Data Sheet

FEATURES

Stability in isolated feedback applications
0.5% initial accuracy
1% accuracy over the full temperature range
Compatible with Type II or Type III compensation networks
Reference voltage: 1.225 V
Compatible with DOSA
Low power operation: <7 mA total
Wide voltage supply range
$V_{\text {dDI }} 3 \mathrm{~V}$ to 20 V
$V_{\text {DD2 }} 3$ V to 20 V
Bandwidth: $\mathbf{4 0 0}$ kHz
Isolation voltage: $\mathbf{2 . 5} \mathbf{~ k V ~ r m s}$
Safety and regulatory approvals
UL recognition: $\mathbf{2 5 0 0}$ V rms for 1 minute per UL 1577
CSA Component Acceptance Notice \#5A
VDE certificate of conformity
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12
$V_{\text {IORM }}=565$ V peak
Wide temperature range
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ambient operation
$150^{\circ} \mathrm{C}$ maximum junction temperature
Qualified for automotive applications

APPLICATIONS

Linear power supplies
Inverters
Uninterruptible Power Supply (UPS)
DOSA-compatible modules
Voltage monitors
Automotive systems

GENERAL DESCRIPTION

The ADuM3190 ${ }^{1}$ is an isolated error amplifier based on Analog Devices, Inc., iCoupler technology. The ADuM3190 is ideal for linear feedback power supplies. The primary side controllers of the ADuM3190 enable improvements in transient response, power density, and stability as compared to commonly used optocoupler and shunt regulator solutions.

Unlike optocoupler-based solutions, which have an uncertain current transfer ratio over lifetime and at high temperatures, the ADuM3190 transfer function does not change over its lifetime, and it is stable over a wide temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Included in the ADuM3190 is a wideband operational amplifier for a variety of commonly used power supply loop compensation techniques. The ADuM3190 is fast enough to allow a feedback loop to react to fast transient conditions and overcurrent conditions. Also included is a high accuracy 1.225 V reference to compare with the supply output setpoint.
The ADuM3190 is packaged in a small 16-lead QSOP package for a 2.5 kV rms isolation voltage rating.

[^0]
TABLE OF CONTENTS

Features 1
Applications. 1
General Description 1
Functional Block Diagram 1
Revision History 2
Specifications 3
Package Characteristics 5
Regulatory Information 5
Insulation and Safety Related Specifications 5
Recommended Operating Conditions 5
DIN V VDE V 0884-10 (VDE V 0884-10) Insulation Characteristics 6
Absolute Maximum Ratings 7
ESD Caution 7
Pin Configuration and Function Descriptions. 8
REVISION HISTORY
7/15—Rev. 0 to Rev. A
Added W Models

\qquad Universal
Changes to Features Section and Applications Section 1
Changes to Table 1 3
Changes to Regulatory Information Section and Table 3 5
Changes to DIN V VDE V 0884-10 (VDE V 0884-10)
Insulation Characteristics Section and Table 6 6
Change to AC Voltage, Bipolar Parameter, Table 8 7
Changes to Figure 12 and Figure 14 10
Added Figure 16 to Figure 24; Renumbered Sequentially 11
Deleted Figure 24; Renumbered Sequentially 13
Added Isolated Amplifier Circuit Operation Section 14
Changes to Applications Block Diagram Section 15
Updated Outline Dimensions 18
Changes to Ordering Guide 18
Added Automotive Products Section 18
Typical Performance Characteristics 9
Test Circuits 13
Applications Information 14
Theory of Operation 14
Accuracy Circuit Operation 14
Isolated Amplifier Circuit Operation 14
Application Block Diagram 15
Setting the Output Voltage 15
DOSA Module Application. 15
DC Correctness and Magnetic Field Immunity 16
Insulation Lifetime 17
Packaging and Ordering Information 18
Outline Dimensions 18
Ordering Guide 18
Automotive Products 18

2/13-Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=3 \mathrm{~V}$ to 20 V for $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=5 \mathrm{~V}$, unless otherwise noted.
Table 1.

\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter \& Test Conditions/Comments \& Min \& Typ \& Max \& Unit \\
\hline ACCURACY Initial Error Total Error \& \[
\begin{aligned}
\& (1.225 \mathrm{~V}-\text { EAout }) / 1.225 \mathrm{~V} \times 100 \% ; \text { see Figure } 27 \\
\& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
\& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \\
\& \hline
\end{aligned}
\] \& \& \[
\begin{aligned}
\& 0.25 \\
\& 0.5
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.5 \\
\& 1
\end{aligned}
\] \& \[
\begin{aligned}
\& \% \\
\& \%
\end{aligned}
\] \\
\hline \begin{tabular}{l}
OP AMP \\
Offset Error \\
Open-Loop Gain Input Common-Mode Range Gain Bandwidth Product Common-Mode Rejection Input Capacitance Output Voltage Range Input Bias Current
\end{tabular} \& COMP pin \& \[
\begin{aligned}
\& -5 \\
\& 66 \\
\& 0.35 \\
\& \\
\& 0.2
\end{aligned}
\] \& \[
\begin{aligned}
\& \pm 2.5 \\
\& 80 \\
\& 10 \\
\& 72 \\
\& 2 \\
\& 0.01
\end{aligned}
\] \& +5
1.5

2.7 \& | mV |
| :--- |
| dB |
| V |
| MHz |
| dB |
| pF |
| V |
| $\mu \mathrm{A}$ |

\hline | REFERENCE |
| :--- |
| Output Voltage |
| Output Current | \& \[

$$
\begin{aligned}
& 0 \mathrm{~mA} \text { to } 1 \mathrm{~mA} \text { load, } \mathrm{C}_{\text {REFOUT }}=15 \mathrm{pF} \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \\
& \mathrm{C}_{\text {REFOUT }}=15 \mathrm{pF}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.215 \\
& 1.213 \\
& 2.0 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.225 \\
& 1.225
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.235 \\
& 1.237
\end{aligned}
$$

\] \& | V |
| :--- |
| V |
| mA |

\hline | UVLO |
| :--- |
| Positive Going Threshold Negative Going Threshold EAout Impedance | \& $\mathrm{V}_{\mathrm{DD} 2}$ or $\mathrm{V}_{\mathrm{DD} 1}$ < UVLO threshold \& 2.4 \& \[

$$
\begin{aligned}
& 2.8 \\
& 2.6 \\
& \text { High-Z }
\end{aligned}
$$

\] \& 2.96 \& \[

$$
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V} \\
& \Omega
\end{aligned}
$$
\]

\hline Output Offset Voltage \& From COMP to EAout, 0.4 V to $2.1 \mathrm{~V}, \pm 3 \mathrm{~mA}$ From EAout to EAоит, 0.4 V to $2.1 \mathrm{~V}, \pm 1 \mathrm{~mA}$, $\mathrm{V}_{\mathrm{DD} 1}=20 \mathrm{~V}$ \& \[
$$
\begin{aligned}
& -0.2 \\
& -0.1
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& +0.05 \\
& +0.01
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& +0.2 \\
& +0.1
\end{aligned}
$$
\] \&

\hline Output Linearity ${ }^{2}$ \& From COMP to EAout, 0.4 V to $2.1 \mathrm{~V}, \pm 3 \mathrm{~mA}$ From EAout to EAоuт $2,0.4 \mathrm{~V}$ to $2.1 \mathrm{~V}, \pm 1 \mathrm{~mA}$, $V_{D D 1}=20 \mathrm{~V}$ \& \[
$$
\begin{aligned}
& -1.0 \\
& -1.0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& +0.15 \\
& +0.1
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& +1.0 \\
& +1.0
\end{aligned}
$$
\] \&

\hline | Output -3 dB Bandwidth |
| :--- |
| A, S, and WS Grades |
| B, T, and WT Grades | \& From COMP to EAout, 0.4 V to $2.1 \mathrm{~V}, \pm 3 \mathrm{~mA}$, and from COMP to EAоuт, 0.4 V to 2.1 V , $\pm 1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD} 1}=20 \mathrm{~V}$ \& \[

$$
\begin{aligned}
& 100 \\
& 250
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 200 \\
& 400
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& \mathrm{kHz} \\
& \mathrm{kHz}
\end{aligned}
$$
\]

\hline Output Voltage, EAout Low Voltage High Voltage \& $\pm 3 \mathrm{~mA}$ output \& \[
2.4

\] \& \[

2.7

\] \& 0.4 \& \[

$$
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V}
\end{aligned}
$$
\]

\hline Output Voltage, EAоuт2 Low Voltage \& | $\pm 1 \mathrm{~mA}$ output |
| :--- |
| $\mathrm{V}_{\mathrm{DD} 1}=4.5 \mathrm{~V}$ to 5.5 V |
| $\mathrm{V}_{\mathrm{DD} 1}=10 \mathrm{~V}$ to 20 V | \& \& \[

$$
\begin{aligned}
& 0.3 \\
& 0.3
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.6 \\
& 0.6
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V}
\end{aligned}
$$
\]

\hline | High Voltage |
| :--- |
| Noise, EAout |
| Noise, EAоuтz | \& | $\begin{aligned} & \mathrm{V}_{\mathrm{DD} 1}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD} 1}=10 \mathrm{~V} \text { to } 20 \mathrm{~V} \end{aligned}$ |
| :--- |
| See Figure 15 |
| See Figure 15 | \& 4.8

5.0 \& \[
$$
\begin{aligned}
& 4.9 \\
& 5.4 \\
& 1.7 \\
& 4.8
\end{aligned}
$$

\] \& \& | V |
| :--- |
| V |
| mV rms |
| mV rms |

\hline
\end{tabular}

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
POWER SUPPLY					
Operating Range, Side 1	$V_{\text {DD1 }}$	3.0		20	V
Operating Range, Side 2	$V_{\text {DD2 }}$	3.0		20	V
Power Supply Rejection	$D C, V_{D D 1}=V_{D D 2}=3 \mathrm{~V}$ to 20 V	60			dB
Supply Current					
IDD1	See Figure 4		1.4	2.0	mA
IDD2	See Figure 5		2.9	5.0	mA

${ }^{1}$ Output gain is defined as the slope of the best-fit line of the output voltage vs. the input voltage over the specified input range, with the offset error adjusted out.
${ }^{2}$ Output linearity is defined as the peak-to-peak output deviation from the best-fit line of the output gain, expressed as a percentage of the full-scale output voltage.

PACKAGE CHARACTERISTICS

Table 2.

Parameter	Symbol	Min	Typ \quad Max	Unit	Test Conditions/Comments
RESISTANCE					
\quad Input-to-Output 1	$\mathrm{R}_{\mathrm{L}-\mathrm{o}}$		10^{13}	Ω	
CAPACITANCE					
\quad Input-to-Output1	C_{Lo}	2.2	pF	$\mathrm{f}=1 \mathrm{MHz}$	
\quad Input Capacitance ${ }^{2}$	C_{l}	4.0	pF		
IC JUNCTION-TO-AMBIENT THERMAL				Thermocouple located at center of package underside	
\quad RESISTANCE	θ_{JA}	76	${ }^{\circ} \mathrm{C} / \mathrm{W}$		
\quad 16-Lead QSOP					

${ }^{1}$ The device is considered a 2-terminal device; Pin 1 through Pin 8 are shorted together, and Pin 9 through Pin 16 are shorted together.
${ }^{2}$ Input capacitance is from any input data pin to ground.

REGULATORY INFORMATION

The ADuM3190 is approved by the organizations listed in Table 3. See Table 8 and the Insulation Lifetime section for recommended maximum working voltages for specific cross-isolation waveforms and insulation levels.

Table 3.

UL	CSA	VDE			
Recognized Under 1577 Component	Approved under CSA Component	Certified according to DIN V VDE V 0884-10			
Recognition Program¹				Single Protection, 2500 V rms Isolation	Acceptance Notice \#5A
:---	:---				
(VDE V 0884-10): 2006-12					

${ }^{1}$ In accordance with UL 1577, each ADuM3190 is proof tested by applying an insulation test voltage $\geq 3000 \mathrm{~V}$ rms for 1 sec (current leakage detection limit $=5 \mu \mathrm{~A}$).
${ }^{2}$ In accordance with DIN V VDE V 0884-10, each ADuM3190 is proof tested by applying an insulation test voltage $\geq 1050 \mathrm{~V}$ peak for 1 sec (partial discharge detection limit $=5 \mathrm{pC}$). The asterisk (*) marked on the component designates DIN V VDE V 0884-10 approval.

INSULATION AND SAFETY RELATED SPECIFICATIONS

Table 4.

Parameter	Symbol	Value	Unit	Test Conditions/Comments
Rated Dielectric Insulation Voltage	L(I01)	2500	3.8 min	mm
Minimum External Air Gap (Clearance)	L(IO2)	3.1 min	mm	1-minute duration Measured from input terminals to output terminals, shortest distance through air Measured from input terminals to output terminals, shortest distance path along body
Minimum External Tracking (Creepage)		0.017 min	mm	Insulation distance through insulation
Minimum Internal Gap (Internal Clearance)	CTI	>400	V	DIN IEC 112/VDE 0303, Part 1 Tracking Resistance (Comparative Tracking Index) Isolation Group

RECOMMENDED OPERATING CONDITIONS

Table 5.

Parameter	Symbol	Min	Max	Unit
OPERATING TEMPERATURE BY MODEL ADuM3190A/ADuM3190B	T_{A}			
ADuM3190S/ADuM3190T		-40	+85	
SUPPLY VOLTAGES				

[^1]
DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS

These isolators are suitable for reinforced isolation only within the safety limit data. Maintenance of the safety data is ensured by protective circuits. The asterisk (*) marking branded on the package denotes DIN V VDE V 0884-10 approval for a 565 V peak working voltage.

Table 6.

Description	Test Conditions/Comments	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110				
For Rated Mains Voltage $\leq 150 \mathrm{~V}$ rms			Ito IV	
For Rated Mains Voltage $\leq 300 \mathrm{~V}$ rms			I to III	
For Rated Mains Voltage $\leq 400 \mathrm{~V}$ rms			I to II	
Climatic Classification			40/105/21	
Pollution Degree per DIN VDE 0110, Table 1				
Maximum Working Insulation Voltage		VIorm	565	\checkmark peak
Input-to-Output Test Voltage, Method B1	$\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\text {pd }}(\mathrm{m}), 100 \%$ production test, $\mathrm{t}_{\text {ini }}=\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$	$\mathrm{V}_{\text {pd(m) }}$	1059	\checkmark peak
Input-to-Output Test Voltage, Method A				
After Environmental Tests Subgroup 1	$V_{\text {IORM }} \times 1.5=V_{\text {pd }(m)}, \mathrm{t}_{\text {ini }}=60 \mathrm{sec}$, $\mathrm{t}_{\mathrm{m}}=10 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$	$\mathrm{V}_{\mathrm{pd}(\mathrm{m})}$	848	\checkmark peak
After Input and/or Safety Test Subgroup 2 and Subgroup 3	$V_{\text {IORM }} \times 1.2=V_{\text {pd }(m),} \mathrm{t}_{\text {ini }}=60 \mathrm{sec}$, $\mathrm{t}_{\mathrm{m}}=10 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$	$\mathrm{V}_{\mathrm{pd}(\mathrm{m})}$	678	\checkmark peak
Highest Allowable Overvoltage		VIotm	4000	\checkmark peak
Surge Isolation Voltage	$\mathrm{V}_{\text {PEAK }}=10 \mathrm{kV} ; 1.2 \mu \mathrm{~s}$ rise time; $50 \mu \mathrm{~s}, 50 \%$ fall time	VIOSM	6250	\checkmark peak
Safety Limiting Values	Maximum value allowed in the event of a failure (see Figure 2)			
Case Temperature		Ts	150	${ }^{\circ} \mathrm{C}$
Safety Total Dissipated Power		Ps	1.64	W
Insulation Resistance at $\mathrm{T}_{\text {s }}$	$\mathrm{V}_{10}=500 \mathrm{~V}$	Rs	$>10^{9}$	Ω

Figure 2. Thermal Derating Curve, Dependence of Safety Limiting Values on Case Temperature, per DIN V VDE V 0884-10

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 7.

Parameter	Rating
Storage Temperature ($\mathrm{T}_{\text {ST }}$) Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Operating Temperature (T_{A}) Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature	$-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltages	
$\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}{ }^{1}$	-0.5 V to +24 V
$\mathrm{V}_{\text {REG } 1,} \mathrm{~V}_{\text {REG } 2}{ }^{1}$	-0.5 V to +3.6 V
Input Voltages (+IN, -IN)	-0.5 V to +3.6 V
Output Voltages	
REFout, COMP, REFout1, EAout	-0.5 V to +3.6 V
EAout2	-0.5 V to +5.5 V
Output Current per Output Pin	-11 mA to +11 mA
Common-Mode Transients ${ }^{2}$	$-100 \mathrm{kV} / \mu \mathrm{s}$ to $+100 \mathrm{kV} / \mu \mathrm{s}$

${ }^{1}$ All voltages are relative to their respective grounds.
${ }^{2}$ Refers to common-mode transients across the insulation barrier. Commonmode transients exceeding the absolute maximum ratings may cause latch-up or permanent damage.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Table 8. Maximum Continuous Working Voltage ${ }^{1}$

Parameter	Max	Unit	Constraint
WAVEFORM			
AC Voltage			
Bipolar	565	V peak	50-year minimum lifetime
Unipolar	1131	V peak	50 -year minimum lifetime
DC Voltage	1131	V peak	50 -year minimum lifetime

${ }^{1}$ Refers to continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more details.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 9. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	$\mathrm{V}_{\mathrm{DD} 1}$	Supply Voltage for Side 1 (3.0 V to 20 V). Connect a $1 \mu \mathrm{~F}$ capacitor between $\mathrm{V}_{\text {DD } 1}$ and GND ${ }_{1}$.
2	GND_{1}	Ground Reference for Side 1.
3	$V_{\text {REG1 }}$	Internal Supply Voltage for Side 1. Connect a $1 \mu \mathrm{~F}$ capacitor between $\mathrm{V}_{\text {REG1 }}$ and GND ${ }_{1}$.
4	REFout1	Reference Output Voltage for Side 1. The maximum capacitance for this pin ($\mathrm{C}_{\text {REFOUT1 }}$) must not exceed 15 pF .
5	NC	No Connection. Connect Pin 5 to GND ${ }_{1}$; do not leave this pin floating.
6	EAout2	Isolated Output Voltage 2, Open-Drain Output. Connect a pull-up resistor between EAout2 and VDD1 for current up to 1 mA .
7	EAout	Isolated Output Voltage.
8	GND ${ }_{1}$	Ground Reference for Side 1.
9	GND_{2}	Ground Reference for Side 2.
10	COMP	Output of the Op Amp. A loop compensation network can be connected between the COMP pin and the -IN pin.
11	-IN	Inverting Op Amp Input. Pin 11 is the connection for the power supply setpoint and compensation network.
12	+IN	Noninverting Op Amp Input. Pin 12 can be used as a reference input.
13	REFout	Reference Output Voltage for Side 2. The maximum capacitance for this pin (Crefout $^{\text {) must not exceed }} 15 \mathrm{pF}$.
14	$\mathrm{V}_{\text {REG2 }}$	Internal Supply Voltage for Side 2. Connect a $1 \mu \mathrm{~F}$ capacitor between $\mathrm{V}_{\text {REG2 }}$ and GND_{2}.
15	GND_{2}	Ground Reference for Side 2.
16	$\mathrm{V}_{\mathrm{DD} 2}$	Supply Voltage for Side $2\left(3.0 \mathrm{~V}\right.$ to 20 V). Connect a $1 \mu \mathrm{~F}$ capacitor between $\mathrm{V}_{\mathrm{DD} 2}$ and GND_{2}.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Typical IDDI Supply Current vs. Temperature

Figure 5. Typical IDD2 Supply Current vs. Temperature

Figure 6. +IN, -IN Input Bias Current vs. Temperature

Figure 7. REFout Accuracy vs. Temperature

Figure 8. EAout Accuracy vs. Temperature

Figure 9. Op Amp Offset Voltage vs. Temperature

Figure 10. Op Amp Open-Loop Gain vs. Temperature

Figure 11. EAout Gain vs. Temperature

Figure 12. EAout2 Gain vs. Temperature

Figure 13. EAout Offset Voltage vs. Temperature

Figure 14. EAoutz Offset Voltage vs. Temperature

Figure 15. Output Noise with Test Circuit 1 (10 mV/DIV), Channel $1=$ EAout, Channel $2=$ EAout2

Figure 16. EAout Gain Distribution at $25^{\circ} \mathrm{C}$

Figure 17. EAout Gain Distribution at $125^{\circ} \mathrm{C}$

Figure 18. EAout Gain Distribution at $-40^{\circ} \mathrm{C}$

Figure 19. EAout Offset Voltage Distribution at $25^{\circ} \mathrm{C}$

Figure 20. EAout Offset Voltage Distribution at $125^{\circ} \mathrm{C}$

Figure 21. EAout Offset Voltage Distribution at $-40^{\circ} \mathrm{C}$

Figure 22. EAout Accuracy Voltage Distribution at $25^{\circ} \mathrm{C}$

Figure 23. EA out Accuracy Voltage Distribution at $125^{\circ} \mathrm{C}$

Figure 24. EAout Accuracy Voltage Distribution at $-40^{\circ} \mathrm{C}$

Figure 25. Output 100 kHz Signal with Test Circuit 3, Channel $1=+I N$, Channel $2=$ EAout, Channel $3=$ EAout2

Figure 26. Output Square Wave Response with Test Circuit 3, Channel $1=+I N$, Channel $2=$ EAout, Channel $3=$ EAout

TEST CIRCUITS

Figure 27. Test Circuit 1: Accuracy Circuit Using EAout

Figure 28. Test Circuit 2: Accuracy Circuit Using EAout2

Figure 29. Test Circuit 3: Isolated Amplifier Circuit

APPLICATIONS INFORMATION

THEORY OF OPERATION

In the test circuits of the ADuM3190 (see Figure 27 through Figure 29), external supply voltages from 3 V to 20 V are provided to the $V_{D D 1}$ and $V_{D D 2}$ pins, and internal regulators provide 3.0 V to operate the internal circuits of each side of the ADuM3190. An internal precision 1.225 V reference provides the reference for the $\pm 1 \%$ accuracy of the isolated error amplifier. UVLO circuits monitor the $\mathrm{V}_{\mathrm{DDx}}$ supplies to turn on the internal circuits when the 2.8 V rising threshold is met and to turn off the error amplifier outputs to a high impedance state when $V_{D D x}$ falls below 2.6 V .
The op amp on the right side of the device has a noninverting +IN pin and an inverting -IN pin available for connecting a feedback voltage in an isolated dc-to-dc converter output, usually through a voltage divider. The COMP pin is the op amp output, which can be used to attach resistor and capacitor components in a compensation network. The COMP pin internally drives the Tx transmitter block, which converts the op amp output voltage into an encoded output that is used to drive the digital isolator transformer.

On the left side of the ADuM3190, the transformer output PWM signal is decoded by the Rx block, which converts the signal into a voltage that drives an amplifier block; the amplifier block produces the error amplifier output available at the EAout pin. The EAout pin can deliver $\pm 3 \mathrm{~mA}$ and has a voltage level between 0.4 V and 2.4 V , which is typically used to drive the input of a PWM controller in a dc-to-dc circuit.
For applications that need more output voltage to drive their controllers, Figure 28 illustrates the use of the Eaout2 pin output, which delivers up to $\pm 1 \mathrm{~mA}$ with an output voltage of 0.6 V to 4.8 V for an output that has a pull-up resistor to a 5 V supply. If the EAout2 pull-up resistor connects to a 10 V to 20 V supply, the output is specified to a minimum of 5.0 V to allow use with a PWM controller requiring a minimum input operation of 5 V .

ACCURACY CIRCUIT OPERATION

See Figure 27 and Figure 28 for stability of the accuracy circuits. The op amp on the right side of the ADuM3190, from the -IN pin to the COMP pin, has a unity-gain bandwidth (UGBW) of 10 MHz . Figure 30, Bode Plot 1, shows a dashed line for the op amp alone and its 10 MHz pole.
Figure 30 also shows the linear isolator alone (the blocks from the op amp output to the ADuM3190 output, labeled as the linear isolator), which introduces a pole at approximately 400 kHz . This total Bode plot of the op amp and linear isolator shows that the phase shift is approximately -180° from the -IN pin to the EAout pin before the crossover frequency. Because a -180° phase shift can make the system unstable, adding an integrator configuration, as shown in the test circuits in Figure 27 and Figure 28, consisting of a 2.2 nF capacitor and a 680Ω resistor, helps to make the system stable. In Figure 31, Bode Plot 2 with an integrator configuration added, the system crosses over 0 dB at
approximately 100 kHz , but the circuit is more stable with a phase shift of approximately -120°, which yields a stable 60° phase margin.
This circuit is used for accuracy tests only, not for real-world applications, because it has a 680Ω resistor across the isolation barrier to close the loop for the error amplifier; this resistor causes leakage current to flow across the isolation barrier. For this test circuit only, GND_{1} must be connected to GND_{2} to create a return for the leakage current created by the 680Ω resistor connection.

ISOLATED AMPLIFIER CIRCUIT OPERATION

Figure 29 shows an isolated amplifier circuit. In this circuit, the input side amplifier is set as a unity-gain buffer so that the EAout output follows the + IN input. The EAout2 output follows the EAout output, but with a voltage gain of 2.6.

This circuit has an open-drain output, which must be pulled up to a supply voltage from 3 V to 20 V using a resistor value set for an output current of up to 1 mA . The EAout2 output can be used to drive up to 1 mA to the input of a device that requires a minimum input operation of 5 V . The EAout2 circuit has an internal diode clamp to protect the internal circuits from voltages greater than 5 V .

The gain, offset, and linearity of EAout and EAout2 are specified in Table 1 using this test circuit. When designing applications for voltage monitoring using an isolated amplifier, review these specifications, noting that the 1% accuracy specifications for the isolated error amplifier do not apply. In addition, the EAout circuit in Figure 29 is shown with an optional external RC low-pass filter with a corner frequency of 500 kHz , which can reduce the 3 MHz output noise from the internal voltage to the PWM converter.

APPLICATION BLOCK DIAGRAM

Figure 32 shows a typical application for the ADuM3190: an isolated error amplifier in primary side control.

Figure 32. Application Block Diagram
The op amp of the ADuM3190 is used as the error amplifier for the feedback of the output voltage, $\mathrm{V}_{\text {out }}$, using a resistor divider to the -IN pin of the op amp. This configuration inverts the output signal at the COMP pin when compared to the + IN pin, which is connected to the internal 1.225 V reference.
For example, when the output voltage, Vout, falls due to a load step, the divider voltage at the -IN pin falls below the +IN reference voltage, causing the COMP pin output signal to go high.
The COMP output of the op amp is encoded and then decoded by the digital isolator transformer block to a signal that drives the output of the ADuM3190 high. The output of the ADuM3190 drives the COMP pin of the PWM controller, which is designed to reset the PWM latch output to low only when its COMP pin is low. A high at the COMP pin of the PWM controller causes the latching PWM comparator to produce a PWM duty cycle output. This PWM duty cycle output drives the power stage to increase the Vout voltage until it returns to regulation.
The power stage output is filtered by output capacitance and, in some applications, by an inductor. Various elements contribute to the gain and phase of the control loop and the resulting stability. The output filter components (Lo_{0} and C_{o}) create a double pole; the op amp has a pole at 10 MHz (see Figure 30), and the linear isolator has a pole at 400 kHz (see Figure 30 and Figure 31).
The output capacitor and its ESR can add a zero at a frequency that is dependent on the component type and values. With the ADuM3190 providing the error amplifier, a compensation network is provided from the -IN pin to the COMP pin to compensate
the control loop for stability. The compensation network values depend on both the application and the components that are selected; information about the component network values is provided in the data sheet of the selected PWM controller.
The ADuM3190 has two different error amplifier outputs: EAout and EAoutz. The EAout output, which can drive $\pm 3 \mathrm{~mA}$, has a guaranteed maximum high output voltage of at least 2.4 V , which may not be sufficient to drive the COMP pin of some PWM controllers. The EAout2 pin can drive $\pm 1 \mathrm{~mA}$ and has an output range that guarantees 5.0 V for a $\mathrm{V}_{\mathrm{DDI}}$ voltage range of 10 V to 20 V , which works well with the COMP pin of many PWM controllers.
Figure 32 shows how to use the ADuM3190 to provide isolated feedback in the control loop of an isolated dc-to-dc converter. In this application block diagram, the loop is closed at approximately the 1.225 V reference voltage, providing $\pm 1 \%$ accuracy over temperature. The ADuM3190 op amp has a high gain bandwidth of 10 MHz to allow the dc-to-dc converter to operate at high switching speeds, enabling smaller values for the output filter components (Lo_{0} and Co_{0}).
The 400 kHz bandwidth of the ADuM3190 error amplifier output offers faster loop response for better transient response than the typical shunt regulator and optocoupler solutions, which typically have bandwidths of only 25 kHz to 50 kHz maximum.

SETTING THE OUTPUT VOLTAGE

The output voltage in the application circuit can be set with two resistors in a voltage divider, as shown in Figure 33.

The output voltage is determined by the following equation where $V_{\text {ref }}=1.225 \mathrm{~V}$.

Figure 33. Setting the Output Voltage

DOSA MODULE APPLICATION

Figure 34 is a block diagram of a Distributed-power Open Standards Alliance (DOSA) circuit using the ADuM3190. The block diagram shows how to use the ADuM3190 1.225 V reference and the error amp in a DOSA standard power supply module circuit to produce output voltage settings using a combination of resistors.
The ADuM3190 1.225 V reference is specified for $\pm 1 \%$ over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range. See Table 10 to select the resistor values to set the output voltage of the module. Two different ranges of Vout can be implemented, Vout $>1.5 \mathrm{~V}$ or $V_{\text {out }}<1.5 \mathrm{~V}$, depending on the required module.

Figure 34. DOSA Module
Table 10. Resistor Values for DOSA Module

Module Nominal Output	R3	R4	R5	R6
Vout $>1.5 \mathrm{~V}$	$1 \mathrm{k} \Omega$	$1 \mathrm{k} \Omega$	0Ω	Open
V out $^{2} 1.5 \mathrm{~V}$	$1 \mathrm{k} \Omega$	0Ω	$2.05 \mathrm{k} \Omega$	$1.96 \mathrm{k} \Omega$
V $_{\text {OUT }}>1.5 \mathrm{~V}$	$5.11 \mathrm{k} \Omega$	$5.11 \mathrm{k} \Omega$	0Ω	Open
V OUT $^{2} 1.5 \mathrm{~V}$	$5.11 \mathrm{k} \Omega$	0Ω	$10.5 \mathrm{k} \Omega$	$10.0 \mathrm{k} \Omega$

DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY

Positive and negative logic transitions at the isolator input cause narrow ($\sim 1 \mathrm{~ns}$) pulses to be sent to the decoder via the transformer. The decoder is bistable and is, therefore, either set or reset by the pulses, indicating input logic transitions. In the absence of logic transitions of more than $1 \mu \mathrm{~s}$ at the input, a periodic set of refresh pulses indicative of the correct input state are sent to ensure dc correctness at the output.
If the decoder receives no internal pulses for more than approximately $3 \mu \mathrm{~s}$, the input side is assumed to be unpowered or nonfunctional, in which case the isolator output is forced to a default high impedance state by the watchdog timer circuit. In addition, the outputs are in a default high impedance state while the power is increasing before the UVLO threshold is crossed.

The ADuM3190 is immune to external magnetic fields. The limitation on the ADuM3190 magnetic field immunity is set by the condition whereby induced voltage in the transformer receiving coil is sufficiently large to either falsely set or reset the decoder. The following analysis defines the conditions under which this can occur. The 3 V operating condition of the ADuM3190 is examined because it represents the most susceptible mode of operation. The pulses at the transformer output have an amplitude that is greater than 1.0 V . The decoder has a sensing threshold at approximately 0.5 V , therefore establishing a 0.5 V margin within which induced voltages are tolerated. The voltage induced across the receiving coil is given by

$$
V=(-d \beta / d t) \sum \pi r_{n}^{2}, n=1,2, \ldots, N
$$

where:
β is the magnetic flux density (gauss).
r_{n} is the radius of the nth turn in the receiving coil (cm).
N is the number of turns in the receiving coil.

Given the geometry of the receiving coil in the ADuM3190 and an imposed requirement that the induced voltage be, at most, 50% of the 0.5 V margin at the decoder, a maximum allowable magnetic field is calculated, as shown in Figure 35.

Figure 35. Maximum Allowable External Magnetic Flux Density
For example, at a magnetic field frequency of 1 MHz , the maximum allowable magnetic field of 0.02 kgauss induces a voltage of 0.25 V at the receiving coil. This is approximately 50% of the sensing threshold and does not cause a faulty output transition. Similarly, if such an event were to occur during a transmitted pulse (and had the worst-case polarity), the received pulse is reduced from $>1.0 \mathrm{~V}$ to 0.75 V , still well above the 0.5 V sensing threshold of the decoder.
The preceding magnetic flux density values correspond to specific current magnitudes at given distances away from the ADuM3190 transformers. Figure 36 shows these allowable current magnitudes as a function of frequency for selected distances. As shown in Figure 36, the ADuM3190 is immune and can be affected only by extremely large currents operating at a high frequency very close to the component. For the 1 MHz example, a 0.7 kA current must be placed 5 mm away from the ADuM3190 to affect the operation of the device.

Figure 36. Maximum Allowable Current for Various Current-to-ADuM3190 Spacings

INSULATION LIFETIME

All insulation structures eventually break down when subjected to voltage stress over a sufficiently long period. The rate of insulation degradation is dependent on the characteristics of the voltage waveform applied across the insulation. In addition to the testing performed by the regulatory agencies, Analog Devices carries out an extensive set of evaluations to determine the lifetime of the insulation structure within the ADuM3190.
Analog Devices performs accelerated life testing using voltage levels higher than the rated continuous working voltage. Acceleration factors for several operating conditions are determined. These factors allow calculation of the time to failure at the actual working voltage.
The values shown in Table 8 summarize the peak voltage for 50 years of service life for a bipolar ac operating condition. In many cases, the approved working voltage is higher than the 50 -year service life voltage. Operation at these high working voltages can lead to shortened insulation life in some cases.
The ADuM3190 insulation lifetime depends on the voltage waveform type imposed across the isolation barrier. The iCoupler insulation structure degrades at different rates depending on whether the waveform is bipolar ac, unipolar ac, or dc. Figure 37, Figure 38, and Figure 39 illustrate these different isolation voltage waveforms.
A bipolar ac voltage environment is the worst case for the iCoupler products yet meets the 50 -year operating lifetime recommended by Analog Devices for maximum working voltage. In the case of unipolar ac or dc voltage, the stress on the insulation is sig-
nificantly lower. This allows operation at higher working voltages while still achieving a 50 -year service life. Treat any cross-insulation voltage waveform that does not conform to Figure 38 or Figure 39 as a bipolar ac waveform, and limit its peak voltage to the 50 -year lifetime voltage value listed in Table 8.

Note that the voltage presented in Figure 38 is shown as sinusoidal for illustration purposes only. It is meant to represent any voltage waveform varying between 0 V and some limiting value. The limiting value can be positive or negative, but the voltage cannot cross 0 V .

Figure 37. Bipolar AC Waveform

Figure 38. Unipolar AC Waveform

RATED PEAK VOLTAGE

Figure 39. DC Waveform

PACKAGING AND ORDERING INFORMATION

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-137-AB
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

Figure 40. 16-Lead Shrink Small Outline Package [QSOP]
($R Q-16$)
Dimensions shown in inches and (millimeters)

ORDERING GUIDE

Model ${ }^{1,2}$	Temperature Range	Bandwidth (Typical)	Package Description	Package Option
ADuM3190ARQZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	200 kHz	16-Lead QSOP	RQ-16
ADuM3190ARQZ-RL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	200 kHz	16-Lead QSOP	RQ-16
ADuM3190BRQZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	400 kHz	16-Lead QSOP	RQ-16
ADuM3190BRQZ-RL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	400 kHz	16-Lead QSOP	RQ-16
ADuM3190SRQZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	200 kHz	16-Lead QSOP	RQ-16
ADuM3190SRQZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	200 kHz	16-Lead QSOP	RQ-16
ADuM3190TRQZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	400 kHz	16-Lead QSOP	RQ-16
ADuM3190TRQZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	400 kHz	16-Lead QSOP	RQ-16
ADuM3190WSRQZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	200 kHz	16-Lead QSOP	RQ-16
ADuM3190WSRQZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	200 kHz	16-Lead QSOP	RQ-16
ADuM3190WTRQZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	400 kHz	16-Lead QSOP	RQ-16
ADuM3190WTRQZ-RL7 EVAL-ADuM3190EBZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	400 kHz	16-Lead QSOP Evaluation Board	RQ-16

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.
${ }^{2} \mathrm{~W}=$ Qualified for Automotive Applications.

AUTOMOTIVE PRODUCTS

The ADuM3190W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Isolation Amplifiers category:
Click to view products by Analog Devices manufacturer:

Other Similar products are found below :
AD202JN AD202JY AD204JY AD204KN ADUM3190TRQZ-RL7 ADUM3190BRQZ ADUM3190ARQZ ADUM3190WSRQZ ADUM4190ARIZ-RL ADUM4190BRIZ ADUM4190SRIZ AMC1100DUBR AMC1200BDUBR AMC1200BDWVR AMC1200SDUBR AMC1200STDUBRQ1 AMC1301DWVR AMC1311DWVR ISO124P AD204KY 2902005 AMC1300DWVR ISO120SG ISO121BG ISO121G ISO124U1K

[^0]: ${ }^{1}$ Protected by U.S. Patents $5,952,849,6,873,065$ and 7,075,329. Other patents pending.

[^1]: ${ }^{1}$ All voltages are relative to their respective grounds.

