Low Power Precision Analog Microcontroller, ARM Cortex-M3, with Dual Sigma-Delta ADCs

ADuCM360/ADuCM361

This anomaly list describes the known bugs, anomalies, and workarounds for the ADuCM360/ADuCM361 MicroConverter[®] Revision D silicon. The anomalies listed apply to all ADuCM360/ADuCM361 packaged material branded as follows:

First Line	ADuCM360 or ADuCM361
Second Line	BCPZ
Third Line	D30 (revision identifier)

Silicon Anomaly

Analog Devices, Inc., is committed, through future silicon revisions, to continuously improve silicon functionality. Analog Devices tries to ensure that these future silicon revisions remain compatible with your present software/systems by implementing the recommended workarounds outlined here.

ADuCM360/ADuCM361 FUNCTIONALITY ISSUES

Silicon Revision Identifier	Kernel Revision Identifier	Chip Marking	Silicon Status	Anomaly Sheet	No. of Reported Anomalies
D	0	All silicon branded D30	Release	Rev. A	4

ADuCM360/ADuCM361 PERFORMANCE ISSUES

Silicon Revision Identifier	Kernel Revision Identifier	Chip Marking	Silicon Status	Anomaly Sheet	No. of Reported Anomalies
D	0	All silicon branded	Release	Rev. A	1
		D30			

ADuCM360/ADuCM361 SILICON FUTURE ENHANCEMENTS

Silicon Revision Identifier	Kernel Revision Identifier	Chip Marking	Silicon Status	Anomaly Sheet	No. of Reported Anomalies
D	0	All silicon branded D30	Release	Rev. A	0

Rev. A

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

PERFORMANCE ISSUES

Table 1. ADC Gain = 1, ADC Input Buffers Enabled [pr008]

Background	When ADCs are configured for Gain = 1, the PGA is disabled. ADC input buffers may be enabled or disabled when		
	ADC gain = 1.		
lssue	The ADC data output accuracy is not linear and does not meet the ADC specifications when the ADC input buffers are enabled.		
Workaround	The issue is not present when ADC gain \geq 2.		
	When using Gain = 1, ensure the input buffers are bypassed and powered down, for example: ADCxCON[17:14] = [1111].		
Related Issues	None.		

FUNCTIONALITY ISSUES

Table 2. External Interrupts in Debug Mode and Cortex-M3 in Deep Sleep Mode [er007]

Background	The ADuCM360/ADuCM361 has various low power modes. External interrupts can wake up the Cortex-M3 core from any of these low power modes. When in debug mode, placing the ADuCM360/ADuCM361 in Mode 4 or Mode 5 forces the Cortex-M3 core into deep sleep mode, however the high power LDO, oscillator, and clocks remain active.
lssue	The interrupt detection unit, external interrupt 0 to 7, will not wake the Cortex-M3 core from deep sleep (Mode 4 and Mode 5) when the debug logic is active, specifically if the debug software has set either the CDBGPWRUP or CSYSPWRUP bits in the CTRL/STAT register. These are Cortex-M3 debug logic bits not visible from user code; these bits can only be cleared by a write via the ARM serial wire download or a power on reset.
Workaround	None.
Related Issues	None.

Table 3. Debug Mode and Deep Sleep Mode [er008]

Background	The ADuCM360/ADuCM361 has various low power modes. When in debug mode, placing the ADuCM360/ADuCM361 in Mode 4 or Mode 5 forces the Cortex-M3 core into deep sleep mode; the rest of the device remains active.
lssue	After serial wire debug access, the serial wire logic may prevent a complete power down of the device. The debug logic is cleared by a power cycle.
Workaround	Power cycle the device after serial wire debug access.
Related Issues	None.

Table 4. I²C Slave not Releasing the Bus [er009]

	δ
Background	When an I ² C read request happens, if the TX FIFO of the slave is empty, the slave must NACK the request from the
	master. Then it must release the bus, allowing the master to generate a STOP condition.
lssue	If the TX FIFO of the slave is loaded with a byte with an MSB of 0, just on the rising edge of SCL for the ACK/NACK, the slave will pull the SDA low and hold the line until the device is reset.
Workaround	Make sure the TX FIFO is always loaded on time by preloading TX FIFO in the preceding RX interrupt.
Related Issues	None.

Table 5. I²C Clock Stretch Issue [er010]

Background	Clock stretching is a feature that allows a device to halt the I ² C bus temporarily by holding SCL low.
	Register I2CxSCON Bit 6 enables clock stretching in slave mode.
	Register I2CxMCON Bit 3 enables clock stretching in master mode.
lssue	Writing to I2CxSCON Bit 6 or to I2CxMCON Bit 3 on the rising edge of SCL can cause a glitch that can be interpreted by other devices as a real clock edge and might hang the bus.
Workaround	Do not enable clock stretching.
Related Issues	None.

SECTION 1. ADuCM360/ADuCM361 PERFORMANCE ISSUES

Reference Number	Description	Status
pr001	ADC0/ADC1 INL specification	Fixed
pr002	ADC0/ADC1 noise specification	Fixed
pr003	ADC0/ADC1 noise specification at sampling rates \geq 500 Hz	Fixed
pr004	Current specification	Fixed
pr005	ADC1-internal channels issue	Fixed
pr006	Current-power down specification	Fixed
pr007	DAC–offset error (DAC output buffer enabled)	Fixed
pr008	ADC gain = 1, ADC input buffers enabled	Open

SECTION 2. ADuCM360/ADuCM361 FUNCTIONALITY ISSUES

Reference Number	Description	Status
er001	ADC0/ADC1 input voltage–limitation on maximum input voltage	Fixed
er002	ADC0/ADC1-step detection circuit	Fixed
er003	External reference buffer–power down	Fixed
er004	ADC0/ADC1– Both ADCs sampling the same input	Fixed
er005	ADC0/ADC1– ADC output code issue	Fixed
er006	Power supply monitor (PSM)	Fixed
er007	External interrupts in debug mode and Cortex-M3 in deep sleep mode	Open
er008	Debug mode and deep sleep mode	Open
er009	I ² C slave not releasing the bus	Open
er010	I ² C clock stretch issue	Open

SECTION 3. ADuCM360/ADuCM361 SILICON FUTURE ENHANCEMENTS

Reference Number	Description	Status
fr001	Ground switch-maximum current	Fixed
fr002	ADC0/ADC1 PGA–output voltage from PGA limited to 1 V maximum	Fixed
fr003	Change of pins used for UART downloader	Fixed

NOTES

www.analog.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for ARM Microcontrollers - MCU category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

R7FS3A77C2A01CLK#AC1_CP8363AT_MB96F119RBPMC-GSE1_MB9BF122LPMC1-G-JNE2_MB9BF122LPMC-G-JNE2 MB9BF128SAPMC-GE2_MB9BF218TBGL-GE1_MB9BF529TBGL-GE1_26-21/R6C-AT1V2B/CT_5962-8506403MQA MB9AF342MAPMC-G-JNE2_MB96F001YBPMC1-GSE1_MB9BF121KPMC-G-JNE2_VA10800-D000003PCA_CP8547AT CY9AF156NPMC-G-JNE2_MB9BF104NAPMC-G-JNE1_CY8C4724FNI-S402T_ADUCM410BCBZ-RL7_ADUCM410BBCZ-RL7 GD32f303RGT6_NHS3152UK/A1Z_MK26FN2M0CAC18R_EFM32TG230F32-D-QFN64_EFM32TG232F32-D-QFP64_EFM32TG825F32-D-BGA48_MB9AFB44NBBGL-GE1_MB9BF304RBPMC-G-JNE2_MB9BF416RPMC-G-JNE2_MB9AF155MABGL-GE1_MB9BF306RBPMC-G-JNE2_MB9BF618TBGL-GE1_MK20DX64VFT5_MK50DX128CMC7_MK51DN256CMD10_MK51DX128CMC7_MKL25Z32VFT4 MKL25Z64VFT4_LPC1754FBD80_STM32F030K6T6TR_STM32L073VBT6_AT91SAM7L64-CU_ATSAM3N0AA-MU_ATSAM3N0CA-CU ATSAM3SD8BA-MU_ATSAM4LC4BA-MU_ADuC7023BCPZ62I-R7_ATSAM4LS4CA-CFU_STR711FR0T6 XMC1302Q040X0200ABXUMA1