x0000E5) 19
Register 6-VCO Control and VCO Enable (Default: 0x1E2106) 19
Register 7-Mixer Bias Enable and External VCO Enable (Default: 0x000007) 19
Theory of Operation 20
Programming the ADRF6601 20
Initialization Sequence 20
LO Selection Logic 21
Applications Information 22
Basic Connections for Operation 22
AC Test Fixture 23
Evaluation Board 24
Evaluation Board Control Software 24
Schematic and Artwork 26
Evaluation Board Configuration Options 28
Outline Dimensions 29
Ordering Guide 29

ADRF6601

SPECIFICATIONS

RF SPECIFICATIONS

$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$, ambient temperature $\left(\mathrm{T}_{\mathrm{A}}\right)=25^{\circ} \mathrm{C}$, $\mathrm{f}_{\mathrm{REF}}=153.6 \mathrm{MHz}, \mathrm{f}_{\mathrm{PFD}}=38.4 \mathrm{MHz}$, high-side LO injection, $\mathrm{f}_{\mathrm{IF}}=140 \mathrm{MHz}$, IIP3 optimized using CDAC $=0 \mathrm{x} 0$ and IP3SET $=3.3 \mathrm{~V}$, unless otherwise noted.

Table 2.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
INTERNAL LO FREQUENCY RANGE		750		1160	MHz
RF INPUT FREQUENCY RANGE	$\pm 3 \mathrm{~dB} \mathrm{RF}$ input range	300		2500	MHz
RF INPUT AT 610 MHz Input Return Loss Input P1dB Second-Order Intercept (IIP2) Third-Order Intercept (IIP3) Single-Side Band Noise Figure LO-to-IF Leakage	Relative to 50Ω (can be improved with external match) -5 dBm each tone (10 MHz spacing between tones) -5 dBm each tone (10 MHz spacing between tones) $\text { IP3SET = } 3.3 \mathrm{~V}$ IP3SET = open At $1 \times$ LO frequency, 50Ω termination at the RF port		$\begin{aligned} & -11.1 \\ & 14.8 \\ & 67.4 \\ & 33.4 \\ & 13.3 \\ & 12.5 \\ & -55.5 \end{aligned}$		dB dBm dBm dBm dB dB dBm
RF INPUT AT 910 MHz Input Return Loss Input P1dB Second-Order Intercept (IIP2) Third-Order Intercept (IIP3) Single-Side Band Noise Figure LO-to-IF Leakage	Relative to 50Ω (can be improved with external match) -5 dBm each tone (10 MHz spacing between tones) -5 dBm each tone (10 MHz spacing between tones) IP3SET = 3.3V IP3SET = open At $1 \times$ LO frequency, 50Ω termination at the RF port		$\begin{gathered} -16.7 \\ 14.5 \\ 55.3 \\ 30.9 \\ 14.6 \\ 13.5 \\ -48 \end{gathered}$		dB dBm dBm dBm dB dB dBm
RF INPUT AT 1020 MHz Input Return Loss Input P1dB Second-Order Intercept (IIP2) Third-Order Intercept (IIP3) Single-Side Band Noise Figure LO-to-IF Leakage	Relative to 50Ω (can be improved with external match) -5 dBm each tone (10 MHz spacing between tones) -5 dBm each tone (10 MHz spacing between tones) IP3SET = 3.3 V IP3SET = open At $1 \times$ LO frequency, 50Ω termination at the RF port		$\begin{aligned} & -16.8 \\ & 14.8 \\ & 60.9 \\ & 32.2 \\ & 14.8 \\ & 13.5 \\ & -49 \end{aligned}$		dB dBm dBm dBm dB dB dBm
IF OUTPUT Voltage Conversion Gain IF Bandwidth Output Common-Mode Voltage Gain Flatness Gain Variation Output Swing Differential Output Return Loss	Differential 200Ω load Small signal 3 dB bandwidth External pull-up balun or inductors required Over frequency range, any $5 \mathrm{MHz} / 50 \mathrm{MHz}$ Over full temperature range Differential 200Ω load Measured through 4:1 balun		$\begin{aligned} & 6.7 \\ & 500 \\ & 5 \\ & 0.2 / 0.5 \\ & 1.2 \\ & 2 \\ & -15.5 \\ & \hline \end{aligned}$		dB MHz V dB dB $\vee p-p$ dB
LO INPUT/OUTPUT (LOP, LON) Frequency Range Output Level (LO as Output) Input Level (LO as Input) Input Impedance	Externally applied $1 \times$ LO input, internal PLL disabled $1 \times$ LO into a 50Ω load, LO output buffer enabled	250 -6	$\begin{aligned} & -6 \\ & 0 \\ & 50 \end{aligned}$	6000 +6	MHz dBm dBm Ω

ADRF6601

SYNTHESIZER/PLL SPECIFICATIONS

$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$, ambient temperature $\left(\mathrm{T}_{\mathrm{A}}\right)=25^{\circ} \mathrm{C}$, $\mathrm{f}_{\text {REF }}=153.6 \mathrm{MHz}$, $\mathrm{f}_{\text {REF }}$ power $=4 \mathrm{dBm}, \mathrm{f}_{\mathrm{PFD}}=38.4 \mathrm{MHz}$, high-side LO injection, $\mathrm{f}_{\mathrm{IF}}=140 \mathrm{MHz}$, IIP3 optimized using CDAC $=0 \mathrm{x} 0$ and IP3SET $=3.3 \mathrm{~V}$, unless otherwise noted.

Table 3.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
SYNTHESIZER SPECIFICATIONS Frequency Range Figure of Merit ${ }^{1}$ Reference Spurs	```Synthesizer specifications referenced to 1\times LO Internally generated LO PREF_IN = 0 dBm fPFD = 38.4 MHz fPFD/4 fPFD >fPFD```	750	$\begin{aligned} & -222 \\ & -107 \\ & -83 \\ & -88 \end{aligned}$	1160	MHz $\mathrm{dBc} / \mathrm{Hz} / \mathrm{Hz}$ dBC dBc dBc
PHASE NOISE Integrated Phase Noise PFD Frequency	```\(\mathrm{f}_{\mathrm{LO}}=750 \mathrm{MHz}\) to \(1160 \mathrm{MHz}, \mathrm{f}_{\text {PFD }}=38.4 \mathrm{MHz}\) 1 kHz to 10 kHz offset 100 kHz offset 500 kHz offset 1 MHz offset 5 MHz offset 10 MHz offset 20 MHz offset 1 kHz to 40 MHz integration bandwidth```	20	$\begin{aligned} & -99 \\ & -108 \\ & -127 \\ & -135 \\ & -147 \\ & -151 \\ & -153 \\ & 0.14 \end{aligned}$	40	$\mathrm{dBc} / \mathrm{Hz}$ ${ }^{\circ} \mathrm{rms}$ MHz
REFERENCE CHARACTERISTICS REF_IN Input Frequency REF_IN Input Capacitance MUXOUT Output Level MUXOUT Duty Cycle	REF_IN, MUXOUT pins Vol (lock detect output selected) $V_{\text {он }}$ (lock detect output selected)	12 2.7	4 50	$\begin{aligned} & 160 \\ & 0.25 \end{aligned}$	MHz pF V V \%
CHARGE PUMP Pump Current Output Compliance Range	Programmable to $250 \mu \mathrm{~A}, 500 \mu \mathrm{~A}, 750 \mu \mathrm{~A}, 1 \mathrm{~mA}$	1	500	2.8	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~V} \end{aligned}$

${ }^{1}$ The figure of merit (FOM) is computed as phase noise $(\mathrm{dBC} / \mathrm{Hz})-10 \log 10\left(\mathrm{f}_{\text {PFD }}\right)-20 \log 10\left(\mathrm{f}_{\mathrm{L}} / \mathrm{f}_{\mathrm{PFD}}\right)$. The FOM was measured across the full LO range with $\mathrm{f}_{\mathrm{REF}}=80 \mathrm{MHz}$, and $f_{\text {REF }}$ power $=10 \mathrm{dBm}$ ($500 \mathrm{~V} / \mu \mathrm{s}$ slew rate) with a $40 \mathrm{MHz} \mathrm{f}_{\text {PFD }}$. The FOM was computed at 50 kHz offset.

LOGIC INPUT AND POWER SPECIFICATIONS

$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$, ambient temperature $\left(\mathrm{T}_{\mathrm{A}}\right)=25^{\circ} \mathrm{C}, \mathrm{f}_{\text {REF }}=153.6 \mathrm{MHz}, \mathrm{f}_{\mathrm{PFD}}=38.4 \mathrm{MHz}$, high-side LO injection, $\mathrm{f}_{\mathrm{IF}}=140 \mathrm{MHz}$, IIP3 optimized using CDAC $=0 \mathrm{x} 0$ and IP3SET $=3.3 \mathrm{~V}$, unless otherwise noted.

Table 4.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
LOGIC INPUTS Input High Voltage, $\mathrm{V}_{\mathbb{N H}}$ Input Low Voltage, VinL Input Current, $\mathrm{I}_{\mathrm{NH}} / \mathrm{IINL}_{\mathrm{NL}}$ Input Capacitance, $\mathrm{Cl}_{\mathrm{IN}}$	CLK, DATA, LE	1.4 0	$\begin{aligned} & 0.1 \\ & 5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 0.7 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mathrm{pF} \end{aligned}$
POWER SUPPLIES Voltage Range Supply Current	VCC1, VCC2, VCC_LO, VCC_MIX, and VCC_V2I pins PLL only External LO mode (internal PLL disabled, IP3SET pin = 3.3 V, LO output buffer off) Internal LO mode (internal PLL enabled, IP3SET pin $=3.3 \mathrm{~V}$, LO output buffer on) Internal LO mode (internal PLL enabled, IP3SET pin $=3.3 \mathrm{~V}$, LO output buffer off) Power-down mode	4.75	$\begin{aligned} & 5 \\ & 97 \\ & 184 \\ & 294 \\ & 281 \\ & 30 \end{aligned}$	5.25	V mA mA mA mA mA

TIMING CHARACTERISTICS

$\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V} \pm 5 \%$.
Table 5.

Parameter	Limit	Unit	Description
t_{1}	20	ns min	LE setup time
t_{2}	10	ns min	DATA-to-CLK setup time
t_{3}	10	$n \mathrm{nsmin}$	DATA-to-CLK hold time
t_{4}	25	ns min	CLK high duration
t_{5}	25	ns min	CLK low duration
t_{6}	10	$n \mathrm{~ns}$ min	CLK-to-LE setup time
t_{7}	20	ns min	LE pulse width

Timing Diagram

Figure 2. Timing Diagram

ABSOLUTE MAXIMUM RATINGS

Table 6.

Parameter	Rating
Supply Voltage, VCC1, VCC2, VCC_LO,	-0.5 V to +5.5 V
\quad VCC_MIX, VCC_V2I	
Digital I/O, CLK, DATA, LE, LODRV_EN,	-0.3 V to +3.6 V
\quad PLL_EN	
VTUNE	0 V to 3.3 V
IFP, IFN	-0.3 V to VCC_V2I +0.3 V
RFIN	16 dBm
LOP, LON, REF_IN	13 dBm
$\theta_{\text {JA }}$ (Exposed Paddle Soldered Down)	$35^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES

1. NC = NO CONNECT. DO NOT CONNECT THIS PIN.
2. THE EXPOSED PADDLE SHOULD BE SOLDERED TO A
LOW IMPEDANCE GROUND PLANE.

Figure 3. Pin Configuration

Table 7. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	VCC1	Power Supply for the 3.3 V LDO. Power supply voltage range is 4.75 V to 5.25 V . Each power supply pin should be decoupled with a 100 pF capacitor and a $0.1 \mu \mathrm{~F}$ capacitor located close to the pin.
2	DECL3P3	Decoupling Node for the 3.3V LDO. Connect a $0.1 \mu \mathrm{~F}$ capacitor between this pin and ground.
3	CP	Charge Pump Output Pin. Connect to VTUNE through the loop filter.
$\begin{aligned} & 4,7,11,15,20, \\ & 21,23,24,25, \\ & 28,30,31,35 \end{aligned}$	GND	Ground. Connect these pins to a low impedance ground plane.
5	Rset	Charge Pump Current. The nominal charge pump current can be set to $250 \mu \mathrm{~A}, 500 \mu \mathrm{~A}, 750 \mu \mathrm{~A}$, or 1 mA using Bit DB11 and Bit DB10 in Register 4 and by setting Bit DB18 in Register 4 to 0 (internal reference current). In this mode, no external $\mathrm{R}_{\text {Set }}$ is required. If Bit DB18 is set to 1 , the four nominal charge pump currents (Inominal) can be externally adjusted according to the following equation: $R_{S E T}=\left(\frac{217.4 \times I_{C P}}{I_{\text {NOMINAL }}}\right)-37.8 \Omega$
6	REF_IN	Reference Input. Nominal input level is 1 V p-p. Input range is 12 MHz to 160 MHz . This pin is internally dcbiased and should be ac-coupled.
8	MUXOUT	Multiplexer Output. This output can be programmed to provide the reference output signal or the lock detect signal. The output is selected by programming the appropriate register.
9	DECL2P5	Decoupling Node for the 2.5 V LDO. Connect a $0.1 \mu \mathrm{~F}$ capacitor between this pin and ground.
10	VCC2	Power Supply for the 2.5 V LDO. Power supply voltage range is 4.75 V to 5.25 V . Each power supply pin should be decoupled with a 100 pF capacitor and a $0.1 \mu \mathrm{~F}$ capacitor located close to the pin.
12	DATA	Serial Data Input. The serial data input is loaded MSB first; the three LSBs are the control bits.
13	CLK	Serial Clock Input. The serial clock input is used to clock in the serial data to the registers. The data is latched into the 24-bit shift register on the CLK rising edge. Maximum clock frequency is 20 MHz .
14	LE	Load Enable. When the LE input pin goes high, the data stored in the shift registers is loaded into one of the eight registers. The relevant latch is selected by the three control bits of the 24-bit word.
16	PLL_EN	PLL Enable. Switch between internal PLL and external LO input. When this pin is logic high, the mixer LO is automatically switched to the internal PLL and the internal PLL is powered up. When this pin is logic low, the internal PLL is powered down and the external LO input is routed to the mixer LO inputs. The SPI can also be used to switch modes.
17,34	VCC_LO	Power Supply. Power supply voltage range is 4.75 V to 5.25 V . Each power supply pin should be decoupled with a 100 pF capacitor and a $0.1 \mu \mathrm{~F}$ capacitor located close to the pin.
18, 19	IFP, IFN	Mixer IF Outputs. These outputs should be pulled to VCC with RF chokes.

Pin No.	Mnemonic	Description
22	VCC_MIX	Power Supply. Power supply voltage range is 4.75 V to 5.25 V . Each power supply pin should be decoupled with a 100 pF capacitor and a $0.1 \mu \mathrm{~F}$ capacitor located close to the pin.
26	RFin	RF Input (single-ended, 50Ω).
27	VCC_V2I	Power Supply. Power supply voltage range is 4.75 V to 5.25 V . Each power supply pin should be decoupled with a 100 pF capacitor and a $0.1 \mu \mathrm{~F}$ capacitor located close to the pin.
29	IP3SET	Connect a resistor from this pin to a 5 V supply to adjust IIP3. Normally leave open.
32,33	NC	No Connection.
36	LODRV_EN	LO Driver Enable. Together with Pin 16 (PLL_EN), this digital input pin determines whether the LOP and LON pins operate as inputs or outputs. LOP and LON become inputs if the PLL_EN pin is low or if the PLL_EN pin is set high if the PLEN bit (DB6 in Register 5) is set to 0 . LOP and LON become outputs if either the LODRV_EN pin or the LDRV bit (DB3 in Register 5) is set to 1 while the PLL_EN pin is set high. The external LO drive frequency must be $1 \times$ LO. This pin has an internal $100 \mathrm{k} \Omega$ pull-down resistor.
37,38	LON, LOP	Local Oscillator Input/Output. The internally generated $1 \times$ LO is available on these pins. When internal LO generation is disabled, an external $1 \times$ LO can be applied to these pins.
39	VTUNE	VCO Control Voltage Input. This pin is driven by the output of the loop filter. The nominal input voltage range on this pin is 1.5 V to 2.5 V .
40	DECLVCO	Decoupling Node for the VCO LDO. Connect a 100 pF capacitor and a $10 \mu \mathrm{~F}$ capacitor between this pin and ground.
	EPAD	Exposed Paddle. The exposed paddle should be soldered to a low impedance ground plane.

TYPICAL PERFORMANCE CHARACTERISTICS

RF FREQUENCY SWEEP

$\mathrm{CDAC}=0 \mathrm{x} 0$, internally generated high-side $\mathrm{LO}, \mathrm{RF}_{\mathrm{IN}}=-5 \mathrm{dBm}, \mathrm{f}_{\mathrm{IF}}=140 \mathrm{MHz}$, unless otherwise noted.

Figure 4. Gain vs. RF Frequency

Figure 5. Input IP2 vs. RF Frequency

Figure 6. Noise Figure vs. RF Frequency

Figure 7. Input IP3 vs. RF Frequency

Figure 8. Input P1dB vs. RF Frequency

IF FREQUENCY SWEEP

$C D A C=0 x 0$, internally generated swept low-side $L O, f_{R F}=1960 \mathrm{MHz}, \mathrm{RF}_{\mathrm{IN}}=-5 \mathrm{dBm}$, unless otherwise noted.

Figure 9. Gain vs. IF Frequency

Figure 10. Input IP2 vs. IF Frequency, $R F_{I N}=-5 d B m$

Figure 11. Noise Figure vs. IF Frequency

Figure 12. Input IP3 vs. IF Frequency, $R F_{I N}=-5 d B m$

Figure 13. Input P1dB vs. IF Frequency

Figure 14. LO-to-IF Feedthrough vs. LO Frequency, LO Output Turned Off, CDAC $=0 \times 0$

Figure 15. LO-to-RF Leakage vs. LO Frequency, LO Output Turned Off

Figure 16. RF Input Return Loss vs. RF Frequency

Figure 17. LO Input Return Loss vs. LO Frequency (Including TC1-1-13 Balun)

Figure 18. IF Differential Output Impedance (R ParalleI C Equivalent)

Figure 19. SSB Noise Figure vs. 5 MHz Offset Blocker Level, LO Frequency $=1055 \mathrm{MHz}$, RF Frequency $=915 \mathrm{MHz}$

Figure 20. RF-to-IF Isolation vs. RF Frequency, High-Side LO, IF $=140 \mathrm{MHz}$, LO Output Turned Off

Figure 21. LO Output Amplitude vs. LO Frequency

Figure 22. Frequency Deviation from 910 MHz vs. Time (Demonstrates LO Frequency Settling Time from 920 MHz to 910 MHz)

Figure 23. VTUNE vs. LO Frequency

Figure 24. Supply Current vs. LO Frequency

Figure 25. VPTAT Voltage vs. Temperature (IP3SET = Optimized, Open)

Complementary cumulative distribution function $(\mathrm{CCDF}), \mathrm{f}_{\mathrm{RF}}=2140 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=140 \mathrm{MHz}$.

Figure 26. Gain

Figure 27. Input IP2

Figure 28. Noise Figure

Figure 29. Input IP3

Figure 30. Input P1dB

Figure 31. LO Feedthrough to IF, LO Output Turned Off

ADRF6601

Measured at IF output, CDAC $=0 \times 0$, IP3SET $=$ open, internally generated high-side $\mathrm{LO}, \mathrm{f}_{\text {REF }}=153.6 \mathrm{MHz}, \mathrm{f}_{\mathrm{PFD}}=38.4 \mathrm{MHz}$, $\mathrm{RF}_{\mathrm{IN}}=-5 \mathrm{dBm}, \mathrm{f}_{\mathrm{IF}}=140 \mathrm{MHz}$, unless otherwise noted. Phase noise measurements made at LO output, unless otherwise noted.

Figure 32. Phase Noise vs. Offset Frequency

Figure 33. PLL Reference Spurs vs. LO Frequency ($2 \times$ PFD and $4 \times$ PFD)

Figure 34. PLL Reference Spurs vs. LO Frequency ($0.25 \times$ PFD, $1 \times$ PFD, and $3 \times$ PFD)

Figure 35. Integrated Phase Noise vs. LO Frequency

Figure 36. Phase Noise vs. LO Frequency ($1 \mathrm{kHz}, 100 \mathrm{kHz}$, and 5 MHz Steps)

Figure 37. Phase Noise vs. LO Frequency (10 kHz, 1 MHz Steps)

ADRF6601

SPURIOUS PERFORMANCE

$\left(N \times f_{R F}\right)-\left(M \times f_{L O}\right)$ spur measurements were made using the standard evaluation board (see the Evaluation Board section). Mixer spurious products were measured in dB relative to the carrier (dBc) from the IF output power level. All spurious components greater than -125 dBc are shown.
$\mathrm{LO}=750 \mathrm{MHz}, \mathrm{RF}=610 \mathrm{MHz}$ (horizontal axis is m , vertical axis is n), and $\mathrm{RF}_{\text {IN }}$ power $=0 \mathrm{dBm}$.

	M					
N		0	1	2	3	4
	0	-115.74	-63.28	-31.83	-54.52	-33.54
	1	-49.49	0.0	-64.58	-24.09	-71.52
	2	-48.77	-42.49	-75.23	-60.35	-67.88
	3	-81.30	-71.27	-103.32	-73.13	-110.05
	4	-83.02	-91.24	-105.20	-88.27	-113.66
	5	-103.16	-111.19	-114.25	-108.4	-115.31
	6	-110.88	-112.83	-112.85	-113.85	-113.55
	7	-110.87	-108.26	-112.91	-111.93	-113.64

$\mathrm{LO}=1050 \mathrm{MHz}, \mathrm{RF}=910 \mathrm{MHz}$ (horizontal axis is m , vertical axis is n), and $\mathrm{RF}_{\text {IN }}$ power $=0 \mathrm{dBm}$.

\mathbf{M}							
	$\mathbf{0}$	$\mathbf{1}$	\mathbf{M}	$\mathbf{3}$	$\mathbf{4}$		
$\mathbf{0}$	-113.23	-57.96	-27.78	-58.01	-40.34		
\mathbf{N}	-34.12	0.0	-58.72	-27.14	-84.94		
\mathbf{N}	-49.76	-47.19	-57.30	-68.48	-65.03		
	$\mathbf{3}$	-73.54	-74.12	-102.24	-72.99	-108.62	
$\mathbf{4}$	-102.66	-110.29	-100.07	-99.75	-112.69		
$\mathbf{5}$	-108.79	-107.57	-110.94	-110.16	-115.35		
$\mathbf{6}$	-110.79	-108.34	-107.38	-112.44	-113.78		
$\mathbf{7}$		-109.87	-109.71	-108.58	-110.01		

REGISTER STRUCTURE

This section provides the register maps for the ADRF6601. The three LSBs determine the register that is programmed.

REGISTER 0—INTEGER DIVIDE CONTROL (DEFAULT: 0x0001C0)

RESERVED													DIVIDE MODE	INTEGER DIVIDE RATIO							CONTROL BITS		
DB23	DB22	DB21	DB20	DB19	DB18	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	0	0	0	0	0	DM	ID6	ID5	ID4	ID3	ID2	ID1	IDO	C3(0)	C2(0)	C1(0)

ID6	ID5	ID4	ID3	ID2	ID1	ID0	INTEGER DIVIDE RATIO
0	0	1	0	1	0	1	21 (INTEGER MODE ONLY)
0	0	1	0	1	1	0	22 (INTEGER MODE ONLY)
0	0	1	0	1	1	1	23 (INTEGER MODE ONLY)
0	0	1	1	0	0	0	24
\ldots							
\ldots							
0	1	1	1	0	0	0	56 (DEFAULT)
\ldots							
\ldots							
1	1	1	0	1	1	1	119
1	1	1	1	0	0	0	120 (INTEGER MODE ONLY)
1	1	1	1	0	0	1	121 (INTEGER MODE ONLY)
1	1	1	1	0	1	0	122 (INTEGER MODE ONLY)
1	1	1	1	0	1	1	123 (INTEGER MODE ONLY)

Figure 38. Register 0—Integer Divide Control Register Map

REGISTER 1—MODULUS DIVIDE CONTROL (DEFAULT: 0x003001)

Figure 39. Register 1—Modulus Divide Control Register Map

ADRF6601

REGISTER 2—FRACTIONAL DIVIDE CONTROL (DEFAULT: 0x001802)

Figure 40. Register 2—Fractional Divide Control Register Map

REGISTER 3- $\Sigma-\Delta$ MODULATOR DITHER CONTROL (DEFAULT: 0x10000B)

Figure 41. Register 3- $\Sigma-\Delta$ Modulator Dither Control Register Map

REGISTER 4—PLL CHARGE PUMP, PFD, AND REFERENCE PATH CONTROL (DEFAULT: 0x0AA7E4)

Figure 42. Register 4—PLL Charge Pump, PFD, and Reference Path Control Register Map

REGISTER 5—PLL ENABLE AND LO PATH CONTROL (DEFAULT: 0x0000E5)

Figure 43. Register 5-PLL Enable and LO Path Control Register Map

REGISTER 6-VCO CONTROL AND VCO ENABLE (DEFAULT: 0x1E2106)

Figure 44. Register 6—VCO Control and VCO Enable Register Map

REGISTER 7—MIXER BIAS ENABLE AND EXTERNAL VCO ENABLE (DEFAULT: 0x000007)

Figure 45. Register 7—Mixer Bias Enable and External VCO Enable Register Map

THEORY OF OPERATION

The ADRF6601 integrates a high performance downconverting mixer with a state-of-the-art fractional-N PLL. The PLL also integrates a low noise VCO. The SPI port allows the user to control the fractional-N PLL functions and the mixer optimization functions, as well as allowing for an externally applied LO or VCO.
The mixer core within the ADRF6601 is the next generation of an industry-leading family of mixers from Analog Devices, Inc. The RF input is converted to a current and then mixed down to IF using high performance NPN transistors. The mixer output currents are transformed to a differential output voltage by external bias inductors. The mixer bias current is also sourced through these external inductors. The high performance active mixer core results in an exceptional IIP3 and IP1dB with a very low output noise floor for excellent dynamic range. Over the specified frequency range, the ADRF6601 typically provides an IF input P1dB of 14.5 dBm and an IIP3 of 31 dBm .

Improved performance at specific frequencies can be achieved with the use of the internal capacitor DAC (CDAC), which is programmable via the SPI port and by using a resistor to a 5 V supply from the IP3SET pin (Pin 29). Adjustment of the capacitor DAC allows increments in phase shift at internal nodes in the ADRF6601, thus allowing cancellation of third-order distortion with no change in supply current. Connecting a resistor to a 5 V supply from the IP3SET pin increases the internal mixer core current, thereby improving overall IIP2 and IIP3, as well as IP1dB. Using the IP3SET pin for this purpose increases the overall supply current.
The fractional divide function of the PLL allows the frequency multiplication value from REF_IN to LO output to be a fractional value rather than to be restricted to an integer value as in traditional PLLs. In operation, this multiplication value is

```
INT + (FRAC/MOD)
```

where:
$I N T$ is the integer value.
$F R A C$ is the fractional value.
$M O D$ is the modulus value.
The INT, FRAC, and MOD values are all programmable via the SPI port. In other fractional-N PLL designs, fractional multiplication is achieved by periodically changing the fractional value in a deterministic way. The disadvantage of this approach is often spurious components close to the fundamental signal. In the ADRF6601, a $\Sigma-\Delta$ modulator is used to distribute the fractional value randomly, thus significantly reducing the spurious content due to the fractional function.

PROGRAMMING THE ADRF6601

The ADRF6601 is programmed via a 3-pin SPI port. The timing requirements for the SPI port are shown in Figure 2. Eight programmable registers, each with 24 bits, control the operation of the device. The register functions are listed in Table 8.

Table 8. ADRF6601 Register Functions

Register	Function
Register 0	Integer divide control for the PLL
Register 1	Modulus divide control for the PLL
Register 2	Fractional divide control for the PLL
Register 3	$\Sigma-\Delta$ modulator dither control
Register 4	PLL charge pump, PFD, reference path control
Register 5	PLL enable and LO path control
Register 6	VCO control and VCO enable
Register 7	Mixer bias enable and external VCO enable

Note that internal calibration for the PLL must be run when the ADRF6601 is initialized at a given frequency. This calibration is run automatically whenever Register 0, Register 1, or Register 2 is programmed. Because the other registers affect PLL performance, Register 0, Register 1, and Register 2 should always be programmed in the order specified in the Initialization Sequence section.

To program the frequency of the ADRF6601, the user typically programs only Register 0, Register 1, and Register 2. However, if registers other than these are programmed first, a short delay should be inserted before programming Register 0. This delay ensures that the VCO band calibration has sufficient time to complete before the final band calibration for Register 0 is initiated.
Software is available on the ADRF6601 product page under the Evaluation Boards \& Kits section that allows easy programming from a PC running Windows XP or Vista.

INITIALIZATION SEQUENCE

To ensure proper power-up of the ADRF6601, it is important to reset the PLL circuitry after the VCC supply rail settles to $5 \mathrm{~V} \pm$ 0.25 V . Resetting the PLL ensures that the internal bias cells are properly configured, even under poor supply start-up conditions.

To ensure that the PLL is reset after power-up, follow this procedure:

1. Disable the PLL by setting the PLEN bit to 0 (Register 5, Bit DB6).
2. After a delay of $>100 \mathrm{~ms}$, set the PLEN bit to 1 (Register 5, Bit DB6).

After this procedure is complete, the other registers should be programmed in the following order: Register 7, Register 6, Register 4, Register 3, Register 2, Register 1. Then, after a delay of $>100 \mathrm{~ms}$, Register 0 should be programmed.

ADRF6601

LO SELECTION LOGIC

The downconverting mixer in the ADRF6601 can be used without the internal PLL by applying an external differential LO to Pin 37 and Pin 38 (LON and LOP). In addition, when using an LO generated by the internal PLL, the LO signal can be accessed directly at these same pins. This function can be used for debugging purposes, or the internally generated LO can be used as the LO for a separate mixer.

The operation of the LO generation and whether LOP and LON are inputs or outputs are determined by the logic levels applied at Pin 16 (PLL_EN) and Pin 36 (LODRV_EN), as well as Bit DB3 (LDRV) and Bit DB6 (PLEN) in Register 5. The combination of externally applied logic and internal bits required for particular LO functions is given in Table 9.

Table 9. LO Selection Logic

Pins 1		Register 5 Bits $^{\mathbf{1}}$		Outputs	
Pin 16 (PLL_EN)	Pin 36 (LODRV_EN)	Bit DB6 (PLEN)	Bit DB3 (LDRV)	Output Buffer	LO
0	X	0	X	Disabled	External
0	X	1	X	Disabled	External
1	X	0	Disabled	External	
1	0	1	0	Disabled	Internal
1	X	1	1	Enabled	Internal
1	1	1	Enabled	Internal	

[^0]
APPLICATIONS INFORMATION

BASIC CONNECTIONS FOR OPERATION

Figure 46 shows the schematic for the ADRF6601 evaluation board. The six power supply pins should be individually decoupled using 100 pF and $0.1 \mu \mathrm{~F}$ capacitors located as close as possible to the device. In addition, the internal decoupling nodes (DECL3P3, DECL2P5, and DECLVCO) should be decoupled with the capacitor values shown in Figure 46.
The RF input is internally ac-coupled and needs no external bias. The IF outputs are open collector, and a bias inductor is required from these outputs to VCC.
A peak-to-peak differential swing on $\mathrm{RF}_{\mathrm{IN}}$ of $1 \mathrm{~V}(0.353 \mathrm{~V} \mathrm{rms}$ for a sine wave input) results in an IF output power of 4.7 dBm .
The reference frequency for the PLL should be from 12 MHz to 160 MHz and should be applied to the REF_IN pin, which should
be ac-coupled and terminated with a 50Ω resistor as shown in Figure 46. The reference signal, or a divided-down version of the reference signal, can be brought back off chip at the multiplexer output pin (MUXOUT). A lock detect signal and a voltage proportional to the ambient temperature can also be selected on the multiplexer output pin.
The loop filter is connected between the CP and VTUNE pins. When connected in this way, the internal VCO is operational. For information about the loop filter components, see the Evaluation Board Configuration Options section.

Operation with an external VCO is also possible. In this case, the loop filter components should be referred to ground. The output of the loop filter is connected to the input voltage pin of the external VCO. The output of the VCO is brought back into the device on the LOP and LON pins, using a balun if necessary.

AC TEST FIXTURE

Characterization data for the ADRF6601 was taken under very strict test conditions. All possible techniques were used to achieve optimum accuracy and to remove degrading effects of
the signal generation and measurement equipment. Figure 47 shows the typical ac test setup used in the characterization of the ADRF6601.

Figure 47. ADRF6601 AC Test Setup

EVALUATION BOARD

Figure 50 shows the schematic of the RoHS-compliant evaluation board for the ADRF6601. This board has four layers and was designed using Rogers 4350 hybrid material to minimize high frequency losses. FR4 material is also adequate if the design can accept the slightly higher trace loss of this material.
The evaluation board is designed to operate using the internal VCO of the device (the default configuration) or with an external VCO. To use an external VCO, R62 and R12 should be removed. Place 0Ω resistors in R63 and R11. The input of the external VCO should be connected to the VTUNE SMA connector, and the external VCO output should be connected to the LO IN/OUT SMA connector. In addition to these hardware changes, internal register settings must also be changed to enable operation with an external VCO (see the Register 6-VCO Control and VCO Enable (Default: 0x1E2106) section).
Additional configuration options for the evaluation board are described in Table 10.

EVALUATION BOARD CONTROL SOFTWARE

Software to program the ADRF6601 is available for download from the ADRF6601 product page under the Evaluation Boards \& Kits section. To install the software

1. Download and extract the zip file: ADRF6x0x_3p0p0_XP_install.exe file.
2. Follow the instructions in the read me file.

The evaluation board can be connected to the PC using a PC USB port.
To connect the evaluation board to a USB port, a USB adapter board (EVAL-ADF4XXXZ-USB) must be purchased from Analog Devices.

This board connects to the PC using a standard USB cable with a USB mini-connector at one end. An additional 25-pin male to 9-pin female adapter is required to mate the EVAL-ADF4XXXZ-USB board to the 9-pin D-Sub connector on the ADRF6601 evaluation board.

```
[0] ADRF6%ox Device Form 
```

() ADRF6601 TOR $750-1160 \mathrm{MHz}$

ADRF6602 TOR $1550-2150 \mathrm{MHz}$
OADRF6603 TOR $2100-2600 \mathrm{MHz}$
ADRF6604 TOR $2500-2900 \mathrm{MHz}$

ADRF6701 TxMod $750-1160 \mathrm{MHz}$
OADRF6702 TxMod $1550-2150 \mathrm{MHz}$

OADRF6703 TxMod $2100-2600 \mathrm{MHz}$
ADRF6704 TxMod $2500-2900 \mathrm{MHz}$

ADRF6655 Broadband Up/Down Mixer

ADRF6801 RxDMod $750-1160 \mathrm{MHz}$

Figure 48. Control Software Opening Menu
Figure 49 shows the main window of the control software with the default settings displayed.

Figure 49. Main Window of the ADRF6601 Evaluation Board Software

SCHEMATIC AND ARTWORK

Figure 50. Evaluation Board Schematic

Data Sheet

Figure 51. Evaluation Board Layout (Bottom)

Figure 52. Evaluation Board Layout (Top)

EVALUATION BOARD CONFIGURATION OPTIONS

Table 10.

Component	Description	Default Condition/ Option Settings
S1, R55, R56, R33	LO select. Switch and resistors to ground the LODRV_EN pin. The LODRV_EN pin setting, in combination with internal register settings, determines whether the LOP and LON pins function as inputs or outputs (see the LO Selection Logic section for more information).	S1 = R55 = open (not installed), $\mathrm{R} 56=\mathrm{R} 33=0 \Omega,$ LODRV_EN = 0V
LO IN/OUT SMA Connector	LO input/output. An external $1 \times$ LO or $2 \times$ LO signal can be applied to this single-ended input connector.	LO input
REFIN SMA Connector	Reference input. The input reference frequency for the PLL is applied to this connector. Input impedance is 50Ω.	
$\begin{aligned} & \text { REFOUT } \\ & \text { SMA Connector } \end{aligned}$	Multiplexer output. The REFOUT connector connects directly to the MUXOUT pin. The on-board multiplexer can be programmed to bring out the following signals: REF_IN, $2 \times$ REF_IN, REF_IN/2, and REF_IN/4; temperature sensor output voltage; and lock detect indicator.	Lock detect
CP Test Point	Charge pump test point. The unfiltered charge pump signal can be probed at this test point. Note that the CP pin should not be probed during critical measurements such as phase noise.	
$\begin{aligned} & \text { R37, C14, R9, R10, } \\ & \text { C15, C13, R65, C40 } \end{aligned}$	Loop filter. Loop filter components.	
R11, R12	Loop filter return. When the internal VCO is used, the loop filter components should be returned to Pin 40 (DECLVCO) by installing a 0Ω resistor in R12. When an external VCO is used, the loop filter components can be returned to ground by installing a 0Ω resistor in R11.	$\begin{aligned} & \text { R12 }=0 \Omega(0402), \\ & \text { R11 }=\text { open (0402) } \end{aligned}$
R62, R63, VTUNE SMA Connector	Internal vs. external VCO. When the internal VCO is enabled, the loop filter components are connected directly to the VTUNE pin (Pin 39) by installing a 0Ω resistor in R62. To use an external VCO, R62 should be left open. A 0Ω resistor should be installed in R63, and the voltage input of the VCO should be connected to the VTUNE SMA connector. The output of the VCO is brought back into the PLL via the LO IN/OUT SMA connector.	$\begin{aligned} & \text { R62 }=0 \Omega(0402), \\ & \text { R63 }=\operatorname{open}(0402) \end{aligned}$
R2	$\mathrm{R}_{\text {SEt }} \mathrm{pin}$. This pin is unused and should be left open.	R2 = open (0402)
RFIN SMA Connector	RF input. The RF input signal should be applied to the RFIN SMA connector. The RF input of the ADRF6601 is ac-coupled; therefore, no bias is necessary.	R3 $=$ R23 $=$ open (0402)
T3	IF output. The differential IF output signals from the ADRF6601 (IFP and IFN) are converted to a single-ended signal by T3.	

OUTLINE DIMENSIONS

ORDERING GUIDE
$\left.\begin{array}{l|l|l|l}\hline \text { Model }^{1} & \text { Temperature Range } & \text { Package Description } & \text { Package Option } \\ \hline \text { ADRF6601ACPZ-R7 } & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} & \begin{array}{l}40-\text {-Lead Lead Frame Chip Scale Package [LFCSP_VQ] } \\ \text { ADRF6601-EVALZ }\end{array} & \text { Evaluation Board }\end{array}\right]$ CP-40-1 \quad.
${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

NOTES
\square
Data Sheet ADRF6601

NOTES

NOTES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT\# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT\# MAX2692EVKIT\# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB

[^0]: ${ }^{1} \mathrm{X}=$ don't care.

