Data Sheet

FEATURES

I/Q modulator with integrated fractional-N PLL RF output frequency range: 700 MHz to $\mathbf{3 0 0 0} \mathbf{~ M H z}$ Internal LO frequency range: $\mathbf{3 5 6 . 2 5} \mathbf{~ M H z}$ to 2855 MHz
Output P1dB: $\mathbf{1 2 . 2 ~ d B m}$ at 2140 MHz
Output IP3: $\mathbf{3 2 . 6 ~ d B m}$ at 2140 MHz
Carrier feedthrough: -40.3 dBm at $\mathbf{2 1 4 0} \mathbf{~ M H z}$
Sideband suppression: $\mathbf{- 3 7 . 6} \mathbf{d B c}$ at 2140 MHz
Noise floor: $\mathbf{- 1 5 7 . 9} \mathbf{~ d B m} / \mathrm{Hz}$ at 2140 MHz
Baseband $\mathbf{1}$ dB modulation bandwidth: $\mathbf{> 1 0 0 0} \mathbf{~ M H z}$
Baseband input bias level: 0.5 V
Power supply: $3.3 \mathrm{~V} / 425 \mathrm{~mA}$
Integrated RF tunable balun allowing single-ended RF output
Multicore integrated VCOs
HD3/IP3 optimization
Sideband suppression and carrier feedthrough optimization
High-side/low-side LO injection
Programmable via 3-wire serial port interface (SPI)
40-lead $6 \mathrm{~mm} \times 6 \mathrm{~mm}$ LFCSP

APPLICATIONS

2G/3G/4G/LTE broadband communication systems
Microwave point-to-point radios
Satellite modems
Military/aerospace
Instrumentation

GENERAL DESCRIPTION

The ADRF6720 is a wideband quadrature modulator with an integrated synthesizer ideally suited for 3 G and 4G communication systems. The ADRF6720 consists of a high linearity broadband modulator, an integrated fractional-N phase-locked loop (PLL), and four low phase noise multicore voltage controlled oscillators (VCOs).

The ADRF6720 local oscillator (LO) signal can be generated internally via the on-chip integer- N and fractional-N synthesizers, or externally via a high frequency, low phase noise LO signal. The internal integrated synthesizer enables LO coverage from 356.25 MHz to 2855 MHz using the multicore VCOs. In the case of internal LO generation or external LO input, quadrature signals are generated with a divide-by- 2 phase splitter. When the ADRF6720 is operated with an external $1 \times$ LO input, a polyphase filter generates the quadrature inputs to the mixer.

The ADRF6720 offers digital programmability for carrier feedthrough optimization, sideband suppression, HD3/IP3 optimization, and high-side or low-side LO injection.

The ADRF6720 is fabricated using an advanced silicongermanium BiCMOS process. It is available in a 40 -lead, RoHS-compliant, $6 \mathrm{~mm} \times 6 \mathrm{~mm}$ LFCSP package with an exposed pad. Performance is specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

ADRF6720

TABLE OF CONTENTS

Features 1
Applications. 1
General Description 1
Revision History 2
Specifications 3
Timing Characteristics 7
Absolute Maximum Ratings 8
Thermal Resistance 8
ESD Caution 8
Pin Configuration and Function Descriptions 9
Typical Performance Characteristics 11
Theory of Operation 18
LO Generation Block 18
Baseband 21
Active Mixers 21
Serial Port Interface 22
Basic Connections for Operation 23
Power Supply and Grounding 23
REVISION HISTORY
4/14—Revision 0: Initial Version

ADRF6720

SPECIFICATIONS

VPOSx $=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; baseband I / Q amplitude $=1 \mathrm{~V}$ p-p differential sine waves in quadrature with a 500 mV dc bias, unless otherwise noted.

Table 1.

\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter \& Test Conditions/Comments \& Min \& Typ \& Max \& Unit \\
\hline \begin{tabular}{l}
Output IP2 \\
Output IP3 \\
Noise Floor
\end{tabular} \& \begin{tabular}{l}
\(\mathrm{f} 1_{\mathrm{BB}}=3.5 \mathrm{MHz}, \mathrm{f} 2_{\mathrm{BB}}=4.5 \mathrm{MHz}\), baseband \(\mathrm{I} / \mathrm{Q}\) amplitude per tone \(=\) 0.45 V p-p differential \\
\(\mathrm{f} 1_{\mathrm{BB}}=3.5 \mathrm{MHz}, \mathrm{f} 2_{\mathrm{BB}}=4.5 \mathrm{MHz}\), baseband \(\mathrm{I} / \mathrm{Q}\) amplitude per tone \(=\) 0.45 V p-p differential \\
I/Q input with 500 mV dc bias and no RF output, 20 MHz carrier offset I/Q input with 500 mV dc bias and -10 dBm RF output, 20 MHz carrier offset
\end{tabular} \& \& \begin{tabular}{l}
57.7 \\
32.6
\[
\begin{aligned}
\& -157.9 \\
\& -156.3
\end{aligned}
\]
\end{tabular} \& \& \begin{tabular}{l}
dBm \\
dBm \\
\(\mathrm{dBm} / \mathrm{Hz}\) \\
\(\mathrm{dBm} / \mathrm{Hz}\)
\end{tabular} \\
\hline \begin{tabular}{l}
RF OUTPUT \(=2300 \mathrm{MHz}\) \\
Output Power, Pout \\
Modulator Voltage \\
Gain \\
Output P1dB \\
Carrier Feedthrough \\
Sideband Suppression \\
Quadrature Error \\
I/Q Amplitude Balance \\
Second Harmonic \\
Third Harmonic \\
Output IP2 \\
Output IP3 \\
Noise Floor
\end{tabular} \& \begin{tabular}{l}
Baseband \(\mathrm{V}_{\mathrm{I}}=1 \mathrm{~V}\) p-p differential
\[
\text { Pout }-P\left(f_{\text {LO }} \pm\left(2 \times f_{B B}\right)\right)
\] \\
Pout - P(fio \(\left.\pm\left(3 \times f_{B B}\right)\right)\) \\
\(\mathrm{f} 1_{\mathrm{BB}}=3.5 \mathrm{MHz}, \mathrm{f}_{\mathrm{BB}}=4.5 \mathrm{MHz}\), baseband \(\mathrm{I} / \mathrm{Q}\) amplitude per tone \(=\) 0.45 V p-p differential \\
\(\mathrm{f} 1_{\mathrm{BB}}=3.5 \mathrm{MHz}, \mathrm{f} 2_{\mathrm{BB}}=4.5 \mathrm{MHz}\), baseband \(\mathrm{I} / \mathrm{Q}\) amplitude per tone \(=\) 0.45 V p-p differential \\
I/Q input with 500 mV dc bias and no RF output, 20 MHz carrier offset I/Q input with 500 mV dc bias and -10 dBm RF output, 20 MHz carrier offset
\end{tabular} \& \& \[
\begin{aligned}
\& 4.6 \\
\& 0.62 \\
\& \\
\& 11.8 \\
\& -37.6 \\
\& -36.6 \\
\& -1.5 \\
\& -0.0285 \\
\& -54.8 \\
\& -56.6 \\
\& 57.6 \\
\& \\
\& 30.4 \\
\& \\
\& -159.2 \\
\& -157.5
\end{aligned}
\] \& \& \begin{tabular}{l}
dBm \\
dB \\
dBm \\
dBm \\
dBc \\
Degrees dB \\
dBc \\
dBc \\
dBm \\
dBm \\
\(\mathrm{dBm} / \mathrm{Hz}\) \\
\(\mathrm{dBm} / \mathrm{Hz}\)
\end{tabular} \\
\hline \begin{tabular}{l}
RF OUTPUT \(=2600 \mathrm{MHz}\) \\
Output Power, Pout \\
Modulator Voltage \\
Gain \\
Output P1dB \\
Carrier Feedthrough \\
Sideband Suppression \\
Quadrature Error \\
I/Q Amplitude Balance \\
Second Harmonic \\
Third Harmonic \\
Output IP2 \\
Output IP3 \\
Noise Floor
\end{tabular} \& \begin{tabular}{l}
Baseband \(\mathrm{V}_{\mathrm{IO}}=1 \mathrm{~V}\) p-p differential
\[
\begin{aligned}
\& \text { Pout - }-\mathrm{P}\left(\mathrm{f}_{\mathrm{LO} \pm} \pm\left(2 \times \mathrm{f}_{\mathrm{BB}}\right)\right) \\
\& \text { Pout }-\mathrm{P}\left(\mathrm{f}_{\mathrm{LO}} \pm\left(3 \times \mathrm{f}_{\mathrm{BB}}\right)\right)
\end{aligned}
\] \\
\(\mathrm{f} 1_{\mathrm{BB}}=3.5 \mathrm{MHz}, \mathrm{f} 2_{\mathrm{BB}}=4.5 \mathrm{MHz}\), baseband \(\mathrm{I} / \mathrm{Q}\) amplitude per tone \(=\) 0.45 V p-p differential \\
\(\mathrm{f} 1_{\mathrm{BB}}=3.5 \mathrm{MHz}, \mathrm{f} 2_{\mathrm{BB}}=4.5 \mathrm{MHz}\), baseband \(\mathrm{I} / \mathrm{Q}\) amplitude per tone \(=\) 0.45 V p-p differential \\
I/Q input with 500 mV dc bias and no RF output, 20 MHz carrier offset \\
I/Q input with 500 mV dc bias and - 10 dBm RF output, 20 MHz carrier offset
\end{tabular} \& \& \[
\begin{aligned}
\& 3.9 \\
\& -0.08 \\
\& 11.3 \\
\& -36.5 \\
\& -42.3 \\
\& -0.55 \\
\& -0.021 \\
\& -60.3 \\
\& -54.7 \\
\& 56.6 \\
\& \\
\& 29.9 \\
\& \\
\& -159.2 \\
\& -157.3
\end{aligned}
\] \& \& \[
\begin{aligned}
\& \mathrm{dBm} \\
\& \mathrm{~dB} \\
\& \mathrm{dBm} \\
\& \mathrm{dBm} \\
\& \mathrm{dBc} \\
\& \text { Degrees } \\
\& \mathrm{dB} \\
\& \mathrm{dBc} \\
\& \mathrm{dBc} \\
\& \mathrm{dBm} \\
\& \mathrm{dBm} \\
\& \\
\& \mathrm{dBm} / \mathrm{Hz} \\
\& \mathrm{dBm} / \mathrm{Hz}
\end{aligned}
\] \\
\hline SYNTHESIZER SPECIFICATIONS Figure of Merit (FOM) \({ }^{1}\) \& Synthesizer specifications referenced to the modulator output \& \& -218.5 \& \& \(\mathrm{dBc} / \mathrm{Hz} / \mathrm{Hz}\) \\
\hline \begin{tabular}{l}
REFERENCE \\
CHARACTERISTICS \\
REFIN Input \\
Frequency \\
REFIN Input \\
Amplitude \\
Phase Detector Frequency
\end{tabular} \& REFIN, MUXOUT pins \& 5.7

11.4 \& 4 \& 320

40 \& | MHz |
| :--- |
| dBm |
| MHz |

\hline
\end{tabular}

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
MUXOUT Output Level MUXOUT Duty Cycle	Low (lock detect output selected) High (lock detect output selected)		0.25 2.7 50		$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \% \end{aligned}$
CHARGE PUMP Charge Pump Current Output Compliance Range	Programmable to $250 \mu \mathrm{~A}, 500 \mu \mathrm{~A}, 750 \mu \mathrm{~A}$, or $1000 \mu \mathrm{~A}$	1	1000	2.8	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~V} \end{aligned}$
PHASE NOISE, FREQUENCY = 940 MHz , $\mathrm{f}_{\text {PFD }}=38.4 \mathrm{MHz}$ Integrated Phase Noise Reference Spurs	Closed-loop operation (20 kHz loop filter, see Figure 44 for loop filter design) 10 kHz offset 100 kHz offset 1 MHz offset 5 MHz offset 10 MHz offset 20 MHz offset 1 kHz to 40 MHz integration bandwidth, with spurs $f_{\text {PFD }}$ $\mathrm{f}_{\mathrm{PFD}} \times 2$ $\mathrm{f}_{\mathrm{PFD}} \times 3$ $\mathrm{f}_{\mathrm{PFD}} \times 4$		$\begin{aligned} & -97.8 \\ & -120.8 \\ & -144.4 \\ & -154.4 \\ & -154.9 \\ & -155.3 \\ & 0.175 \\ & \\ & -104.8 \\ & -97.8 \\ & -98.8 \\ & -103 \end{aligned}$		$\mathrm{dBc} / \mathrm{Hz}$ ${ }^{\circ} \mathrm{rms}$ dBC dBc dBC dBc
PHASE NOISE, FREQUENCY = 1900 MHz , $\mathrm{f}_{\text {PFD }}=38.4 \mathrm{MHz}$ Integrated Phase Noise Reference Spurs	Closed-loop operation (20 kHz loop filter, see Figure 44 for loop filter design) 10 kHz offset 100 kHz offset 1 MHz offset 5 MHz offset 10 MHz offset 20 MHz offset 1 kHz to 40 MHz integration bandwidth, with spurs fpFD $\mathrm{f}_{\mathrm{PFD}} \times 2$ $\mathrm{f}_{\mathrm{PFD}} \times 3$ $\mathrm{f}_{\mathrm{PFD}} \times 4$		$\begin{aligned} & -91.5 \\ & -114.5 \\ & -139.9 \\ & -151.4 \\ & -153 \\ & -153.5 \\ & 0.332 \\ & \\ & -102 \\ & -90.8 \\ & -93.6 \\ & -100.5 \end{aligned}$		$\mathrm{dBc} / \mathrm{Hz}$ $\mathrm{dBc} / \mathrm{Hz}$ $\mathrm{dBc} / \mathrm{Hz}$ dBc/Hz $\mathrm{dBc} / \mathrm{Hz}$ $\mathrm{dBc} / \mathrm{Hz}$ ${ }^{\circ} \mathrm{rms}$ dBc dBc dBc dBc
PHASE NOISE, FREQUENCY = 2140 MHz , $\mathrm{f}_{\text {PFD }}=38.4 \mathrm{MHz}$ Integrated Phase Noise Reference Spurs	Closed-loop operation (20 kHz loop filter, see Figure 44 for loop filter design) 10 kHz offset 100 kHz offset 1 MHz offset 5 MHz offset 10 MHz offset 20 MHz offset 1 kHz to 40 MHz integration bandwidth, with spurs $\mathrm{f}_{\mathrm{PFD}}$ $\mathrm{f}_{\mathrm{PFD}} \times 2$ $\mathrm{f}_{\mathrm{PFD}} \times 3$ $\mathrm{f}_{\text {PFD }} \times 4$		$\begin{aligned} & -92 \\ & -115.7 \\ & -140.3 \\ & -151.3 \\ & -152.1 \\ & -152.9 \\ & 0.305 \\ & \\ & -95.9 \\ & -93.1 \\ & -87.4 \\ & -91.5 \end{aligned}$		$\mathrm{dBc} / \mathrm{Hz}$ $\mathrm{dBc} / \mathrm{Hz}$ $\mathrm{dBc} / \mathrm{Hz}$ dBc/Hz $\mathrm{dBc} / \mathrm{Hz}$ dBc/Hz ${ }^{\circ} \mathrm{rms}$ dBc dBc dBc dBc

ADRF6720

\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter \& Test Conditions/Comments \& Min \& Typ \& Max \& Unit \\
\hline \begin{tabular}{l}
PHASE NOISE, FREQUENCY = 2300 MHz , \(\mathrm{f}_{\mathrm{PFD}}=38.4 \mathrm{MHz}\) \\
Integrated Phase Noise Reference Spurs
\end{tabular} \& \begin{tabular}{l}
Closed-loop operation (20 kHz loop filter, see Figure 44 for loop filter design) \\
10 kHz offset \\
100 kHz offset \\
1 MHz offset \\
5 MHz offset \\
10 MHz offset \\
20 MHz offset \\
1 kHz to 40 MHz integration bandwidth, with spurs \\
\(f_{\text {PFD }}\) \\
\(\mathrm{f}_{\text {PFD }} \times 2\) \\
\(\mathrm{f}_{\text {PFD }} \times 3\) \\
\(\mathrm{f}_{\text {PFD }} \times 4\)
\end{tabular} \& \& \[
\begin{aligned}
\& -94.1 \\
\& -114.6 \\
\& -138.7 \\
\& -150.1 \\
\& -151.4 \\
\& -152.6 \\
\& 0.270 \\
\& \\
\& -100.8 \\
\& -95.6 \\
\& -89.4 \\
\& -93.1
\end{aligned}
\] \& \& \begin{tabular}{l}
\(\mathrm{dBc} / \mathrm{Hz}\) \\
\({ }^{\circ} \mathrm{rms}\) \\
dBc \\
dBc \\
dBc \\
dBc
\end{tabular} \\
\hline \begin{tabular}{l}
PHASE NOISE, FREQUENCY = 2600 MHz, \(\mathrm{f}_{\mathrm{PFD}}=38.4 \mathrm{MHz}\) \\
Integrated Phase Noise Reference Spurs
\end{tabular} \& \begin{tabular}{l}
Closed-loop operation (20 kHz loop filter, see Figure 44 for loop filter design) \\
10 kHz offset \\
100 kHz offset \\
1 MHz offset \\
5 MHz offset \\
10 MHz offset \\
20 MHz offset \\
1 kHz to 40 MHz integration bandwidth, with spurs \\
\(f_{\text {PFD }}\) \\
\(\mathrm{f}_{\text {PFD }} \times 2\) \\
\(\mathrm{f}_{\text {PFD }} \times 3\) \\
\(\mathrm{f}_{\text {PFD }} \times 4\)
\end{tabular} \& \& \[
\begin{aligned}
\& -91.5 \\
\& -111.3 \\
\& -136.8 \\
\& -148.3 \\
\& -150 \\
\& -150.7 \\
\& 0.378 \\
\& \\
\& -97.4 \\
\& -89.3 \\
\& -95.2 \\
\& -91.4
\end{aligned}
\] \& \& \[
\begin{aligned}
\& \mathrm{dBc} / \mathrm{Hz} \\
\& { }^{\circ} \mathrm{rms} \\
\& \\
\& \mathrm{dBc} \\
\& \mathrm{dBc} \\
\& \mathrm{dBc} \\
\& \mathrm{dBc}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
LO INPUT/OUTPUT \\
LO Output Frequency Range LO Output Level \\
LO Input Level LO Input Impedance
\end{tabular} \& \begin{tabular}{l}
LO output \\
\(2 \times\) LO or \(1 \times\) LO mode, into a \(50 \Omega\) load, LO buffer enabled at 2140 MHz \\
LO_DRV_LVL = 0 \\
LO_DRV_LVL = 1 \\
LO_DRV_LVL = 2 \\
Externally applied LO, PLL disabled \\
Externally applied LO, PLL disabled
\end{tabular} \& 700

-6 \& $$
\begin{aligned}
& -5.1 \\
& -0.5 \\
& 3 \\
& 0 \\
& 50
\end{aligned}
$$ \& \[

2855
\]

\[
+6

\] \& | MHz |
| :--- |
| dBm |
| dBm |
| dBm |
| dBm |
| Ω |

\hline | BASEBAND INPUTS |
| :--- |
| I and Q Input DC Bias Level |
| Bandwidth |
| Differential Input Impedance |
| Differential Input Capacitance | \& | $\pm \pm$ and $\mathrm{Q} \pm$ pins |
| :--- |
| 1 dB |
| Frequency $=10 \mathrm{MHz}^{2}$ |
| Frequency $=10 \mathrm{MHz}^{2}$ | \& \& | 0.5 >1000 465 |
| :--- |
| 1.84 | \& \& | V |
| :--- |
| MHz |
| Ω |
| pF |

\hline | OUT ENABLE |
| :--- |
| Turn-On Settling Time |
| Turn-Off Settling Time | \& | ENBL pin |
| :--- |
| ENBL high to low (90\% of envelope), when Register $0 \times 01[10]=1$, Register 0x10[10] = 1 |
| ENBL low to high (10\% of envelope), when Register $0 \times 01[10]=1$, Register $0 \times 10[10]=1$ | \& \& 190

20 \& \& ns

\hline
\end{tabular}

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
DIGITAL LOGIC	SCLK, SDIO, $\overline{C S}$, and ENBL				
Input Voltage High ($\mathrm{V}_{\text {H }}$)		1.4			V
Input Voltage Low (VIL)				0.7	V
Input Current ($\mathrm{I}_{\mathrm{H}} / \mathrm{I}_{\mathrm{LL}}$)		-1		1	$\mu \mathrm{A}$
Input Capacitance (Cin)			5		pF
Output Voltage High (Voн)	$\mathrm{l}_{\mathrm{OH}}=-100 \mathrm{uA}$	2.3			V
Output Voltage Low (VoL)	$\mathrm{loL}=100 \mathrm{uA}$			0.2	V
POWER SUPPLIES Voltage Range Supply Current					
	VPOSx		3.3		V
	Tx mode at internal LO mode (PLL, internal VCO, and modulator enabled, LO output driver disabled)		425		mA
	Tx mode at external $1 \times$ LO mode (PLL, internal VCO disabled, modulator enabled, LO output driver disabled)		228		mA
	LO output driver; LO_DRV_LVL bits (Register 0x22[7:6]) = 10		50		mA
	Power-down mode		14.5		mA

${ }^{1}$ The figure of merit (FOM) is computed as phase noise $(\mathrm{dBc} / \mathrm{Hz})-10 \log 10\left(\mathrm{f}_{\mathrm{PFD}}\right)-20 \log 10\left(\mathrm{f}_{\mathrm{L} O} / \mathrm{f}_{\mathrm{PFD}}\right)$. The FOM was measured across the full LO range, with $\mathrm{f}_{\mathrm{REF}}=$
153.6 MHz , $\mathrm{f}_{\text {REF }}$ power $=4 \mathrm{dBm}$ with a $38.4 \mathrm{MHz} \mathrm{f}_{\text {PFD. }}$. The FOM was computed at a 50 kHz offset.
${ }^{2}$ Refer to Figure 47 for a plot of input impedance over frequency.

TIMING CHARACTERISTICS

Table 2.

Parameter	Description	Min	Typ	Max	Units
$\mathrm{t}_{\text {sclk }}$	Serial clock period	38			ns
tos	Setup time between data and rising edge of SCLK	8			ns
t_{tH}	Hold time between data and rising edge of SCLK	8			ns
ts_{5}	Setup time between falling edge of $\overline{C S}$ and SCLK	10			ns
th	Hold time between rising edge of $\overline{C S}$ and SCLK	10			ns
$\mathrm{t}_{\text {HIGH }}$	Minimum period that SCLK should be in a logic high state	10			ns
tow	Minimum period that SCLK should be in a logic low state	10			ns
$\mathrm{t}_{\text {ACCESS }}$	Maximum time delay between falling edge of SCLK and output data valid for a read operation			231	ns
t_{z}	Maximum time delay between $\overline{\mathrm{CS}}$ deactivation and SDIO bus return to high impedance			5	ns

Figure 2. Serial Port Timing Diagram

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
Supply Voltage	-0.3 V to +3.6 V
I+, I-, Q+, Q-	-0.5 V to +1.5 V
LOIN+, LOIN-	16 dBm differential
REFIN	-0.3 V to +3.6 V
ENBL	-0.3 V to +3.6 V
VTUNE	-0.3 V to +3.6 V
$\overline{\mathrm{CS}}$, SCLK, SDIO	-0.3 V to +3.6 V
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

θ_{JA} is thermal resistance, junction to ambient $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$, and θ_{JC} is thermal resistance, junction to case $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$.

Table 4. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}{ }^{\mathbf{1}}$	$\boldsymbol{\theta}_{\mathrm{JC}}{ }^{1}$	Unit
$40-$ Lead LFCSP	30.23	0.44	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ See JEDEC standard JESD51-2 for information on optimizing thermal impedance.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 3. Pin Configuration
Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	MUXOUT	Multiplexer Output. This output allows a digital lock detect signal, a voltage proportional to absolute temperature (VPTAT), or a buffered, frequency-scaled reference signal to be accessed externally. The output is selected by programming Bits[6:4] in Register 0x21.
2,10	GND	Baseband Ground.
3,4	I+, I-	Differential In-Phase Baseband Inputs.
5,7	GND	Mixer Core (I and Q) Ground.
6	VPOS1	3.3 V Supply Voltage for Baseband. Decouple VPOS1 with 100 pF and $0.1 \mu \mathrm{~F}$ capacitors located close to the pin.
8,9	Q-, Q+	Differential Quadrature Baseband Inputs.
11	VPOS2	3.3 V Supply Voltage for 2.5 V LDO. Decouple VPOS2 with 100 pF and $0.1 \mu \mathrm{~F}$ capacitors located close to the pin.
12	DECL1	Decoupling Pin for 2.5 V LDO. Connect $100 \mathrm{pF}, 0.1 \mu \mathrm{~F}$, and $10 \mu \mathrm{~F}$ capacitors between this pin and ground.
13	SDIO	Serial Data Input/Output for SPI.
14	SCLK	Serial Clock Input/Output for SPI.
15	$\overline{C S}$	Chip Select Input/Output for SPI.
16	GND	Digital Ground.
17	VPOS3	3.3 V Supply Voltage for LO. Decouple VPOS3 with 100 pF and $0.1 \mu \mathrm{~F}$ capacitors located close to the pin.
18, 19	LOOUT+, LOOUT-	Differential LO Outputs. Either the internally generated LO or external $1 \times$ LO $/ 2 \times$ LO is available at $1 \times \mathrm{LO}$ or $2 \times \mathrm{LO}$ on these pins.
20	GND	LO Ground.
21	NIC	Not Internally Connected. This pin can be left open or tied to RF ground.
22	VPOS4	3.3 V Supply Voltage for RF. Decouple VPOS4 with 100 pF and $0.1 \mu \mathrm{~F}$ capacitors located close to the pin.
23, 25	GND	RF Ground.
24	RFOUT	Single-Ended 0 V DC RF Output.
26	VPOS5	3.3 V Supply Voltage for RF. Decouple VPOS5 with 100 pF and $0.1 \mu \mathrm{~F}$ capacitors located close to the pin.
27	ENBL	Enables/Disables the Circuit Blocks. References the settings at Register 0x01 and Register 0x10. Refer to the ENBL section for more information.
28	DECL2	Decoupling Pin for VCO LDO. Connect $100 \mathrm{pF}, 0.1 \mu \mathrm{~F}$, and $10 \mu \mathrm{~F}$ capacitors between this pin and ground.
29	GND	VCO Ground.

Pin No.	Mnemonic	Description
30	VPOS6	3.3 V Supply Voltage for VCO LDO. Decouple VPOS6 with 100 pF and $0.1 \mu \mathrm{~F}$ capacitors located close to the pin.
31	DECL3	Decoupling Pin for VCO LDO. Connect $100 \mathrm{pF}, 0.1 \mu \mathrm{~F}$, and $10 \mu \mathrm{~F}$ capacitors between this pin and ground.
32	VTUNE	VCO Tuning Voltage.
33, 34	LOIN-, LOIN+	Differential External LO Inputs.
35	VPOS7	3.3 V Supply Voltage for Charge Pump. Decouple VPOS7 with 100 pF and $0.1 \mu \mathrm{~F}$ capacitors located close to the pin.
36	CP	Charge Pump Output.
37	GND	Charge Pump Ground.
38	GND	PLL Reference Ground.
39	REFIN	PLL Reference Input.
40	VPOS8	3.3 V Supply Voltage for PLL Reference. Decouple VPOS8 with 100 pF and $0.1 \mu \mathrm{~F}$ capacitors located close to the pin.
	EP	Exposed Pad. Solder the exposed pad to a low impedance ground plane.

TYPICAL PERFORMANCE CHARACTERISTICS

VPOSx $=3.3 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; baseband I / Q amplitude $=1 \mathrm{~V}$ p-p differential sine waves in quadrature with a 500 mV dc bias; baseband I/Q frequency $\left(f_{B B}\right)=1 \mathrm{MHz} ; \mathrm{f}_{\mathrm{PFD}}=38.4 \mathrm{MHz} ; \mathrm{f}_{\text {REF }}=153.6 \mathrm{MHz}$ at 4 dBm referred to $50 \Omega(1 \mathrm{~V} \mathrm{p}-\mathrm{p}) ; 20 \mathrm{kHz}$ loop filter, unless otherwise noted.

Figure 4. Single Sideband (SSB) Output Power (Pout) vs. LO Frequency (fLO) and Temperature; Multiple Devices Shown

Figure 5. SSB $1 d B$ Output Compression Point (OP1dB) vs. LO Frequency ($f_{L O}$) and Temperature; Multiple Devices Shown

Figure 6. Carrier Feedthrough vs. LO Frequency ($f_{L O}$) and Temperature Before Nulling; Multiple Devices Shown

Figure 7. SSB Output Power (Pout) vs. LO Frequency ($f_{L O}$) and Supply

Figure 8. SSB $1 d B$ Output Compression Point (OP1dB) vs. LO Frequency ($f_{L O}$) and Supply

Figure 9. Carrier Feedthrough vs. LO Frequency ($f_{L O}$) and Temperature After Nulling Using DCOFF_I and DCOFF_Q at $25^{\circ} \mathrm{C}$; Multiple Devices Shown

Figure 10. Sideband Suppression vs. LO Frequency ($f_{L O}$) and Temperature Before Nulling; Multiple Devices Shown

Figure 11. OIP3 and OIP2 vs. LO Frequency ($f_{\text {LO }}$) and Temperature (Pout \approx -5 dBm per Tone); Multiple Devices Shown

Figure 12. SSB Output Power, Second- and Third-Order Harmonics, Carrier Feedthrough, and Sideband Suppression vs. Baseband Differential Input Voltage ($f_{\text {out }}=940 \mathrm{MHz}$)

Figure 13. Sideband Suppression vs. LO Frequency ($f_{L O}$) and Temperature After Nulling Using I_LO and Q_LO at $25^{\circ} \mathrm{C}$; Multiple Devices Shown

Figure 14. Second- and Third-Order Harmonics vs. LO Frequency ($f_{L O}$) and Temperature (Pout $\approx 5 \mathrm{dBm}$)

Figure 15. SSB Output Power, Second- and Third-Order Harmonics, Carrier Feedthrough, and Sideband Suppression vs. Baseband Differential Input Voltage (fout $=2140 \mathrm{MHz}$)

Figure 16. SSB Output Power, Second- and Third-Order Harmonics, Carrier Feedthrough, and Sideband Suppression vs. Baseband Differential Input Voltage ($f_{\text {out }}=2600 \mathrm{MHz}$)

Figure 17. Closed-Loop Phase Noise vs. Offset Frequency and Temperature, $f_{L O}=1900 \mathrm{MHz} ; 20 \mathrm{kHz}$ Loop Filter

Figure 18. Closed-Loop Phase Noise vs. Offset Frequency and Temperature, $f_{\text {LO }}=2300 \mathrm{MHz} ; 20 \mathrm{kHz}$ Loop Filter

Figure 19. Closed-Loop Phase Noise vs. Offset Frequency and Temperature, $f_{\text {LO }}=940 \mathrm{MHz} ; 20 \mathrm{kHz}$ Loop Filter

Figure 20. Closed-Loop Phase Noise vs. Offset Frequency and Temperature, $f_{\text {LO }}=2140 \mathrm{MHz} ; 20 \mathrm{kHz}$ Loop Filter

Figure 21. Closed-Loop Phase Noise vs. Offset Frequency and Temperature, $f_{\text {LO }}=2600 \mathrm{MHz} ; 20 \mathrm{kHz}$ Loop Filter

Figure 22. Closed-Loop Phase Noise vs. LO Frequency at $1 \mathrm{kHz}, 100 \mathrm{kHz}$, and 5 MHz Offsets

Figure 23. PLL Reference Spurs vs. LO Frequency $(1 \times$ PFD and $3 \times P F D)$ at Modulator Output

Figure 24. PLL Reference Spurs vs. LO Frequency ($2 \times$ PFD and $4 \times$ PFD) at Modulator Output

Figure 25. Closed-Loop Phase Noise vs. LO Frequency at $10 \mathrm{kHz}, 1 \mathrm{MHz}$, and 10 MHz Offsets

Figure 26. PLL Reference Spurs vs. LO Frequency $(1 \times$ PFD and $3 \times P F D)$ at LO Output

Figure 27. PLL Reference Spurs vs. LO Frequency $(2 \times$ PFD and $4 \times$ PFD $)$ at LO Output

Figure 28. Integrated Phase Noise with Spurs vs. LO Frequency and Temperature

Figure 29. Open-Loop VCO Phase Noise for VCO 0 Measured at 2300.22 MHz , 2579.83 MHz , and $2860.8 \mathrm{MHz}(V C O \div 2)$

Figure 30. Open-Loop VCO Phase Noise for VCO 2 Measured at 1750.48 MHz , 1882.97 MHz , and 2010.75 MHz (VCO $\div 2$)

Figure 31. VTUNE vs. VCO Frequency and Temperature

Figure 32. Open-Loop VCO Phase Noise for VCO 1 Measured at 2009.22 MHz, 2156.06 MHz , and $2300.78 \mathrm{MHz}(\mathrm{VCO} \div 2)$

Figure 33. Open-Loop VCO Phase Noise for VCO 3 Measured at 1425.29 MHz , 1587.28 MHz , and $1751.47 \mathrm{MHz}(V C O \div 2)$

Figure 34. Noise Floor Cumulative Distribution at Various LO Frequencies Using Internal LO; I/Q Input with 500 mV DC Bias and No RF Output

Figure 35. Noise Floor Cumulative Distribution at Various LO Frequencies Using Internal LO; I/Q Input with 500 mV DC Bias and RF Output $=-10 \mathrm{dBm}$

Figure 36. Frequency Deviation from LO Frequency at $L O=1.91 \mathrm{GHz}$ to 1.9 GHz vs. Lock Time

Figure 37. LO Output Power vs. LO Frequency at Various LO_DRV_LVL Settings

Figure 38. Supply Current vs. LO Frequency and Temperature (PLL and I/Q Modulator Enabled, LO Buffer Disabled)

Figure 39. RF Output Return Loss vs. LO Frequency (for for Multiple BAL_CIN and BAL_COUT Combinations

ADRF6720

Figure 40. LO Input Return Loss vs. LO Frequency (f $f_{L O}$)

Figure 41. LO Output Return Loss vs. LO Frequency ($f_{L O}$)

THEORY OF OPERATION

The ADRF6720 integrates a high performance broadband I/Q modulator with a fractional-N PLL and low noise multicore VCOs. The baseband inputs mix with the LO generated internally or provided externally, and convert it to a singleended RF using an integrated RF balun. A block diagram of the device is shown in Figure 1. The ADRF6720 is programmed via an SPI.

LO GENERATION BLOCK

The ADRF6720 supports the use of both internal and external LO signals for the mixers. The internal LO is generated by an on-chip VCO, which is tunable over an octave frequency range of 2850 MHz to 5710 MHz . The output of the VCO is phaselocked to an external reference clock through a fractional-N PLL that is programmable through the SPI control registers. To produce in-phase and quadrature phase LO signals over the 356.25 MHz to 2855 MHz frequency range to drive the mixers, steer the VCO outputs through a combination of frequency dividers, as shown in Figure 42.

Alternatively, an external signal can be used with the dividers or a polyphase phase splitter to generate the LO signals in quadrature to the mixers. In demanding applications that require the lowest possible phase noise performance, it may be necessary to source the LO signal externally. The different methods of quadrature LO generation and the control register programming needed are listed in Table 6.

Internal LO Mode

For internal LO mode, the ADRF6720 uses the on-chip PLL and VCO to synthesize the frequency of the LO signal. The PLL, shown in Figure 42, consists of a reference path, phase and frequency detector (PFD), charge pump, and a programmable integer divider with prescaler. The reference path takes in a reference clock and divides it down by a factor of 2,4 , or 8 , or multiplies it by a factor of 1 or 2 , and then passes it to the PFD. The PFD compares this signal to the divided down signal from the VCO. Depending on the PFD polarity selected, the PFD sends either an up or down signal to the charge pump if the VCO signal is either slow or fast compared to the reference frequency. The charge pump sends a current pulse to the offchip loop filter to increase or decrease the tuning voltage ($\mathrm{V}_{\text {tune }}$).
The ADRF6720 integrates four VCO cores, covering an octave range of 2850 MHz to 5710 MHz .
Table 6 lists the frequency range covered by each VCO. The desired VCO can be selected by addressing the VCO_SEL bits at Register 0x22[2:0].
The LO source and quadrature generation path can be selected by setting the QUAD_DIV_EN bit (Register 0x01[9]) and the LO_1XVCO_EN bit (Register 0x01[11]). The mode of the VCO signal through a polyphase filter is intended to extend the operating frequency with an internal VCO and is only useful for baseband input frequencies high enough to prevent the RF output from pulling the VCO.

Figure 42. LO Block Diagram

Table 6. LO Mode Selection

LO Selection	$\mathrm{fvco}_{\text {or }} \mathrm{f}_{\text {Ext }}(\mathrm{MHz})$	Quadrature Generation	QUAD DIV EN (Register 0x01[9])	LO 1XVCO EN (Register 0x1 [11])	Enables (Register 0x01[6:0])	VCO_SEL (Register 0x22[2:0])
Internal (VCO)	2850 to 3500	Divide by 2	1	0	111 111X ${ }^{1}$	011
	3500 to 4020	Divide by 2	1	0	111 111 ${ }^{1}$	010
	4020 to 4600	Divide by 2	1	0	111 111 ${ }^{1}$	001
	4600 to 5710	Divide by 2	1	0	111 111 ${ }^{1}$	000
	2855 to 3000	Polyphase	0	0	111 111X ${ }^{1}$	011
External	700 to 6000	Divide by 2	1	0	$101000{ }^{1}$	1XX ${ }^{1}$
	700 to 3000	Polyphase	0	0	$000000{ }^{1}$	XXX ${ }^{1}$

${ }^{1} \mathrm{X}=$ don't care.

LO Frequency and Dividers

The signal coming from the VCO or the external LO inputs goes through a series of dividers before it is buffered to drive the active mixers. Two programmable divide-by- 2 stages divide the frequency of the incoming signal by 1,2 , or 4 before reaching the quadrature divider that further divides the signal frequency by 2 to generate the in-phase and quadrature phase LO signals for the mixers. The control bits (Register 0x22[4:3]) needed to select the different LO frequency ranges are listed in Table 7.

Table 7. LO Frequency and Dividers

LO Frequency Range (MHz)	fyco/flo or $\mathrm{f}_{\mathrm{ExT}}$ Lo/fio	DIV8_EN (Register 0x22[4])	DIV4_EN (Register 0x22[3])
1425 to 2855	2	0	0
712.5 to 1425	4	0	1
356.25 to 712.5	8	1	1

PLL Frequency Programming

The N divider with divide-by-2 divides down the VCO signal to the PFD frequency. The N divider can be configured for fractional or integer mode by addressing the DIV_MODE bit (Register 0x02[11]). The default configuration is set for fractional mode. Use the following equations to determine the N value and PLL frequency:

$$
\begin{aligned}
& f_{P F D}=\frac{f_{V C O}}{2 \times N} \\
& N=I N T+\frac{F R A C}{M O D} \\
& f_{L O}=\frac{f v c o}{L O _D I V I D E R}=\frac{f_{\text {PFD }} \times 2 \times N}{L O _ \text {DIVIDER }}
\end{aligned}
$$

where:
$f_{\text {PFD }}$ is the phase frequency detector frequency.
$f_{V C O}$ is the VCO frequency.
N is the fractional divide ratio (INT + FRAC/MOD).
$I N T$ is the integer divide ratio programmed in Register 0x02.
$F R A C$ is the fractional divider programmed in Register 0x03.
$M O D$ is the modulus divide ratio programmed in Register 0x04.
$f_{L O}$ is the LO frequency going to the mixer core when the loop is
locked.
LO_DIVIDER is the final frequency divider ratio that divides the frequency of the VCO or the external LO signal down by 2 , 4 , or 8 before it reaches the mixer, as shown in Table 7.

Loop Filter

The loop filter is connected between the CP and VTUNE pins. The recommended components for 20 kHz filter designs are shown in Table 8 and referenced in Figure 44.
The ADRF6720 closed-loop phase noise is characterized using a 20 kHz loop filter. Operation with an external VCO is possible. In this case, the output of the loop filter is connected to the tuning pin of the external VCO. The output of the VCO is brought back into the device on the LOIN+ and LOIN- pins. For assistance in designing loop filters with other characteristics, download the most recent revision of ADIsimPLL ${ }^{\text {n" }}$ from http://www.analog.com/adisimpll.

Table 8. Recommended Loop Filter Components

Component	$\mathbf{2 0} \mathbf{~ k H z}$ Loop Filter
C57	2700 pF
R12	300Ω
C58	100 nF
R23	5.6Ω
C59	2700 pF
R26	820Ω
C60	1500 pF

PLL Lock Time

It takes time to lock the PLL after the last register is written. VCO band calibration time and loop settling time are used to determine the PLL lock time.

After writing to the last register, the PLL automatically performs a VCO band calibration to choose the correct VCO band. This calibration takes approximately 94,208 PFD cycles. For a $40 \mathrm{MHz} \mathrm{f}_{\text {PFD }}$, this corresponds to 2.36 ms . After a band calibration completes, the feedback action of the PLL results in the VCO locking to the correct frequency. The speed to be locked depends on the nonlinear cycle slipping behavior, as well as the small signal settling of the loop. For an accurate estimation of the lock time, download the ADIsimPLL tool to
capture these effects correctly. In general, higher bandwidth loops tend to lock more quickly than lower bandwidth loops.
The lock detect signal is available as one of the selectable outputs through the MUXOUT pin, with a logic high signifying that the loop is locked. The control bits for the MUXOUT pin are the REF_MUX_SEL bits (Register 0x21[6:4]), and the default configuration is for PLL lock detect.

Required PLL/VCO Settings and Register Write Sequence

In addition to writing to the necessary registers to configure the PLL and VCO for the desired LO frequency and phase noise performance, the registers listed in Table 9 are the required registers to write.
To ensure that the PLL locks to the desired frequency, follow the proper write sequence of the PLL registers. Configure the PLL registers accordingly to achieve the desired frequency, and the last writes must be to Register 0x02 (INT_DIV), Register 0x03 (FRAC_DIV), or Register 0x04 (MOD_DIV). When Register 0x02, Register 0x03, and Register 0x04 are programmed, an internal VCO calibration initiates, which is the last step to locking the PLL.

Table 9. Required PLL/VCO Register Writes

Address	Bit Name	Setting	Description
$0 \times 21[3]$	PFD_POLARITY	0×01	Negative polarity
$0 \times 49[13: 0]$	SET_1[13:9],	$0 \times 14 \mathrm{B4}$	Internal settings
	SET_0[8:0]		

External LO Mode

Use the VCO_SEL bits (Register 0x22[2:0]) to select external or internal LO mode. To configure for external LO mode, set Register 0x22[2:0] to 4 decimal and apply the differential LO signals to Pin 33 (LOIN-) and Pin 34 (LOIN+). The external LO frequency range is 700 MHz to 3 GHz . When the polyphase phase splitter is selected, a $1 \times$ LO signal is required for the active mixer, or a $2 \times \mathrm{LO}$ can be used with the internal quadrature divider, as shown in Table 6.
There is also the option of using an external VCO with the internal PLL. In this case, the PLL is enabled, but the VCO blocks are turned off.
The LOIN+ and LOIN- input pins must be ac-coupled. When not in use, leave the LOIN+ and LOIN- pins unconnected.

LO Polarity

The ADRF6720 offers the flexibility of specifying the quadrature polarity on LO to the I channel or Q channel mixers. This specification determines whether the LO is injected above or below the RF frequency. RF frequency can place either above or below the LO depending on the Register 0x32[11:8] setting as well as the phase relationship between the baseband I and Q. For normal operation and characterization, the Register 0x32 settings are 2 decimal for POL_I (Register 0x32[9:8]) and 1 decimal for POL_Q (Register 0x32, Bits[11:10]). Setting Register 0x32 as such places the RF frequency below the LO
($\mathrm{f}_{\mathrm{RF}}<\mathrm{f}_{\mathrm{LO}}$) when Q leads I and places the RF frequency above the $\mathrm{LO}\left(\mathrm{f}_{\mathrm{RF}}>\mathrm{f}_{\mathrm{LO}}\right)$ when I leads Q .

Table 10. LO Polarity Setting

Address	Bit Name	Settings	Description
$0 \times 32[11: 10]$	POL_Q		Quadrature polarity switch, Q channel Inverted Q channel polarity Normal polarity
$0 \times 32[9: 8]$	POL_I	10	Quadrature polarity switch, I channel.
		01	Normal polarity Inverted I channel polarity

LO Outputs

The ADRF6720 can provide either a differential $1 \times$ or $2 \times$ LO output signal at the LOOUT + and LOOUT - pins (Pin 18 and Pin 19, respectively). The availability of the LO signal makes it possible to daisy-chain many devices. One ADRF6720 device can serve as the master where the LO signal is sourced, and the subsequent slave devices can share the same LO output signal from the master.

When the quadrature LO signals are generated using the quadrature divider, the output signal is available at either $2 \times$ or $1 \times$ the frequency of the LO signal at the mixer by setting LO_DRV2X_EN bit(Register 0x1[8]) and DRVDIV2_EN bit (Register 0x22[5]). However, $1 \times$ the frequency of the LO signal in this case has a phase ambiguity of 180° relative to the LO signal that drives the mixer core. Because of this phase ambiguity, the utility of this $1 \times$ LO output signal as a system daisy-chained LO signal is compromised. To avoid this ambiguity, a second $1 \times$ the frequency of the LO signal output is made available after the quadrature divider. This second $1 \times \mathrm{LO}$ output path is enabled by setting the LO_DRV1X_EN bit (Register 0x01[7]) high.
When the quadrature LO signals are generated using the polyphase phase splitter, the output signal is also available at $1 \times$ the frequency of the LO signal by setting LO_DRV1X_EN bit (Register 0x10[7]) high.
Set the output to different drive levels by accessing the LO_DRV_LVL bits (Register 0x22[7:6]), as shown in Table 11.

Table 11. LO Output Level at 2140 MHz

LO_DRV_LVL (Register 0x22[7:6])	Amplitude (dBm)
00	-5.1
01	-0.5
10	3

BASEBAND

The input impedance of the baseband inputs is a 500Ω differential. These inputs are designed to work with a 0.5 V common-mode voltage. To match the 100Ω impedance of the DAC, place a shunt 125Ω external resistor across the I and Q inputs.

The voltages applied to the differential baseband inputs ($\mathrm{I}+$, $\mathrm{I}-$, Q+, and Q-) drive the V-to-I stage that converts baseband voltages into currents. The converted modulated signal current feeds the modulator mixer core.

A programmable dc current can be added to both the I and Q channels to null any carrier feedthrough at the RF output. Refer to the Carrier Feedthrough Nulling section for more information
The linearity can be optimized by adding the amplitude and phase correction signals to the current output via the MOD_RSEL (Register 0x31[12:6]) and MOD_CSEL (Register 0x31[5:0]) adjustment. Refer to the Linearity section for more information.

ACTIVE MIXERS

The ADRF6720 has two double balanced mixers: one for the in-phase channel (I channel) and the other for the quadrature channel (Q channel). They upconvert the modulated baseband signal currents by the LO signals to the RF.

Tunable RFout Balun

The ADRF6720 integrates a programmable balun operating over a frequency range from 700 MHz to 3000 MHz . It offers single-ended-to-differential conversion and provides additional common-mode noise rejection.
The capacitors at the input and output of the balun in parallel with the inductive windings of the balun change the resonant frequency of the inductor capacitor (LC) tank. Therefore, selecting the proper combination of BAL_CIN (Register 0x30[3:0]) and BAL_COUT (Register 0x30[7:4]) sets the desired frequency and optimizes gain. Under most circumstances, it is suggested to set BAL_CIN and BAL_COUT over the frequency profile given in Table 12. However, for matching reasons, it is advantageous to tune the registers independently.

Figure 43. Integrated Tunable Balun

Table 12. Optimum Balun Setting For Desired Frequency Range

BAL_CIN	BAL_COUT	Frequency Range (MHz)
0	0	$\mathrm{f}_{\mathrm{RF}}>1730$
1	0	$1550<\mathrm{f}_{\text {fF }}<1730$
2	0	$1380<f_{\text {fF }}<1550$
3	0	$1250<f_{\text {fF }}<1380$
4	0	$1170<\mathrm{f}_{\text {fF }}<1250$
8	0	$1100<\mathrm{f}_{\text {RF }}<1170$
9	0	$1020<\mathrm{f}_{\text {RF }}<1100$
10	0	$970<\mathrm{f}_{\mathrm{RF}}<1020$
11	0	$930<\mathrm{f}_{\mathrm{RF}}<970$
12	0	$890<\mathrm{f}_{\text {RF }}<930$
13	0	$840<\mathrm{f}_{\text {fF }}<890$
14	0	$820<\mathrm{f}_{\mathrm{RF}}<840$
15	0	$740<\mathrm{f}_{\text {RF }}<820$
15	3	$680<\mathrm{f}_{\text {RF }}<740$

The ENBL pin quickly enables/disables the RF output. The circuit blocks that are enabled/disabled with the ENBL pin can be programmed by setting the appropriate bits in the enables register (Register 0x01) and the ENBL_MASK register (Register 0x10). When the bits in the enables and the ENBL_MASK register are 1, pulling the ENBL pin low disables and pulling high enables the internal blocks more quickly than possible with an SPI write operation.

Table 13. Enable/Disable Settings

Register 0x01 Enables Bit 1	Register 0x10 ENBL_MASK Bit 1	ENBL Pin Voltage	State
0	0	X^{2}	Block controlled by Register Ox01, enables bit [A] disabled. No effect by ENBL.
1	1	$>1.8 \mathrm{~V}$	Block controlled by Register 0x01, enables bit [A] disabled. No effect by ENBL. Block controlled by Register 0x01, enables bit [A] enabled. Block controlled by Register 0x01, enables bit [A] disabled
1	1	$<0.5 \mathrm{~V}$	

${ }^{1}$ This bit refers to any of the 11 bits in the register.
${ }^{2} \mathrm{X}=$ don't care.

SERIAL PORT INTERFACE

The SPI of the ADRF6720 allows the user to configure the device for specific functions or operations via a 3-pin SPI port. This interface provides users with added flexibility and customization. The SPI consists of three control lines: SCLK, SDIO, and $\overline{\mathrm{CS}}$. The timing requirements for the SPI port are shown in Table 2.

The ADRF6720 protocol consists of seven register address bits, followed by a read/write and 16 data bits. Both the address and data fields are organized with the most significant bit (MSB) first, and end with the least significant bit (LSB).

On a write cycle, up to 16 bits of serial write data are shifted in, MSB to LSB. If the rising edge of $\overline{\mathrm{CS}}$ occurs before the LSB of the serial data is latched, only the bits that were latched are written to the device. If more than 16 data bits are shifted in, the 16 most recent bits are written to the device. The ADRF6720 input logic level for the write cycle supports an interface as low as 1.4 V .

On a read cycle, up to 16 bits of serial read data are shifted out, MSB first. Data shifted out beyond 16 bits is undefined. Readback content at a given register address does not necessarily correspond with the write data of the same address. The output logic level for a read cycle is 2.3 V .

BASIC CONNECTIONS FOR OPERATION

Figure 44 shows the basic connections for operating the ADRF6720 as they are implemented on the evaluation board of the device.

Figure 44. Basic Connections for Operation (Loop Filter Set to 20 kHz)

POWER SUPPLY AND GROUNDING

Connect the power supply pins to a 3.3 V source; the pins can range between 3.15 V and 3.45 V . Individually decouple the pins using 100 pF and $0.1 \mu \mathrm{~F}$ capacitors located as close as possible to the pins. Individually decouple the three internal decoupling nodes (labeled DECL3, DECL2, and DECL1) with capacitors as shown in Figure 44.
Tie the 11 GND pins to the same ground plane through low impedance paths.
Solder the exposed pad on the underside of the package to a ground plane with low thermal and electrical impedance. If the
ground plane spans multiple layers on the circuit board, stitch them together under the exposed pad. The AN-772 Application Note discusses the thermal and electrical grounding of the LFCSP package in detail.

ADRF6720

BASEBAND INPUTS

Drive the four I and Q inputs with an external bias level of 500 mV . These inputs are generally dc-coupled to the outputs of a dual DAC. The nominal drive level used in the characterization of the ADRF6720 is 1 V p-p differential (or 500 mV p-p on each pin).
The I and Q input resistances are 500Ω, differential. As a result, the external shunt resistors at the I and Q inputs may be required to interface a DAC or a filter. The effective value of the resistance is 500Ω in parallel with the shunt resistor (see the DAC to I/Q Modulator Interfacing section for more information).

LO INPUT

The external LO input is designed to be driven differentially. AC couple both sides of the differential LO source through a pair of series capacitors to the LOIN+ and LOIN- pins.
The typical LO drive level, used for the characterization of the ADRF6720, is 0 dBm .
Apply the reference frequency for the PLL (between 5.7 MHz and 320 MHz) to the REFIN pin, which is ac-coupled. If the REFIN pin is being driven from a 50Ω source, terminate the pin with 50Ω as shown in Figure 44. Apply a drive level of about 4 dBm to $14 \mathrm{dBm} ; 4 \mathrm{dBm}$ is used at characterization.

LOOP FILTER

The loop filter in Figure 44 is connected between the CP and VTUNE pins. The recommended components for 20 kHz filter designs are shown in Table 8.

RF OUTPUT

The RF output is available at the RFOUT pin (Pin 24), which can drive a 50Ω load.

APPLICATIONS INFORMATION

DAC TO I/Q MODULATOR INTERFACING

The ADRF6720 is designed to interface with minimal components to members of the Analog Devices, Inc., family of TxDAC ${ }^{\circledR}$ converters. These dual-channel differential current output DACs provide an output current swing from 0 mA to 20 mA . The interface described in this section can be used with any DAC that has a similar output.
An example of an interface using the AD9142A TxDAC is shown in Figure 45. The baseband inputs of the ADRF6720 require a dc bias of 500 mV . The nominal midscale output current on each of the outputs of the AD9142A is 10 mA . Therefore, an average current of 10 mA flowing through a single 50Ω resistor to ground from each of the DAC outputs produces the desired 500 mV dc bias for the inputs to the ADRF6720. Place a shunt 125Ω external resistor across the I and Q inputs to match the 100Ω impedance of the DAC. The external resistor reduces the voltage swing for a given DAC output current. The AD9142A output currents have a swing ranging from 0 mA to 20 mA . With the 50Ω termination resistors to ground in the DAC outputs and the 125Ω shunt resistors in place, the resulting drive signal from each differential pair is 1 V p-p differential (with the DAC running at 0 dBFS) with a 500 mV dc bias.

Figure 45. Interface Between the AD9142A and ADRF6720 with 50Ω Resistors to Ground to Establish the 500 mVDC Bias for the ADRF6720 Baseband Inputs
Adjust the voltage swing for a given DAC output current by placing a different resistance value on R_{LI} and R_{LQ} to the interface (see Figure 45). This adjustment has the effect of varying the ac swing without changing the dc bias already established by the 50Ω resistors. A higher resistance value increases the output power of the ADRF6720 and signal-to-noise ratio (SNR) at the cost of higher intermodulation distortion.
When setting the size of resistor to adjust swing level, take the input impedance of the I and Q inputs into account. The I and Q inputs have a differential input resistance of 500Ω. As a result, the effective value of the resistance is 500Ω in parallel with the chosen shunt resistor. For example, if a 100Ω resistance is desired (based on Figure 45), the value of R_{LI} or R_{LQ} must be set such that

$$
\begin{aligned}
& 100 \Omega=\left(500 \times R_{L I}\right) /\left(500+R_{L I}\right) \\
& 100 \Omega=\left(500 \times R_{L Q}\right) /\left(500+\mathrm{R}_{\mathrm{LQ}}\right)
\end{aligned}
$$

resulting in a value for R_{LI} and R_{LQ} of 125Ω.
Figure 47 shows the differential input resistance and capacitance over baseband input frequencies.

Figure 46. Relationship Between the Effective AC Swing Limiting Resistance and the Peak-to-Peak Voltage Swing with 50Ω Bias Setting Resistors

Figure 47. Differential Baseband Input Resistance and Input Capacitance Equivalents (Shunt R, Shunt C)

I/Q Filtering

An antialiasing filter between the DAC and modulator is necessary to filter out Nyquist images, common-mode noise, and broadband DAC noise. The interface for setting up the biasing and ac swing described in the DAC to I/Q Modulator Interfacing section lends itself well to the introduction of such a filter. The filter can be inserted between the dc bias setting resistors and the ac swing limiting resistor. With this configuration, the dc bias setting resistors set the source impedance, and the ac swing limiting resistor sets the load impedance with a 500Ω differential I and Q input impedance in parallel for the filter.

BASEBAND BANDWIDTH

The ADRF6720 can be used with a DAC generating a complex IF (CIF), as well as a zero IF signal (ZIF). The 1 dB bandwidth of the ADRF6720 is more than 1000 MHz . Figure 48 shows the
baseband frequency response of ADRF6720, facilitating high CIF and providing sufficient flat bandwidth for digital predistortion (DPD) algorithms. Any flatness variations across frequency at the ADRF6720 RF output have been calibrated out of this measurement.

Figure 48. ADRF6720 Baseband Frequency Response

CARRIER FEEDTHROUGH NULLING

Carrier feedthrough results from minute dc offsets that occur on the differential baseband inputs. In an I/Q modulator, nonzero differential offsets mix with the LO and result in carrier feedthrough to the RF output. In addition to this effect, some of the signal power at the LO input couples directly to the RF output (this may be as a result of bond wire to bond wire coupling or coupling through the silicon substrate). The net carrier feedthrough at the RF output is the vector combination of the signals that appear at the output as a result of these two effects.
The ADRF6720 has a feature to add dc current, positive or negative, to both the I and Q channels for carrier feedthrough nulling. Figure 49 shows carrier feedthrough vs. DCOFF_I (Register 0x33[15:8]) and DCOFF_Q (Register 0x33[7:0]).

The carrier feedthrough nulling can also be accomplished externally by a TxDAC.

Figure 49. Carrier Feedthrough Optimization Through DCOFF_I and DCOFF_Q Adjustment

SIDEBAND SUPPRESSION OPTIMIZATION

Sideband suppression results from gain and phase imperfection between the I and Q channels. Sideband suppression also results from the quadrature error in generating quadrature LO signals. The net unwanted sideband signal at the RF output is the vector combination of the signals as a result of these effects.

The ADRF6720 offers quadrature phase adjustment through the I_LO (Register 0x32[3:0]) and Q_LO (Register 0x32[7:4]) parameters to reject unwanted sideband signal.
Figure 50 shows the level of unwanted sideband signal achievable from the ADRF6720 across the I_LO and Q_LO parameters

If further optimization is required, the amplitude and phase adjustments can be made externally by a TxDAC. The result of this type of adjustment is shown in Figure 51.

Figure 50. Sideband Suppression Optimization Through I_LO and Q_LO Adjustment; LO $=2140 \mathrm{MHz}$

Figure 51. Sideband Suppression Before and After Nulling Using I_LO and Q_LO Through External Adjustment; LO $=2140 \mathrm{MHz}$

LINEARITY

The linearity in ADRF6720 can be optimized through the MOD_RSEL (Register 0x31[12:6]) and MOD_CSEL
(Register 0x31[5:0]) settings. The resistance and capacitance curves as a function of the MOD_RSEL and MOD_CSEL settings. These settings control the amount of antiphase distortion to the baseband input stages to correct for distortion.
The top two bits (Register 0x31[12:11]) of MOD_RSEL and the MSB (Register 0x31[5]) of MOD_CSEL are used as a range setting. Figure 52 and Figure 53 show the output IP3 and output IP2 that are achievable across the MOD_RSEL and MOD_CSEL settings.
Figure 52 and Figure 53 show both a surface and a contour plot in one figure. The contour plot is located directly underneath the surface plot. The peaks on the surface plot indicate the maximum output IP3 and maximum output IP2, and the same color pattern on the contour plot determines the optimized MOD_RSEL and MOD_CSEL values. The overall shape of the output IP3 plot varies with the MOD_RSEL setting more than the MOD_CSEL setting.

Figure 52. OIP3 vs. $M O D_{-} C S E L$ and $M O D_{-} R S E L$ at $f_{R F}=2140 \mathrm{MHz}, I / Q$ Amplitude Per Tone $=0.5$ Vp-p Differential

Figure 53. OIP2 vs.MOD_CSEL and MOD_RSEL at $f_{R F}=2140 \mathrm{MHz}, I / Q$ Amplitude per Tone $=0.5 \mathrm{~V} p$-p Differential

LO AMPLITUDE AND COMMON-MODE VOLTAGE

The typical External LO driving level of the ADRF6720 is 0 dBm differential. All the baseband inputs must be externally dc biased to 500 mV . Figure 54 and Figure 55 show the performance variation vs. the external LO amplitude and baseband common-mode voltage, respectively.

Figure 54. SSB Output Power, Second- and Third-Order Harmonics, Carrier Feedthrough, Sideband Suppression, OIP2, and OIP3 vs. External LO Amplitude; Baseband I/Q Amplitude $=1 \mathrm{Vp}$-p Differential, $f_{\text {OUT }}=2140 \mathrm{MHz}$

Figure 55. SSB Output Power, Second- and Third-Order Harmonics, Carrier Feedthrough, Sideband Suppression, OIP2, and OIP3 vs. Baseband CommonMode Voltage; Baseband I/Q Amplitude $=1 \mathrm{Vp}$-p Differential, $f_{\text {out }}=2140 \mathrm{MHz}$

LAYOUT

Solder the exposed pad on the underside of the ADRF6720 to a low thermal and electrical impedance ground plane. This pad is typically soldered to an exposed opening in the solder mask on the evaluation board. Notice the use of 25 via holes on the exposed pad of the ADRF6720 evaluation board. Connect these ground vias to all other ground layers on the evaluation board to maximize heat dissipation from the device package.

Figure 56. Evaluation Board Layout for the ADRF6720 Package

CHARACTERIZATION SETUPS

The primary setup used to characterize the ADRF6720 is shown in Figure 57. This setup was used to evaluate the product as a single-sideband modulator. An automated software program (VEE) was used to control equipment over the IEEE bus. The setup was used to measure SSB, OIP2, OIP3, output P1 dB (OP1dB), LO, and USB null.

For phase noise and reference spur measurements, see the phase noise setup shown in Figure 58. Phase noise was measured on an LO and modulator output.

Figure 57. General Characterization Setup

ADRF6720

ADRF6720 PHASE NOISE STAND SETUP
ALL INSTRUMENTS ARE CONNECTED IN DAISY-CHAIN FASHION VIA GBIP CABLE UNLESS OTHERWISE NOTED.

Figure 58. Characterization Setup for Phase Noise and Reference Spur Measurements

ADRF6720

REGISTER MAP

Table 14. ADRF6720 Register Map

Reg	Name	Bits	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Reset	RW
			Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0x00	SOFT_RESET	[15:8]	RESERVED								0x0000	W
		[7:0]	RESERVED							SOFT_RESET		
0x01	ENABLES	[15:8]	RESERVED				LO_1XVCO_EN	MOD_EN	QUAD_DIV_EN	LO_DRV2X_EN	0xF67F	RW
		[7:0]	LO_DRV1X_EN	VCO_MUX_EN	REF_BUF_EN	VCO_EN	DIV_EN	CP_EN	VCO_LDO_EN	RESERVED		
0x02	INT_DIV	[15:8]	RESERVED				DIV_MODE	INT_DIV[10:8]			0x002C	RW
		[7:0]	INT_DIV[7:0]									
0x03	FRAC_DIV	[15:8]	FRAC_DIV[15:8]								0x0128	RW
		[7:0]	FRAC_DIV[7:0]									
0x04	MOD_DIV	[15:8]	MOD_DIV[15:8]								0x0600	RW
		[7:0]	MOD_DIV[7:0]									
0×10	ENBL_MASK	[15:8]	RESERVED					MOD_MASK	QUAD_DIV_MASK	LO_DRV2X_MASK	0xF67F	RW
		[7:0]	LO_DRV1X_MASK	VCO_MUX_MASK	REF_BUF_MASK	VCO_MASK	DIV_MASK	CP_MASK	VCO_LDO_MASK			
0×20	CP_CTL	$\begin{array}{\|c\|} \hline[15: 8] \\ \hline[7: 0] \\ \hline \end{array}$	RESERVED	CP_SEL	CP_CSCALE				RESERVED		0x0C26	RW
			RESERVED		CP_BLEED							
0×21	PFD_CTL	[15:8]	RESERVED								0x000B	RW
		[7:0]	RESERVED	REF_MUX_SEL			PFD_POLARITY	REF_SEL				
0×22	VCO_CTL	[15:8]	VCO_LDO_R4SEL				VCO_LDO_R2SEL				0x2A03	RW
		[7:0]	LO_DRV_LVL		DRVDIV2_EN	DIV8_EN	DIV4_EN	VCO_SEL				
0x30	BALUN_CTL	[15:8]	RESERVED								0x0000	RW
		[7:0]	BAL_COUT				BAL_CIN					
0×31	MOD_LIN_CTL	[15:8]	RESERVED				MOD_RSEL[6:2]				0x1101	RW
		[7:0]	MOD_RSEL[1:0]		MOD_CSEL							
0×32	MOD_CTLO	[15:8]	RESERVED		MOD_BLEED		POL_Q		POL_I		0x0900	RW
		[7:0]	Q_LO				I_LO					
0x33	MOD_CTL1	[15:8]	DCOFF_I								0x0000	RW
		[7:0]	DCOFF_Q									
0x40	PFD_CP_CTL	[15:8]	RESERVED								0x0010	RW
		[7:0]	RESERVED	ABLD	LY	CP_CTRL			PFD_CLK_EDGE			
0×42	DITH_CTL1	[15:8]	RESERVED								$0 \times 000 \mathrm{E}$	RW
		[7:0]	RESERVED				DITH_EN	DITH_MAG		DITH_VAL		
0x43	DITH_CTL2	[15:8]	DITH_VAL[15:8]								0x0000	RW
		[7:0]				DITH	VAL[7:0]					
0x45	VCO_CTL2	[15:8]	RESERVED						VTUNE_CTRL		0x0000	RW
		[7:0]	VCO_BAND_SRC	BAND								
0x49	VCO_CTL3	[15:8]	RESERVED		SET_1					SET_0[8]	$0 \times 16 \mathrm{BD}$	RW
		[7:0]	SET_O[7:0]									

ADRF6720

REGISTER DETAILS

Address: 0x00, Reset: 0x0000, Name: SOFT_RESET

[0] SOFT_RESET (W) Soft reset

Table 15. Bit Descriptions for SOFT_RESET

Bits	Bit Name	Settings	Description	Reset	Access
0	SOFT_RESET		Soft Reset.	0×0	W

Address: 0x01, Reset: 0xF67F, Name: ENABLES

Table 16. Bit Descriptions for ENABLES

Bits	Bit Name	Settings	Description	Reset	Access
11	LO_1XVCO_EN		Enables $1 \times$ LO with Internal VCO.	0×0	RW
10	MOD_EN		Enables MOD/LO Drive Chain.	0×1	RW
9	QUAD_DIV_EN		Enables Quad Divider for $2 \times$ LO Operation.	0×1	RW
8	LO_DRV2X_EN		Enables External $2 \times$ LO Driver—Before Quad Divider.	0×0	RW
7	LO_DRV1X_EN		Enables External $1 \times$ LO Driver—After Quad Divider.	0×0	RW
6	VCO_MUX_EN		Enables VCO Mux.	0×1	RW
5	REF_BUF_EN		Enables Reference Buffer.	0×1	RW
4	VCO_EN		Enables VCOs.	0×1	RW
3	DIV_EN	Enables VCO Dividers.	0×1	RW	
2	CP_EN		Enables Charge Pump.	0×1	RW
1	VCO_LDO_EN		Enables VCO LDO.	0×1	RW

Address: 0x02, Reset: 0x002C, Name: INT_DIV

Table 17. Bit Descriptions for INT_DIV

Bits	Bit Name	Settings	Description	Reset	Access
11	DIV_MODE	0	Divide Mode.	Fractional	
		1	Integer	0×0	RW
		Divider INT Value.			
$[10: 0]$	INT_DIV			RW2C	

Address: 0x03, Reset: 0x0128, Name: FRAC_DIV

Table 18. Bit Descriptions for FRAC_DIV

Bits	Bit Name	Settings	Description	Reset	Access
$[15: 0]$	FRAC_DIV		Divider FRAC Value.	0×128	RW

Address: 0x04, Reset: 0x0600, Name: MOD_DIV
[15:0] MOD_DIV (RW)

Table 19. Bit Descriptions for MOD_DIV

Bits	Bit Name	Settings	Description	Reset	Access
$[15: 0]$	MOD_DIV		Divider Modulus Value.	0×600	RW

ADRF6720

Address: 0x10, Reset: 0xF67F, Name: ENBL_MASK

	815	814	813	812	811	810	89	B8	87	${ }_{86}$	85	84	83	B2	81	B0	
	1	1	1	1	0	1	1	0	0	1	1	1	1	1	1	1	
[15:12] RESERVED																	
[11] LO_1XVCO_MASK (RW) Enable 1xLO with internal VCO																	[1] VCO_LDO_MASK (RW) Power up VCO LDO
[10] MOD_MASK (RW) MOD Enable																	[2] CP_MASK (RW) Power up Charge Pump
[9] QUAD_DIV_MASK (RW)																	[3] DIV_MASK (RW)
Quadrature Divide Path Enable(2X / 8XLO)																	Power up dividers [4] VCO_MASK (RW)
External 2X LO Driver Enable-before Quad Divider [5] REF_BUF_MASK (RW)																	
[7] LO_DRV1X_MASK (RW) External 1X LO Driver Enable-after Quad [6] VCO_MUX_MASK (RW) Divider																	

Table 20. Bit Descriptions for ENBL_MASK

Bits	Bit Name	Settings	Description	Reset	Access
11	LO_1XVCO_MASK		Enable $1 \times$ LO with internal VCO.	0×0	RW
10	MOD_MASK		MOD Enable.	RW	
9	QUAD_DIV_MASK		Quadrature Divide Path Enable $(2 \times / 4 \times / 8 \times$ LO $)$.	0×1	RW
8	LO_DRV2X_MASK		External $2 \times$ LO Driver Enable—Before Quad Divider.	0×1	RW
7	LO_DRV1X_MASK		External $1 \times$ LO Driver Enable—After Quad Divider.	0×0	RW
6	VCO_MUX_MASK		VCO_Mux_Enable.	0×0	RW
5	REF_BUF_MASK		Reference Buffer Enable.	0×1	RW
4	VCO_MASK		Power Up VCOs.	RW	RW
3	DIV_MASK		Power Up Dividers.	0×1	RW
2	CP_MASK		Power Up Charge Pump.	0×1	RW
1	VCO_LDO_MASK		Power UpVCO LDO.	0×1	RW

Address: 0x20, Reset: 0x0C26, Name: CP_CTL

[15] RESERVED
[14] CP SEL (RW)

Charge Pump Reference Current
Select
0: Internal Charge Pump
1: External Charge Pump
[13:10] CP_CSCALE (RW)
Charge Pump Coarse Scale current
0001: 250 uA
0011: 500 uA
0111: 750 uA
1111: 1000 uA
[5:0] CP_BLEED (RW)
Charge Pump Bleed
000000: 0 uA
000001: 15.625 uA sink
000010: 31.25 uA sink
000011: 46.875 uA sink
..
011111: 484.375 uA sink
100000: 0 uA
100001: 15.625 uA source
100010: 31.25 uA source
100011: 46.875 UA source
...
111111: 484.375 uA source
[9:6] RESERVED

Table 21. Bit Descriptions for CP_CTL

Bits	Bit Name	Settings	Description	Reset	Access
14	CP_SEL	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Charge Pump Reference Current Select. Internal Charge Pump. External Charge Pump.	0x0	RW
[13:10]	CP_CSCALE	$\begin{aligned} & 0001 \\ & 0011 \\ & 0111 \\ & 1111 \end{aligned}$	Charge Pump Coarse Scale Current. $\begin{aligned} & 250 \mu \mathrm{~A} . \\ & 500 \mu \mathrm{~A} . \\ & 750 \mu \mathrm{~A} . \\ & 1000 \mu \mathrm{~A} . \end{aligned}$	0x3	RW
[5:0]	CP_BLEED	$\begin{array}{r} 000000 \\ 000001 \\ 000010 \\ 000011 \\ \ldots \\ 011111 \\ 100000 \\ 100001 \\ 100010 \\ 100011 \\ \ldots \\ 111111 \end{array}$	Charge Pump Bleed. $0 \mu \mathrm{~A}$ $15.625 \mu \mathrm{~A}$ Sink. $31.25 \mu \mathrm{~A}$ Sink. $46.875 \mu \mathrm{~A}$ Sink. $484.375 \mu \mathrm{~A}$ Sink. $0 \mu \mathrm{~A}$. $15.625 \mu \mathrm{~A}$ Source. $31.25 \mu \mathrm{~A}$ Source. $46.875 \mu \mathrm{~A}$ Source. $484.375 \mu \mathrm{~A}$ Source.	0x26	RW

Address: 0x21, Reset: 0x000B, Name: PFD_CTL

Table 22. Bit Descriptions for PFD_CTL

Bits	Bit Name	Settings	Description	Reset	Access
[6:4]	REF_MUX_SEL	000	Reference (REF) Output Mux Select.	LOCK_DET.	
		001	VPTAT.		
		010	REFCLK.		
		011	REFCLK/2.	RW	
	100	REFCLK $\times 2$.			
		101	REFCLK/8.		
		110	REFCLK/4.		
3		PFD_POLARITY	0	Set PFD Polarity.	Positive.
	1	Negative.	0×1	RW	

Bits	Bit Name	Settings	Description	Reset	Access
$[2: 0]$	REF_SEL	000	Set REF Input Multiply/Divide Ratio.	$\times 2$.	0×3
		001	$\times 1$.	RW	
		010	Divide by 2.		
		011	Divide by 4.		
		100	Divide by 8.		

Address: 0x22, Reset: 0x2A03, Name: VCO_CTL

Table 23. Bit Descriptions for VCO_CTL

Bits	Bit Name	Settings	Description	Reset	Access
[15:12]	VCO_LDO_R4SEL		VCO LDO Resistor 4 Selections.	0x2	RW
[11:8]	VCO_LDO_R2SEL		VCO LDO Resistor 2 Selections.	0xA	RW
[7:6]	LO_DRV_LVL	$\begin{aligned} & 00 \\ & 01 \\ & 10 \end{aligned}$	Set External LO Output Amplitude. $\begin{aligned} & -5.1 \mathrm{dBm} . \\ & -0.5 \mathrm{dBm} . \\ & 3 \mathrm{dBm} . \end{aligned}$	0x0	RW
5	DRVDIV2_EN	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Divide by 2 for External LO Driver Enable. Disable. Enable.	0x0	RW
4	DIV8_EN	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Divide by 2 in LO Path for Total of Division of 8. Disable. Enable.	0x0	RW
3	DIV4_EN	0 1	Divide by 2 in LO Path for Total of Division of 4. Disable. Enable.	0x0	RW

Bits	Bit Name	Settings	Description	Reset	Access
$[2: 0]$	VCO_SEL	000	Select VCO Core/External LO.	4.6 GHz to 5.71 GHz.	0×3
		001	4.02 GHz to 4.6 GHz.	RW	
		010	3.5 GHz to 4.02 GHz.		
		011	2.85 GHz to 3.5 GHz.		
		100	External LO/VCO.		

Address: 0x30, Reset: 0x0000, Name: BALUN_CTL

Table 24. Bit Descriptions for BALUN_CTL

Bits	Bit Name	Settings	Description	Reset	Access
$[7: 4]$	BAL_COUT	0000	Set Balun Output Capacitance.	Minimum Capacitance Value.	
		1111	Maximum Capacitance Value.	0×0	RW
		0000	Set Balun Input Capacitance.	Minimum Capacitance Value.	0×0
$[3: 0]$	BAL_CIN	1111	Maximum Capacitance Value.	RW	

Address: 0x31, Reset: 0x1101, Name: MOD_LIN_CTL

[15:13] RESERVED
[12:6] MOD_RSEL (RW)

Table 25. Bit Descriptions for MOD_LIN_CTL

Bits	Bit Name	Settings	Description	Reset	Access
$[12: 6]$	MOD_RSEL		Modulator Linearizer RSEL Value.	0×44	RW
$[5: 0]$	MOD_CSEL		Modulator Linearizer CSEL Value.	0×01	RW

ADRF6720

Address: 0x32, Reset: 0x0900, Name: MOD_CTL0

Table 26. Bit Descriptions for MOD_CTLO

Bits	Bit Name	Settings	Description	Reset	Access
$[14: 12]$	MOD_BLEED		Modulator Bleed Current.	0×0	RW
$[11: 10]$	POL_Q	01	Quadrature Polarity Switch, Q Channel. Inverted Q Channel Polarity. Normal Polarity.		
$[9: 8]$	POL_I	01		Quadrature Polarity Switch, I Channel. Normal Polarity. Inverted I Channel Polarity.	RW
		10	Unwanted Sideband Nulling, Q Channel.	0×1	RW
$[7: 4]$	Q_LO		Unwanted Sideband Nulling, I Channel.		
$[3: 0]$	I_LO				RW

Address: 0x33, Reset: 0x0000, Name: MOD_CTL1

	815	814	813	812	811	810	89	88	B7	B6	B5	84	B3	B2	81	B0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
[15:8] DCOFF_I (RW)																	[7:0] DCOFF_Q (RW)
LO nulling, I channel																	LO nulling, Q channel
00000000: 0 uA																	00000000: 0 uA
00000001: +5 UA																	00000001: +5 uA
00000010: +10 uA																	00000010: +10 uA
00000011: +15 uA																	00000011: +15 uA
....::
01111110: +630 uA																	01111110: +630 uA
01111111: +635 uA																	01111111: +635 uA
10000000: 0 uA																	10000000: 0 uA
10000001: -5 uA																	10000001: -5 UA
10000010: -10 uA																	10000010: -10 uA
10000011: -15 uA																	10000011: -15 uA
....:
11111110: -630 uA																	11111110: -630 uA
11111111: -635 uA																	11111111: -635 uA

Table 27. Bit Descriptions for MOD_CTL1

Bits	Bit Name	Settings	Description	Reset	Access
[15:8]	DCOFF_I	00000000 00000001 00000010 00000011 01111110 01111111 10000000 10000001 10000010 10000011 11111110 11111111	LO Nulling, I Channel. $0 \mu \mathrm{~A}$. $+5 \mu \mathrm{~A}$. $+10 \mu \mathrm{~A}$. $+15 \mu \mathrm{~A}$. ... $+630 \mu \mathrm{~A}$. $+635 \mu \mathrm{~A}$. $0 \mu \mathrm{~A}$. $-5 \mu \mathrm{~A}$. $-10 \mu \mathrm{~A}$. $-15 \mu \mathrm{~A}$. ... $-630 \mu \mathrm{~A}$. $-635 \mu \mathrm{~A}$.	0x0	RW
[7:0]	DCOFF_Q	00000000 00000001 00000010 00000011 01111110 01111111 10000000 10000001 10000010 10000011 11111110 11111111	LO Nulling, Q Channel. $0 \mu \mathrm{~A}$. $+5 \mu \mathrm{~A}$. $+10 \mu \mathrm{~A}$. $+15 \mu \mathrm{~A}$. ... $+630 \mu \mathrm{~A}$. $+635 \mu \mathrm{~A}$. $0 \mu \mathrm{~A}$. $-5 \mu \mathrm{~A}$. $-10 \mu \mathrm{~A}$. $-15 \mu \mathrm{~A}$. ... $-630 \mu \mathrm{~A}$. $-635 \mu \mathrm{~A}$.	0x0	RW

Address: 0x40, Reset: 0x0010, Name: PFD_CP_CTL

ADRF6720

Table 28. Bit Descriptions for PFD_CP_CTL
$\left.\begin{array}{l|l|l|l|l|l}\hline \text { Bits } & \text { Bit Name } & \text { Settings } & \text { Description } & \text { Reset } & \text { Access } \\ \hline[6: 5] & \text { ABLDLY } & 00 & \text { Set Antibacklash Delay. } & 0 \text { ns. } & \\ & & 01 & 0.5 \text { ns. } & & \\ & & 10 & 0.75 \text { ns. } & 11 & 0.9 \text { ns. }\end{array}\right)$

Address: 0x42, Reset: 0x000E, Name: DITH_CTL1

Table 29. Bit Descriptions for DITH_CTL1

Bits	Bit Name	Settings	Description	Reset	Access
3	DITH_EN	0	Set Dither Enable.	Disable.	
		1	Enable.	0×1	RW
		Set Dither Magnitude.			
$[2: 1]$	DITH_MAG		Set Dither Value.	0×3	RW
0	DITH_VAL			0×0	RW

Address: 0x43, Reset: 0x0000, Name: DITH_CTL2

Set Dither value

Table 30. Bit Descriptions for DITH_CTL2

Bits	Bit Name	Settings	Description	Reset	Access
$[15: 0]$	DITH_VAL		Set Dither Value.	0×0	RW

Address: 0x45, Reset: 0x0000, Name: VCO_CTL2

Table 31. Bit Descriptions for VCO_CTL2

Bits	Bit Name	Settings	Description	Reset	Access
[9:8]	VTUNE_CTRL	$\begin{aligned} & 00 \\ & 01 \end{aligned}$	Source for VCO VTUNE Pin. Band Calibration Routine. SPI.	0x0	RW
7	VCO_BAND_SRC	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	VCO Band Source Band Calibration Routine. SPI.	0x0	RW
[6:0]	BAND		VCO Band Selection.	0x00	RW

Address: 0x49, Reset: 0x16BD, Name: VCO_CTL3
[15:14] RESERVED Unused bits
[13:9] SET_1 (RW)

Table 32. Bit Descriptions for VCO_CTL3

Bits	Bit Name	Settings	Description	Reset	Access
$[13: 9]$	SET_1		Internal Settings. Refer to the Required PLL/VCO Settings and Register Write Sequence section.	$0 \times 0 B$	RW
$[8: 0]$	SET_0	Internal Settings. Refer to the Required PLL/VCO Settings and Register Write Sequence section.	$0 \times 0 B D$	RW	

ADRF6720

OUTLINE DIMENSIONS

FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION A FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.

COMPLIANT TO JEDEC STANDARDS MO-220-WJJD.
Figure 60. 40-Lead Lead Frame Chip Scale Package [LFCSP_WQ] $6 \mathrm{~mm} \times 6 \mathrm{~mm}$ Body, Very Very Thin Quad (CP-40-11)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADRF6720ACPZ-R7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$40-L e a d ~ L e a d ~ F r a m e ~ C h i p ~ S c a l e ~ P a c k a g e ~\left[L F C S P _W Q\right] ~$ Evaluation Board	CP-40-11
ADRF6720-EVALZ			

${ }^{1} Z=$ RoHS Compliant Part.
\square
Data Sheet ADRF6720

NOTES

NOTES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Modulator/Demodulator category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
LC72722PM-TLM-E HMC495LP3TR LT5571EUF\#PBF LT5528EUF\#PBF LT5502EGN\#PBF THAT1510S08-U CMX589AD5 ADRF6821ACPZ AD630ADZ AD630ARZ AD630JNZ AD630KNZ AD8346ARUZ-REEL7 AD8339ACPZ AD8345ARE AD8345AREZ AD8345AREZ-RL7 AD8347ARUZ AD8347ARUZ-REEL7 AD8348ARUZ AD8348ARUZ-REEL7 AD8349AREZ AD8349AREZ-RL7 ADL5371ACPZ-R7 ADL5387ACPZ-WP ADL5387ACPZ-R7 ADL5372ACPZ-R7 ADL5373ACPZ-R7 ADA2200ARUZ-REEL7 AD8346ARUZ ADL5380-EVALZ ADL5382ACPZ-R7 AD630ARZ-RL ADL5375-15ACPZ-R7 ADL5380ACPZ-R7 ADL5375-05ACPZ-R7 AD8333ACPZ-WP AD8341ACPZ-REEL7 ADRF6703ACPZ-R7 ADRF6750ACPZ-R7 ADRF6806ACPZ-R7 HMC1097LP4E HMC630LP3ETR HMC500LP3ETR HMC495LP3ETR HMC500LP3E HMC630LP3E HMC631LP3E HMC795LP5E LTC5598IUF

