FEATURES

Enhanced system-level ESD performance per IEC 61000-4-x
High temperature operation: $125^{\circ} \mathrm{C}$
Narrow body, RoHS-compliant, 8-lead SOIC
Low power operation
5 V operation
1.7 mA per channel maximum at 0 Mbps to $\mathbf{2}$ Mbps
3.7 mA per channel maximum at 10 Mbps
7.0 mA per channel maximum at 25 Mbps
3.3 V operation
1.5 mA per channel maximum at $\mathbf{0}$ Mbps to $\mathbf{2}$ Mbps
2.5 mA per channel maximum at 10 Mbps
5.2 mA per channel maximum at 25 Mbps

Bidirectional communication
3.3 V/5 V level translation

High data rate: dc to $\mathbf{2 5}$ Mbps (NRZ)
Precise timing characteristics
3 ns maximum pulse width distortion
3 ns maximum channel-to-channel matching
High common-mode transient immunity: > $\mathbf{2 5} \mathbf{~ k V / \mu s}$
Safety and regulatory approvals
UL recognition: 2500 V rms for 1 minute per UL 1577
CSA Component Acceptance Notice 5A
VDE Certificate of Conformity
DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12
$V_{\text {IORM }}=560 \mathrm{~V}$ peak
Qualified for automotive applications

APPLICATIONS

Size-critical multichannel isolation

SPI interface/data converter isolation
RS-232/RS-422/RS-485 transceiver isolation
Digital field bus isolation
Hybrid electric vehicles, battery monitor

GENERAL DESCRIPTION

The ADuM3200/ADuM3201 ${ }^{1}$ are dual-channel, digital isolators based on the Analog Devices, Inc., iCoupler technology. Combining high speed CMOS and monolithic transformer technology, these isolation components provide outstanding performance characteristics superior to alternatives such as optocoupler devices.
By avoiding the use of LEDs and photodiodes, iCoupler devices remove the design difficulties commonly associated with optocouplers. The typical optocoupler concerns regarding uncertain current transfer ratios, nonlinear transfer functions, and temperature and lifetime effects are eliminated with the simple i Coupler digital interfaces and stable performance characteristics. The need for external drivers and other discrete components is eliminated with these i Coupler products. Furthermore, i Coupler devices consume one-tenth to one-sixth the power of optocouplers at comparable signal data rates.
The ADuM3200/ADuM3201 isolators provide two independent isolation channels in a variety of channel configurations and data rates (see the Ordering Guide). They operate with 3.3 V or 5 V supply voltages on either side, providing compatibility with lower voltage systems as well as enabling voltage translation functionality across the isolation barrier. The ADuM3200W and ADuM3201W are automotive grade versions qualified for $125^{\circ} \mathrm{C}$ operation.

In comparison to the ADuM1200/ADuM1201 isolators, the ADuM3200/ADuM3201 isolators contain various circuit and layout changes to provide increased capability relative to systemlevel IEC 61000-4-x testing (ESD, burst, and surge). The precise capability in these tests for either the ADuM1200/ADuM1201 or ADuM3200/ADuM3201 products is strongly determined by the design and layout of the user board or module. For more information, see the AN-793 Application Note, ESD/Latch-Up Considerations with iCoupler Isolation Products.

FUNCTIONAL BLOCK DIAGRAMS

Figure 1. ADuM3200 Functional Block Diagram

Figure 2. ADuM3201 Functional Block Diagram
${ }^{1}$ Protected by U.S. Patents 5,952,849; 6,873,065; 7,075,329.

Rev. F
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ADuM3200/ADuM3201

TABLE OF CONTENTS

Features 1
Applications. 1
General Description 1
Functional Block Diagrams. 1
Revision History 3
Specifications 4
Electrical Characteristics-5 V, $105^{\circ} \mathrm{C}$ Operation 4
Electrical Characteristics- $3.3 \mathrm{~V}, 105^{\circ} \mathrm{C}$ Operation 5
Electrical Characteristics-Mixed 5 V/3.3 V, $105^{\circ} \mathrm{C}$ Operation 6
Electrical Characteristics—Mixed 3.3 V/5 V, $105^{\circ} \mathrm{C}$ Operation 7
Electrical Characteristics-5 V, $125^{\circ} \mathrm{C}$ Operation 8
Electrical Characteristics- $3.3 \mathrm{~V}, 125^{\circ} \mathrm{C}$ Operation 9
Electrical Characteristics-Mixed $5 \mathrm{~V} / 3.3 \mathrm{~V}, 125^{\circ} \mathrm{C}$ Operation 10
Electrical Characteristics-Mixed 3.3 V/5 V, $125^{\circ} \mathrm{C}$ Operation 11
Package Characteristics 12
Regulatory Information 12
Insulation and Safety-Related Specifications. 12
DIN V VDE V 0884-10 (VDE V 0884-10) Insulation Characteristics 13
Recommended Operating Conditions 13
Absolute Maximum Ratings 14
ESD Caution 14
Pin Configurations and Function Descriptions 15
Typical Performance Characteristics 16
Application Information 17
PC Board Layout 17
System-Level ESD Considerations and Enhancements 17
Propagation Delay-Related Parameters. 17
DC Correctness and Magnetic Field Immunity 17
Power Consumption 19
Insulation Lifetime 19
Outline Dimensions 20
Ordering Guide 21
Automotive Products 21

REVISION HISTORY

5/2016-Rev. E to Rev. FChange to Logic High Output Voltages Parameter andLogic Low Output Voltages Parameter, Table 3 4
Change to Logic High Output Voltages Parameter and Logic Low Output Voltages Parameter, Table 6 5
Change to Logic High Output Voltages Parameter and Logic Low Output Voltages Parameter, Table 9 6
Change to Logic High Output Voltages Parameter and Logic Low Output Voltages Parameter, Table 12 7
Change to Logic High Output Voltages Parameter and
Logic Low Output Voltages Parameter, Table 15 8
Change to Logic High Output Voltages Parameter and Logic Low Output Voltages Parameter, Table 18 9
Change to Logic High Output Voltages Parameter and Logic Low Output Voltages Parameter, Table 21 10
Change to Logic High Output Voltages Parameter and Logic Low Output Voltages Parameter, Table 24

\qquad 11
7/2015-Rev. D to Rev. E
Changed ADuM120x to ADuM1200/ADuM1201... Throughout
Changes to Logic High Output Voltages Parameter, Table 3.4
Changes to Logic High Output Voltages Parameter, Table 6 5
Change to Logic Low Input Threshold Parameter, Table 9 6
Change to Logic Low Input Threshold Parameter, Table 12 7
Changes to Logic High Output Voltages Parameter, Table 15 8
Changes to Logic High Output Voltages Parameter, Table 18 9
Change to Logic Low Input Threshold Parameter, Table 21 10
Change to Logic Low Input Threshold Parameter, Table 24 11
Changes to Table 26 and Table 27 12
Changes to Ordering Guide 21
10/2014—Rev. C to Rev. D
Changed Low Voltage Operation from 3 V to 3.3 V(Throughout)1
Changes to Features Section 1
Changes to Table 2 3
Changes to Table 5 4
Changes to Table 8 5
Changes to Table 11 6
Specified W Grade in Table 13 and Table 147
Specified W Grade in Table 16 and Table 17 8
Specified W Grade in Table 19 and Table 209
Specified W Grade in Table 22 and Table 23 10
Changes to Table 29 12
2/2012—Rev. B to Rev. C
Created Hyperlink for Safety and Regulatory Approvals Entry in Features Section 1
Change to PC Board Layout Section 16
11/2011—Rev. A to Rev. B
Changes to Features Section, Applications Section, and General Descriptions Section 1
Changes to Specifications Section 3
Changes to Table 29 12
Changes to Ambient Operating Temperature Maximum Value, Table 30. 13
Changes to V VDl_{1} Pin Descriptions 14
Changes to Figure 9, Figure 10, Figure 11 Captions 15
Changes to Ordering Guide 20
Added Automotive Products Section 20
6/2007—Rev. 0 to Rev. A
Updated VDE Certification Throughout 1
Changes to Features, General Description, and Note 1 1
Changes to Regulatory Information Section 10
Changes to DIN V VDE V 0884-10 (VDE V 0884-10) Insulation Characteristics Section11
Added Table 10 12
Added Insulation Lifetime Section 17
7/2006-Revision 0: Initial Version

ADuM3200/ADuM3201

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS— $5 \mathrm{~V}, 105^{\circ} \mathrm{C}$ OPERATION

All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=5 \mathrm{~V}$. Minimum/maximum specifications apply over the entire recommended operation range: $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$, and $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}$, unless otherwise noted. Switching specifications are tested with $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and CMOS signal levels, unless otherwise noted.

Table 1.

Parameter	Symbol	A Grade			B Grade			C Grade			Unit	Test Conditions/Comments
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
SWITCHING SPECIFICATIONS												
Data Rate				1			10			25	Mbps	Within PWD limit
Propagation Delay	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	20		150	20		50	20		45	ns	50% input to 50% output
Pulse Width Distortion Change vs. Temperature	PWD		6	40		5	3		5	3	$\begin{aligned} & \text { ns } \\ & \mathrm{ps} /{ }^{\circ} \mathrm{C} \end{aligned}$	\|ttph - ${ }_{\text {PHLL }}$ \|
Pulse Width	PW	1000			100			40			ns	Within PWD limit
Propagation Delay Skew	$\mathrm{t}_{\text {PSK }}$			100			15			15	ns	Between any two units
Channel Matching												
Codirectional	$\mathrm{t}_{\text {PSKCD }}$			50			3			3	ns	
Opposing-Direction	tpskod			50			15			15	ns	
Output Rise/Fall Time	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		10			2.5			2.5		ns	10\% to 90\%

Table 2.

Parameter	Symbol	1 Mbps-A Grade, B Grade, and C Grade			10 Mbps-B Grade and C Grade			25 Mbps-C Grade			Unit	Test Conditions/Comments
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
SUPPLY CURRENT												
ADuM3200	IDD1		1.3	1.8		3.5	4.6		7.7	10.0	mA	No load
ADuM3201	IDD2		1.0	1.6		2.0	2.8		3.8	4.9	mA	No load
	IDD1		1.1	1.6		3.1	4.2		6.9	8.9	mA	No load
	IDD2		1.3	1.9		3.1	4.0		6.1	8.3	mA	No load

Table 3. For All Models

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments		
DC SPECIFICATIONS								
Logic High Input Threshold	V_{IH}	0.7 V VDx			V			
Logic Low Input Threshold	VIL			0.3 V VDx	V			
Logic High Output Voltages	Vor	$V_{\text {DDx }}-0.1$	$V_{\text {DDx }}$		V	$\mathrm{l}_{\mathrm{ox}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {IXH }}$		
		$V_{\text {DDx }}-0.5$	$V_{\text {DDx }}-0.2$		V	$\mathrm{l}_{0 \times}=-3.2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{lx}}=\mathrm{V}_{1 \mathrm{xH}}$		
Logic Low Output Voltages	Vol		0.0	0.1	V	$\mathrm{l}_{\text {lox }}=20 \mu \mathrm{~A}, \mathrm{~V}_{\text {Ix }}=\mathrm{V}_{\text {IxL }}$		
			0.2	0.4	V	$\mathrm{I}_{\mathrm{ox}}=3.2 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\mathrm{IxL}}$		
Input Current per Channel	1	-10	+0.01	+10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{1 \mathrm{I}} \leq \mathrm{V}_{\mathrm{DDX}}$		
Supply Current per Channel								
Quiescent Input Supply Current			IDDI(Q)		0.4	0.8	mA	$V_{1 A}=V^{1 B}=0 \mathrm{~V}$
Quiescent Output Supply Current	IDDo(0)		0.5	0.6	mA	$\mathrm{V}^{1 A}=\mathrm{V}_{\mathrm{IB}}=0 \mathrm{~V}$		
Dynamic Input Supply Current	IdoI(D)		0.19		mA/Mbps			
Dynamic Output Supply Current	IdDo(D)		0.05		mA/Mbps			
AC SPECIFICATIONS	\|CM		25	35				
Common-Mode Transient Immunity ${ }^{1}$						$\begin{aligned} & \mathrm{V}_{\mathrm{IX}}=\mathrm{V}_{\mathrm{DDX}}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$		
Refresh Rate	fr_{r}		1.2		Mbps			

[^0]
ELECTRICAL CHARACTERISTICS—3.3 V, $105^{\circ} \mathrm{C}$ OPERATION

All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=3.3 \mathrm{~V}$. Minimum/maximum specifications apply over the entire recommended operation range: $3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V}$, and $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}$, unless otherwise noted. Switching specifications are tested with $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and CMOS signal levels, unless otherwise noted.

Table 4.

Table 5.

Parameter	Symbol	1 Mbps-A Grade, B Grade, and C Grade			10 Mbps—B Grade and C Grade			25 Mbps-C Grade			Unit	Test Conditions/Comments
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
SUPPLY CURRENT												
ADuM3200	IDD1		0.8	1.3		2.2	3.2		4.8	6.4	mA	No load
	IDD2		0.7	1.0		1.3	1.7		2.3	3.0	mA	No load
ADuM3201	IDD1		0.7	1.3		1.9	2.5		4.1	5.3	mA	No load
	IDD2		0.8	1.6		1.9	2.5		3.7	5.1	mA	No load

Table 6. For All Models

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments	
DC SPECIFICATIONS							
Logic High Input Threshold	V_{IH}	0.7 V VDx			V		
Logic Low Input Threshold	$\mathrm{V}_{\text {IL }}$			$0.3 \mathrm{~V}_{\mathrm{DDx}}$	V		
Logic High Output Voltages	Vor	$\begin{aligned} & V_{D D X}=0.1 \\ & V_{D D X}=0.5 \end{aligned}$	$V_{\text {DDx }}$		V	$\mathrm{l}_{\mathrm{ox}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {lxH }}$	
			$V_{D D x}-0.2$		V	$\mathrm{l}_{\mathrm{ox}}=-3.2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{lx}}=\mathrm{V}_{\text {IxH }}$	
Logic Low Output Voltages	VoL	-10	0.0	0.1	V	$\mathrm{l}_{\text {ox }}=20 \mu \mathrm{~A}, \mathrm{~V}_{\text {Ix }}=\mathrm{V}_{\text {IxL }}$	
			0.2	0.4	V	$\mathrm{I}_{\mathrm{ox}}=3.2 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\mathrm{lxL}}$	
Input Current per Channel	1		+0.01	+10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{1 \mathrm{x}} \leq \mathrm{V}_{\mathrm{DDX}}$	
Supply Current per Channel							
Quiescent Input Supply Current	IDDİ()		0.3	0.5	mA	$V_{1 A}=V_{1 B}=0 \mathrm{~V}$	
Quiescent Output Supply Current	IdDo(e)		0.3		mA	$V_{1 A}=V^{1 B}=0 \mathrm{~V}$	
Dynamic Input Supply Current	IDDI(D)	0.10			mA/Mbps		
Dynamic Output Supply Current	Iddo(D)	0.03					
AC SPECIFICATIONS							
Common-Mode Transient Immunity ${ }^{1}$	\|CM		25	35			$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DDX}}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Rate	fr_{r}		1.1		Mbps		

[^1]
ADuM3200/ADuM3201

ELECTRICAL CHARACTERISTICS—MIXED 5 V/3.3 V, $\mathbf{1 0 5}^{\circ} \mathrm{C}$ OPERATION

All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=3.3 \mathrm{~V}$. Minimum/maximum specifications apply over the entire recommended operation range: $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V}$, and $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}$, unless otherwise noted. Switching specifications are tested with $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, and CMOS signal levels, unless otherwise noted.

Table 7.

Parameter	Symbol	A Grade			B Grade			C Grade			Unit	Test Conditions/Comments
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
SWITCHING SPECIFICATIONS												
Data Rate				1			10			25	Mbps	Within PWD limit
Propagation Delay	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	15		150	15		55	15		50	ns	50\% input to 50\% output
Pulse Width Distortion Change vs. Temperature	PWD		6	40		5	3		5	3	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{ps} /{ }^{\circ} \mathrm{C} \end{aligned}$	\|ttpL - ${ }_{\text {PHLL }}$ \|
Pulse Width	PW	1000			100			40			ns	Within PWD limit
Propagation Delay Skew	tPSK			50			22			15	ns	Between any two units
Channel Matching												
Codirectional	tpskci			50			3			3	ns	
Opposing-Direction	tPSKOD			50			22			15	ns	
Output Rise/Fall Time	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		3.0			3.0			3.0		ns	10\% to 90\%

Table 8.

Parameter	Symbol	1 Mbps-A Grade, B Grade, and C Grade			10 Mbps—B Grade and C Grade			25 Mbps-C Grade			Unit	Test Conditions/Comments
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
SUPPLY CURRENT												
ADuM3200	ldD 1		1.3	1.8		3.5	4.6		7.7	10.0	mA	No load
	IDD2		0.7	1.0		1.3	1.7		2.3	3.0	mA	No load
ADuM3201	$\mathrm{I}_{\mathrm{DD} 1}$		1.1	1.6		3.1	4.2		6.9	8.9	mA	No load
	IDD2		0.8	1.6		1.9	2.5		3.7	5.1	mA	No load

Table 9. For All Models

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments	
DC SPECIFICATIONS							
Logic High Input Threshold	$\mathrm{V}_{\text {IH }}$	$0.7 \mathrm{~V}_{\mathrm{DDx}}$			V		
Logic Low Input Threshold	$\mathrm{V}_{\text {IL }}$			0.3 $\mathrm{V}_{\mathrm{DDx}}$	V		
Logic High Output Voltages	$\mathrm{V}_{\text {OH }}$	$V_{\text {DDX }}-0.1$	$V_{\text {DDx }}$		V	$\mathrm{l}_{\mathrm{ox}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{lx}}=\mathrm{V}_{\text {lxH }}$	
		$V_{\text {DDx }}-0.5$	$V_{D D x}-0.2$		V	$\mathrm{loxx}=-3.2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{lx}}=\mathrm{V}_{\text {IxH }}$	
Logic Low Output Voltages	Vol		0.0	0.1	V	$\mathrm{l}_{\mathrm{lx}}=20 \mu \mathrm{~A}, \mathrm{~V}_{\text {Ix }}=\mathrm{V}_{\text {IxL }}$	
			0.2	0.4	V	$\mathrm{l}_{\mathrm{ox}}=3.2 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\mathrm{lxL}}$	
Input Current per Channel	1	-10	+0.01	+10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\text {IX }} \leq \mathrm{V}_{\mathrm{DDX}}$	
Supply Current per Channel							
Quiescent Input Supply Current	IDDI(Q)		0.4	0.8	mA	$\mathrm{V}_{1 \mathrm{~A}}=\mathrm{V}_{1 \mathrm{~B}}=0 \mathrm{~V}$	
Quiescent Output Supply Current	IDDo(Q)		0.3	0.5	mA	$\mathrm{V}_{1 \mathrm{~A}}=\mathrm{V}_{\mathrm{B}}=0 \mathrm{~V}$	
Dynamic Input Supply Current	IDDI(D)		0.19		mA/Mbps		
Dynamic Output Supply Current	$\mathrm{IDDO}(\mathrm{D})$		0.03		mA/Mbps		
AC SPECIFICATIONS							
Common-Mode Transient Immunity ${ }^{1}$	\|CM		25	35			$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DDX}}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Rate	fr_{r}		1.2		Mbps		

[^2]
ELECTRICAL CHARACTERISTICS—MIXED $3.3 \mathrm{~V} / 5 \mathrm{~V}, 105^{\circ} \mathrm{C}$ OPERATION

All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=5.0 \mathrm{~V}$. Minimum/maximum specifications apply over the entire recommended operation range: $3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$, and $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}$, unless otherwise noted. Switching specifications are tested with $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and CMOS signal levels, unless otherwise noted.

Table 10.

Parameter	Symbol	A Grade			B Grade			C Grade			Unit	Test Conditions/Comments
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
SWITCHING SPECIFICATIONS	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {pLH }}$ PWD	15	6	$\begin{aligned} & 1 \\ & 150 \end{aligned}$	15	5	1055	15	5	$\begin{aligned} & 25 \\ & 50 \end{aligned}$	Mbps ns	Within PWD limit 50% input to 50% output
Data Rate												
Propagation Delay												
Pulse Width Distortion												
ADuM3200				40			3			3	ns	$\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|$
ADuM3201				40			4			4	ns	$\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHLL }}\right\|$
Change vs. Temperature		1000			100			40			$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	
Pulse Width	PW										ns	Within PWD limit
Propagation Delay Skew	$\mathrm{t}_{\text {PSK }}$			50			22			15	ns	Between any two units
Channel Matching												
Codirectional	tPSkco			50			3			3	ns	
Opposing-Direction	tpskod			50			22			15	ns	
Output Rise/Fall Time	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		2.5			2.5			2.5		ns	10\% to 90\%

Table 11.

Parameter	Symbol	1 Mbps-A Grade, B Grade, and C Grade			10 Mbps—B Grade and C Grade			25 Mbps-C Grade			Unit	Test Conditions/Comments
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
SUPPLY CURRENT												
ADuM3200	IDD1		0.8	1.3		2.2	3.2		4.8	6.4	mA	No load
	IDD2		1.0	1.6		2.0	2.8		3.8	4.9	mA	No load
ADuM3201	ldD1		0.7	1.3		1.9	2.5		4.1	5.3	mA	No load
	IDD2		1.3	1.9		3.1	4.0		6.1	8.3	mA	No load

Table 12. For All Models

[^3]
ADuM3200/ADuM3201

ELECTRICAL CHARACTERISTICS-5 V, $125^{\circ} \mathrm{C}$ OPERATION

All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=5 \mathrm{~V}$. Minimum/maximum specifications apply over the entire recommended operation range: $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$, and $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, unless otherwise noted. Switching specifications are tested with $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and CMOS signal levels, unless otherwise noted.

Table 13.

Parameter	Symbol	WA Grade			WB Grade			WC Grade			Unit	Test Conditions/Comments
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
SWITCHING SPECIFICATIONS												
Data Rate				1			10			25	Mbps	Within PWD limit
Propagation Delay	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	20		150	20		50	20		45	ns	50\% input to 50\% output
Pulse Width Distortion Change vs. Temperature	PWD		6	40		5	3		5	3	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{ps} /{ }^{\circ} \mathrm{C} \end{aligned}$	\|ttpL - ${ }_{\text {PHLL }}$ \|
Pulse Width	PW	1000			100			40			ns	Within PWD limit
Propagation Delay Skew	tpsk			100			15			15	ns	Between any two units
Channel Matching												
Codirectional	tpskci			50			3			3	ns	
Opposing-Direction	tPSKOD			50			15			15	ns	
Output Rise/Fall Time	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		2.5			2.5			2.5		ns	10\% to 90\%

Table 14.

Parameter	Symbol	1 Mbps-WA Grade, WB Grade, and WC Grade			10 Mbps-WB Grade and WC Grade			$25 \text { Mbps-WC }$			Unit	Test Conditions/ Comments
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
SUPPLY CURRENT												
ADuM3201	IDD1		1.3	2.0		3.5	4.6		7.7	10.0	mA	No load
	IDD2		1.0	1.6		1.7	2.8		3.1	3.9	mA	No load
	ldD1		1.1	1.5		2.6	3.4		5.3	6.8	mA	No load
			1.3	1.8		3.1	4.0			8.3	mA	No load

Table 15. For All Models

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments	
DC SPECIFICATIONS							
Logic High Input Threshold	$\mathrm{V}_{\text {IH }}$	0.7 $\mathrm{V}_{\text {DDx }}$			V		
Logic Low Input Threshold	V_{IL}			0.3 $\mathrm{V}_{\mathrm{DDx}}$	V		
Logic High Output Voltages	Vor	$V_{\text {DDx }}-0.1$	$V_{\text {DDx }}$		V	$\mathrm{l}_{\text {Ox }}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {lxH }}$	
		$V_{D D x}-0.5$	$V_{D D x}-0.2$		V	$\mathrm{l}_{\mathrm{ox}}=-3.2 \mathrm{~mA}, \mathrm{~V}_{\text {lx }}=\mathrm{V}_{\text {IxH }}$	
Logic Low Output Voltages	Voı		0.0	0.1	V	$\mathrm{l}_{\text {lox }}=20 \mu \mathrm{~A}, \mathrm{~V}_{\text {Ix }}=\mathrm{V}_{\text {IxL }}$	
			0.2	0.4	V	$\mathrm{I}_{\mathrm{ox}}=3.2 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {IxL }}$	
Input Current per Channel	1	-10	+0.01	+10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{1 \mathrm{x}} \leq \mathrm{V}_{\mathrm{DDX}}$	
Supply Current per Channel							
Quiescent Input Supply Current	IDDİ()		0.4	0.8	mA	$V_{1 A}=V^{1 B}$ = 0 V	
Quiescent Output Supply Current	$\mathrm{I}_{\text {DDO(Q) }}$		0.5	0.6	mA	$V^{1 A}=V^{1 B}=0 \mathrm{~V}$	
Dynamic Input Supply Current	$\mathrm{I}_{\mathrm{DD}(\mathrm{D})}$		0.19		mA/Mbps		
Dynamic Output Supply Current	IDDo(D)		0.05		mA/Mbps		
AC SPECIFICATIONS							
Common-Mode Transient Immunity ${ }^{1}$	\|CM		25	35			$\begin{aligned} & V_{\text {IX }}=\mathrm{V}_{\text {DDX }}, \mathrm{V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Rate	$\mathrm{fr}^{\text {r }}$		1.2		Mbps		

[^4]
ELECTRICAL CHARACTERISTICS—3.3 V, $125^{\circ} \mathrm{C}$ OPERATION

All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=3.3 \mathrm{~V}$. Minimum/maximum specifications apply over the entire recommended operation range: $3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V}$, and $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, unless otherwise noted. Switching specifications are tested with $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and CMOS signal levels, unless otherwise noted.

Table 16.

Table 17.

Parameter	Symbol	1 Mbps-WA Grade, WB Grade, and WC Grade			10 Mbps-WB Grade and WC Grade			$25 \text { Mbps-WC }$			Unit	Test Conditions/ Comments
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
SUPPLY CURRENT												
ADuM3200	IDD1		0.8	1.3		2.0	3.2		4.3	6.4	mA	No load
ADuM3201	IDD2		0.7	1.0		1.1	1.7		1.8	2.4	mA	No load
	IDD1		0.7	1.3		1.5	2.1		3.0	4.2	mA	No load
	IDD2		0.8	1.6		1.9	2.4		3.6	5.1	mA	No load

Table 18. For All Models

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments	
DC SPECIFICATIONS							
Logic High Input Threshold	V_{IH}	0.7 $\mathrm{V}_{\mathrm{DDx}}$			V		
Logic Low Input Threshold	$\mathrm{V}_{\text {IL }}$			0.3 V VDx	V		
Logic High Output Voltages	Vor	$V_{\text {DDx }}-0.1$	$V_{\text {DDx }}$		V	$\mathrm{l}_{\mathrm{ox}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \times \mathrm{H}}$	
		$V_{\text {DDX }}-0.5$	$V_{D D x}-0.2$		V	$\mathrm{loxx}=-3.2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{lx}}=\mathrm{V}_{1 \mathrm{xH}}$	
Logic Low Output Voltages	VoL		0.0	0.1	V	$\mathrm{l}_{\mathrm{Ox}}=20 \mu \mathrm{~A}, \mathrm{~V}_{\text {Ix }}=\mathrm{V}_{\text {IxL }}$	
			0.2	0.4	V	$\mathrm{I}_{\text {ox }}=3.2 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {IxL }}$	
Input Current per Channel	II	-10	+0.01	+10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\text {Ix }} \leq \mathrm{V}_{\mathrm{DDX}}$	
Supply Current per Channel							
Quiescent Input Supply Current		IDDI(Q)		0.3	0.5	mA	$V^{1 A}$ = $V^{1 B}=0 \mathrm{~V}$
Quiescent Output Supply Current	IDDo(0)		0.3	0.5	mA	$\mathrm{V}_{1 A}=\mathrm{V}_{1 B}=0 \mathrm{~V}$	
Dynamic Input Supply Current	ldoli(${ }^{\text {d }}$		0.10		mA/Mbps		
Dynamic Output Supply Current	$\mathrm{IDDo}(\mathrm{D})$		0.03		mA/Mbps		
AC SPECIFICATIONS							
Common-Mode Transient Immunity ${ }^{1}$	\|CM		25	35			$\begin{aligned} & \mathrm{V}_{\text {Ix }}=\mathrm{V}_{\mathrm{DDX}}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Rate	fr_{r}		1.1		Mbps		

${ }^{1}|C M|$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD}}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

ADuM3200/ADuM3201

ELECTRICAL CHARACTERISTICS—MIXED 5 V/3.3 V, $125^{\circ} \mathrm{C}$ OPERATION

All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD1}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=3.3 \mathrm{~V}$. Minimum/maximum specifications apply over the entire recommended operation range: $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V}$, and $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, unless otherwise noted. Switching specifications are tested with $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and CMOS signal levels, unless otherwise noted.

Table 19.

Parameter	Symbol	WA Grade			WB Grade			WC Grade			Unit	Test Conditions/Comments
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
SWITCHING SPECIFICATIONS												
Data Rate				1			10			25	Mbps	Within PWD limit
Propagation Delay	$\mathrm{t}_{\text {PHL, }} \mathrm{tPLH}$	15		150	15		55	15		50	ns	50\% input to 50\% output
Pulse Width Distortion Change vs. Temperature	PWD		6	40		5	3		5	3	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{ps} /{ }^{\circ} \mathrm{C} \end{aligned}$	\|ttpL - ${ }_{\text {PHLL }}$ \|
Pulse Width	PW	1000			100			40			ns	Within PWD limit
Propagation Delay Skew	tpsk			50			22			15	ns	Between any two units
Channel Matching												
Codirectional	tpskci			50			3			3	ns	
Opposing-Direction	tPSKOD			50			22			15	ns	
Output Rise/Fall Time	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		3.0			3.0			3.0		ns	10\% to 90\%

Table 20.

Parameter	Symbol	1 Mbps-WA Grade, WB Grade, and WC Grade			10 Mbps-WB Grade and WC Grade			$25 \text { Mbps-WC }$			Unit	Test Conditions/ Comments
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
SUPPLY CURRENT												
ADuM3200	IDD1		1.3	2.0		3.5	4.6		7.7	10.0	mA	No load
	IDD2		0.7	1.0		1.1	1.7		1.8	2.4	mA	No load
ADuM3201	IDD1		1.1	1.5		2.6	3.4		5.3	6.8	mA	No load
	IDD2			1.6			2.4			5.1	mA	No load

Table 21. For All Models

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments	
DC SPECIFICATIONS							
Logic High Input Threshold	V_{H}	$0.7 \mathrm{~V}_{\mathrm{DDx}}$			V		
Logic Low Input Threshold	$\mathrm{V}_{\text {IL }}$			0.3 $\mathrm{V}_{\mathrm{DDx}}$	V		
Logic High Output Voltages	V OH	$V_{\text {DDx }}-0.1$	$V_{\text {DDx }}$		V	$\mathrm{l}_{\text {ox }}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {lxH }}$	
		$V_{D D x}-0.5$	$\mathrm{V}_{\text {DDx }}-0.2$		V	$\mathrm{l}_{\text {ox }}=-3.2 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \times \mathrm{H}}$	
Logic Low Output Voltages	Vol		0.0	0.1	V	$\mathrm{l}_{\text {ox }}=20 \mu \mathrm{~A}, \mathrm{~V}_{\text {lx }}=\mathrm{V}_{\text {lxL }}$	
			0.2	0.4	V	$\mathrm{l}_{\mathrm{ox}}=3.2 \mathrm{~mA}, \mathrm{~V}_{\text {lx }}=\mathrm{V}_{\text {lxL }}$	
Input Current per Channel	11	-10	+0.01	+10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\text {IX }} \leq \mathrm{V}_{\mathrm{DDX}}$	
Supply Current per Channel							
Quiescent Input Supply Current	IDDI(Q)		0.4	0.8	mA	$\mathrm{V}_{1 \mathrm{~A}}=\mathrm{V}_{1 \mathrm{~B}}=0 \mathrm{~V}$	
Quiescent Output Supply Current	IdDo(e)		0.3	0.5	mA	$\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}}=0 \mathrm{~V}$	
Dynamic Input Supply Current	IDD(D)		0.19		mA/Mbps		
Dynamic Output Supply Current	$\mathrm{I}_{\text {DDo(}}$ (0.03		mA/Mbps		
AC SPECIFICATIONS							
Common-Mode Transient Immunity ${ }^{1}$	\|CM		25	35			$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DDX}}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Rate	fr_{r}		1.2		Mbps		

[^5]
ELECTRICAL CHARACTERISTICS—MIXED $3.3 \mathrm{~V} / 5 \mathrm{~V}, 125^{\circ} \mathrm{C}$ OPERATION

All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=5.0 \mathrm{~V}$. Minimum/maximum specifications apply over the entire recommended operation range: $3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$, and $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, unless otherwise noted. Switching specifications are tested with $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and CMOS signal levels, unless otherwise noted.

Table 22.

Table 23.

Parameter	Symbol	1 Mbps-WA Grade, WB Grade, and WC Grade			10 Mbps-WB Grade and WC Grade			$25 \begin{gathered} \text { Mbps-WC } \\ \text { Grade } \end{gathered}$			Unit	Test Conditions/ Comments
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
SUPPLY CURRENT												
ADuM3200	IDD1		0.8	1.3		2.0	3.2		4.3	6.4	mA	No load
	$\mathrm{I}_{\mathrm{DD} 2}$		1.0	1.6		1.7	2.8		3.1	3.9	mA	No load
ADuM3201	IDD1		0.7	1.3		1.5	2.1		3.0	4.2	mA	No load
	IDD2		1.3	1.8		3.1	4.0		6.4	8.3	mA	No load

Table 24. For All Models

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments	
DC SPECIFICATIONS							
Logic High Input Threshold	$\mathrm{V}_{\text {IH }}$	0.7 $\mathrm{V}_{\mathrm{DDx}}$			V		
Logic Low Input Threshold	$\mathrm{V}_{\text {IL }}$			0.3 $\mathrm{V}_{\mathrm{DDx}}$	V		
Logic High Output Voltages	Vor	$V_{\text {DDx }}-0.1$	$V_{\text {DDx }}$		V	$\mathrm{l}_{\mathrm{ox}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \mathrm{lX}}$	
		$V_{\text {DDX }}-0.5$	$V_{D D x}-0.2$		V	$\mathrm{l}_{\mathrm{ox}}=-3.2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{lx}}=\mathrm{V}_{\text {lxH }}$	
Logic Low Output Voltages	VoL	-10	0.0	0.1	V	$\mathrm{l}_{\mathrm{Ox}}=20 \mu \mathrm{~A}, \mathrm{~V}_{\text {Ix }}=\mathrm{V}_{\text {IxL }}$	
			0.2	0.4	V	$\mathrm{Iox}=3.2 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\mathrm{IxL}}$	
Input Current per Channel	II		+0.01	+10	$\mu \mathrm{A}$	$\mathrm{OV} \leq \mathrm{V}_{\text {IX }} \leq \mathrm{V}_{\text {DDX }}$	
Supply Current per Channel							
Quiescent Input Supply Current	IDDI(Q)		0.3	0.5	mA	$\mathrm{V}_{\mathrm{IA}}=\mathrm{V}_{\mathrm{IB}}=0 \mathrm{~V}$	
Quiescent Output Supply Current	IdDo(e)		0.5	0.6	mA	$\mathrm{V}_{1 \mathrm{~A}}=\mathrm{V}_{\mathrm{B}}=0 \mathrm{~V}$	
Dynamic Input Supply Current	IDDI(D)		0.10		mA/Mbps		
Dynamic Output Supply Current	$\mathrm{I}_{\text {DDo(})^{\prime}}$		0.05		mA/Mbps		
AC SPECIFICATIONS							
Common-Mode Transient Immunity ${ }^{1}$	\|CM		25	35			$\begin{aligned} & \mathrm{V}_{I x}=\mathrm{V}_{\mathrm{DDX}}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Rate	fr_{r}		1.1		Mbps		

[^6]
ADuM3200/ADuM3201

PACKAGE CHARACTERISTICS

Table 25.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
Resistance (Input to Output) ${ }^{1}$	R-o		10^{12}		Ω	
Capacitance (Input to Output) ${ }^{1}$	Cloo		1.0		pF	$\mathrm{f}=1 \mathrm{MHz}$
Input Capacitance	Cl_{1}		4.0		pF	
IC Junction-to-Case Thermal Resistance, Side 1	θ_{JcI}		46		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Thermocouple located at center of package underside
IC Junction-to-Case Thermal Resistance, Side 2	$\theta_{\text {Jсо }}$		41		${ }^{\circ} \mathrm{C} / \mathrm{W}$	

${ }^{1}$ The device is considered a 2-terminal device; Pin 1, Pin 2, Pin 3, and Pin 4 are shorted together, and Pin 5, Pin 6, Pin 7, and Pin 8 are shorted together.

REGULATORY INFORMATION

The ADuM3200/ADuM3201 devices are approved by the organizations listed in Table 26. Refer to Table 31 and the Insulation Lifetime section for details regarding recommended maximum working voltages for specific cross-isolation waveforms and insulation levels.

Table 26.

UL	CSA	CQC	VDE
Recognized Under UL 1577 Component Recognition Program ${ }^{1}$	Approved under CSA Component Acceptance Notice 5A	Approved under CQC11-471543-2012	Certified according to DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12 ${ }^{2}$
Single/Basic 2500 V rms Isolation Voltage	Basic insulation per CSA 60950-1-03 and IEC 60950-1, 400 V rms (566 V peak) maximum working voltage, functional insulation per CSA 60950-1-03 and IEC 60950-1, 800 V rms (1131 V peak) maximum working voltage	Basic insulation per GB4943.1-2011, 400 V rms (588 V peak) maximum working voltage, tropical climate, altitude ≤ 5000 meters	Reinforced insulation, 560 V peak
File E214100	File 205078	File CQC14001117250	File 2471900-4880-0001

${ }^{1}$ In accordance with UL 1577 , each ADuM3200/ADuM3201 is proof-tested by applying an insulation test voltage $\geq 3000 \mathrm{~V}$ rms for 1 second (current leakage detection limit $=5 \mu \mathrm{~A}$).
${ }^{2}$ In accordance with DIN V VDE V 0884-10, each ADuM3200/ADuM3201 is proof-tested by applying an insulation test voltage $\geq 1050 \mathrm{~V}$ peak for 1 second (partial discharge detection limit $=5 \mathrm{pC}$). An asterisk (*) marking branded on the component designates DIN V VDE V 0884-10 approval.

INSULATION AND SAFETY-RELATED SPECIFICATIONS

Table 27.

Parameter	Symbol	Value	Unit	Test Conditions/Comments
Rated Dielectric Insulation Voltage	L(I01)	2500	4.90 min	Vm
Minimum External Air Gap (Clearance)	L(I02)	4.01 min	mm	1-minute duration Measured from input terminals to output terminals, shortest distance through air Measured from input terminals to output terminals, shortest distance path along body
Minimum External Tracking (Creepage)		0.017 min	mm	Insulation distance through insulation MIN IEC 112/VDE 0303 Part 1
Minimum Internal Gap (Internal Clearance) Tracking Resistance (Comparative Tracking Index) Isolation Group	CTI	>400	V	Daterial Group (DIN VDE 0110, 1/89, Table 1)

DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS

These isolators are suitable for reinforced isolation only within the safety limit data. Maintenance of the safety data is ensured by protective circuits. The asterisk ${ }^{(*)}$ marking on the package denotes DIN V VDE V 0884-10 approval for a 560 V peak working voltage.

Table 28.

Description	Test Conditions/Comments	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110				
For Rated Mains Voltage $\leq 150 \mathrm{~V}$ rms			It I IV	
For Rated Mains Voltage $\leq 300 \mathrm{~V}$ rms			I to III	
For Rated Mains Voltage $\leq 400 \mathrm{~V}$ rms			I to II	
Climatic Classification			40/105/21	
Pollution Degree per DIN VDE 0110, Table 1			2	
Maximum Working Insulation Voltage		VIorm	560	\checkmark peak
Input-to-Output Test Voltage, Method B1	$V_{\text {IORM }} \times 1.875=V_{\text {PR, }}, 100 \%$ production test, $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	1050	\checkmark peak
Input-to-Output Test Voltage, Method A	$\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\text {PR, }} \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$		
After Environmental Tests Subgroup 1			896	\checkmark peak
After Input and/or Safety Test Subgroup 2 and Subgroup 3	$\mathrm{V}_{\text {IORM }} \times 1.2=\mathrm{V}_{\text {PR, }} \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$		672	\checkmark peak
Highest Allowable Overvoltage	Transient overvoltage, $\mathrm{t}_{\mathrm{T}}=10$ seconds	$V_{\text {TR }}$	4000	\checkmark peak
Safety-Limiting Values	Maximum value allowed in the event of a failure (see Figure 3)			
Case Temperature		Ts	150	${ }^{\circ} \mathrm{C}$
Side 1 Current		Is 1	160	mA
Side 2 Current		IS2	170	mA
Insulation Resistance at T_{5}	$\mathrm{V}_{10}=500 \mathrm{~V}$	Rs	$>10^{9}$	Ω

Figure 3. Thermal Derating Curve, Dependence of Safety-Limiting Values on Case Temperature, per DIN V VDE V 0884-10

RECOMMENDED OPERATING CONDITIONS

Table 29.

Parameter	Symbol	Min	Max	Unit
Operating Temperature	T_{A}			
ADuM3200A/ADuM3201A		-40	+105	${ }^{\circ} \mathrm{C}$
ADuM3200B/ADuM3201B		-40	+105	${ }^{\circ} \mathrm{C}$
ADuM3200C/ADuM3201C		-40	+105	${ }^{\circ} \mathrm{C}$
ADuM3200WA/ADuM3201WA		-40	+125	${ }^{\circ} \mathrm{C}$
ADuM3200WB/ADuM3201WB		-40	+125	${ }^{\circ} \mathrm{C}$
ADuM3200WC/ADuM3201WC		-40	+125	${ }^{\circ} \mathrm{C}$
Supply Voltages ${ }^{1}$				
ADuM3200A/ADuM3201A		3.0	5.5	V
ADuM3200B/ADuM3201B		3.0	5.5	V
ADuM3200C/ADuM3201C		3.0	5.5	V
ADuM3200WA/ADuM3201WA		3.0	5.5	V
ADuM3200WB/ADuM3201WB		3.0	5.5	V
ADuM3200WC/ADuM3201WC		3.0	5.5	V
Maximum Input Signal Rise and			1.0	ms
Fall Times				

[^7]
ADuM3200/ADuM3201

ABSOLUTE MAXIMUM RATINGS

Ambient temperature $=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 30.

Parameter	Rating
Storage Temperature ($\mathrm{T}_{\text {st }}$)	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Operating Temperature (T_{A})	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltages ($\left.\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}\right)^{1}$	-0.5 V to +7.0 V
Input Voltage ($\left.\mathrm{V}_{1 \text { A }}, \mathrm{V}_{1 B}\right)^{1,2}$	-0.5 V to $\mathrm{V}_{\mathrm{DDI}}+0.5 \mathrm{~V}$
Output Voltage ($\left.\mathrm{V}_{\text {OA, }} \mathrm{V}_{\text {Ob }}\right)^{1,2}$	-0.5 V to $\mathrm{V}_{\text {DDO }}+0.5 \mathrm{~V}$
Average Output Current, per Pin (lo) ${ }^{3}$	-22 mA to +22 mA
Common-Mode Transients $\left(\mathrm{CM}_{\mathrm{L}}, \mathrm{CM}_{\mathrm{H}}\right)^{4}$	$-100 \mathrm{kV} / \mu \mathrm{s}$ to $+100 \mathrm{kV} / \mu \mathrm{s}$
${ }^{1}$ All voltages are relative to their respective ground. ${ }^{2} V_{D D I}$ and $\mathrm{V}_{D D O}$ refer to the supply voltages on the input and output sides of a given channel, respectively. ${ }^{3}$ See Figure 3 for maximum rated current values for various temperatures. ${ }^{4}$ Refers to common-mode transients across the insulation barrier. Commonmode transients exceeding the Absolute Maximum Ratings can cause latch-up or permanent damage.	

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Table 31. Maximum Continuous Working Voltage ${ }^{1}$

Parameter	Max	Unit	Constraint
AC Voltage, Bipolar Waveform	565	V peak	50-year minimum lifetime
AC Voltage, Unipolar Waveform			
\quad Functional Insulation	1131	V peak	Maximum approved working voltage per IEC 60950-1
\quad Basic Insulation	560	V peak	Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10
DC Voltage			
\quad Functional Insulation	1131	V peak	Maximum approved working voltage per IEC 60950-1
\quad Basic Insulation	560	V peak	Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10

${ }^{1}$ Refers to continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more details.
Table 32. ADuM3200 Truth Table (Positive Logic)

$\mathrm{V}_{\text {IA }}$ Input	$\mathrm{V}_{\text {IB }}$ Input	$\mathrm{V}_{\text {DD } 1}$ State	$\mathrm{V}_{\text {DD2 } 2}$ State	$\mathrm{V}_{\text {OA }}$ Output	V OB Output	Notes
H	H	Powered	Powered	H	H	
L	L	Powered	Powered	L	L	
H	L	Powered	Powered	H	L	
L	H	Powered	Powered	L	H	
X	X	Unpowered	Powered	H	H	Outputs return to the input state within $1 \mu \mathrm{~s}$ of $\mathrm{V}_{\text {DII }}$ power restoration.
X	x	Powered	Unpowered	Indeterminate	Indeterminate	Outputs return to the input state within $1 \mu \mathrm{~s}$ of $\mathrm{V}_{\text {DDo }}$ power restoration.

Table 33. ADuM3201 Truth Table (Positive Logic)

$\mathrm{V}_{\text {IA }}$ Input	$\mathrm{V}_{\text {IB }}$ Input	$\mathrm{V}_{\mathrm{DD} 1}$ State	$\mathrm{V}_{\mathrm{DD} 2}$ State	V OA Output	$\mathrm{V}_{\text {OB }}$ Output	Notes
H	H	Powered	Powered	H	H	
L	L	Powered	Powered	L	L	
H	L	Powered	Powered	H	L	
L	H	Powered	Powered	L	H	
X	X	Unpowered	Powered	Indeterminate	H	Outputs return to the input state within $1 \mu \mathrm{~s}$ of $\mathrm{V}_{\text {DII }}$ power restoration.
X	x	Powered	Unpowered	H	Indeterminate	Outputs return to the input state within $1 \mu \mathrm{~s}$ of $\mathrm{V}_{\text {DDo }}$ power restoration.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 4. ADuM3200 Pin Configuration
Table 34. ADuM3200 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	$V_{D D 1}$	Supply Voltage for Isolator Side 1.
2	$V_{I A}$	Logic Input A.
3	$\mathrm{~V}_{1 B}$	Logic Input B.
4	GND_{1}	Ground 1. Ground reference for Isolator Side 1.
5	GND_{2}	Ground 2. Ground reference for Isolator Side 2.
6	$\mathrm{~V}_{\mathrm{OB}}$	Logic Output B.
7	$\mathrm{~V}_{\mathrm{OA}}$	Logic Output A.
8	$\mathrm{~V}_{\mathrm{DD} 2}$	Supply Voltage for Isolator Side 2.

Figure 5. ADuM3201 Pin Configuration
Table 35. ADuM3201 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	$\mathrm{~V}_{\mathrm{DD1}}$	Supply Voltage for Isolator Side 1.
2	$\mathrm{~V}_{\mathrm{OA}}$	Logic Output A.
3	$\mathrm{~V}_{\mathrm{B}}$	Logic Input B.
4	GND_{1}	Ground 1. Ground reference for Isolator Side 1.
5	GND_{2}	Ground 2. Ground reference for Isolator Side 2.
6	$\mathrm{~V}_{\mathrm{OB}}$	Logic Output B.
7	$\mathrm{~V}_{\mathrm{IA}}$	Logic Input A.
8	$\mathrm{~V}_{\mathrm{DD} 2}$	Supply Voltage for Isolator Side 2.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 6. Typical Input Supply Current per Channel vs. Data Rate for 5 V and 3 V Operation

Figure 7. Typical Output Supply Current per Channel vs. Data Rate for 5 V and 3 V Operation (No Output Load)

Figure 8. Typical Output Supply Current per Channel vs. Data Rate for 5 V and 3 V Operation (15 pF Output Load)

Figure 9. Typical ADuM3200 IDD1 Supply Current vs. Data Rate for 5 V and 3 V Operation

Figure 10. Typical ADuM3200 IDD2 Supply Current vs. Data Rate for 5 V and 3 V Operation

Figure 11. Typical ADuM3201 IDD1 or $I_{D D 2}$ Supply Current vs. Data Rate for 5 V and 3 V Operation

APPLICATION INFORMATION

PC BOARD LAYOUT

The ADuM3200/ADuM3201 digital isolators require no external interface circuitry for the logic interfaces. Power supply bypassing is strongly recommended at the input and output supply pins. The capacitor value must be between $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$. The total lead length between both ends of the capacitor and the input power supply pin must not exceed 20 mm . See the AN-1109 Application Note for board layout guidelines.

SYSTEM-LEVEL ESD CONSIDERATIONS AND ENHANCEMENTS

System-level ESD reliability (for example, per IEC 61000-4-x) is highly dependent on system design which varies widely by application. The ADuM3200/ADuM3201 incorporate many enhancements to make ESD reliability less dependent on system design. The enhancements include:

- ESD protection cells added to all input/output interfaces.
- Key metal trace resistances reduced using wider geometry and paralleling of lines with vias.
- The SCR effect inherent in CMOS devices minimized by use of guarding and isolation technique between PMOS and NMOS devices.
- Areas of high electric field concentration eliminated using 45° corners on metal traces.
- Supply pin overvoltage prevented with larger ESD clamps between each supply pin and the respective ground.

While the ADuM3200/ADuM3201 improve system-level ESD reliability, they are no substitute for a robust system-level design. See the AN-793 Application Notes, ESD/Latch-Up Considerations with iCoupler Isolation Product, for detailed recommendations on board layout and system-level design.

PROPAGATION DELAY-RELATED PARAMETERS

Propagation delay is a parameter that describes the time it takes a logic signal to propagate through a component. The propagation delay to a logic low output can differ from the propagation delay to a logic high.

Figure 12. Propagation Delay Parameters
Pulse width distortion is the maximum difference between these two propagation delay values and is an indication of how accurately the input signal timing is preserved.

Channel-to-channel matching refers to the maximum amount that the propagation delay differs between channels within a single ADuM3200/ADuM3201 component.
Propagation delay skew refers to the maximum amount that the propagation delay differs between multiple ADuM3200/ ADuM3201 components operating under the same conditions.

DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY

Positive and negative logic transitions at the isolator input cause narrow ($\sim 1 \mathrm{~ns}$) pulses to be sent to the decoder via the transformer. The decoder is bistable and is therefore either set or reset by the pulses, indicating input logic transitions. In the absence of logic transitions of more than $\sim 1 \mu \mathrm{~s}$ at the input, a periodic set of refresh pulses indicative of the correct input state are sent to ensure dc correctness at the output. If the decoder receives no internal pulses for more than about 5μ s, the input side is assumed to be unpowered or nonfunctional, in which case, the isolator output is forced to a default state (see Table 32 and Table 33) by the watchdog timer circuit.
The ADuM3200/ADuM3201 are extremely immune to external magnetic fields. The limitation on the ADuM3200/ADuM3201 magnetic field immunity is set by the condition in which induced voltage in the transformer receiving coil is sufficiently large to either falsely set or reset the decoder. The following analysis defines the conditions under which this can occur. The 3 V operating condition of the ADuM3200/ADuM3201 is examined because it represents the most susceptible mode of operation.

The pulses at the transformer output have an amplitude greater than 1.0 V . The decoder has a sensing threshold at about 0.5 V , therefore establishing a 0.5 V margin in which induced voltages can be tolerated. The voltage induced across the receiving coil is given by

$$
V=(-d \beta / d t) \sum \pi r_{n}^{2}, n=1,2, \ldots, N
$$

where:
β is the magnetic flux density (gauss).
N is the number of turns in the receiving coil.
r_{n} is the radius of the nth turn in the receiving coil (cm).

Given the geometry of the receiving coil in the ADuM3200/ ADuM3201 and an imposed requirement that the induced voltage is at most 50% of the 0.5 V margin at the decoder, a maximum allowable magnetic field is calculated, as shown in Figure 13.

Figure 13. Maximum Allowable External Magnetic Flux Density
For example, at a magnetic field frequency of 1 MHz , the maximum allowable magnetic field of 0.2 kgauss induces a voltage of 0.25 V at the receiving coil. This is about 50% of the sensing threshold and does not cause a faulty output transition. Similarly, if such an event occurs during a transmitted pulse (and had the worst-case polarity), it reduces the received pulse from $>1.0 \mathrm{~V}$ to 0.75 V -still well above the 0.5 V sensing threshold of the decoder.

The preceding magnetic flux density values correspond to specific current magnitudes at given distances away from the ADuM3200/ADuM3201 transformers. Figure 14 expresses these allowable current magnitudes as a function of frequency for selected distances. As seen, the ADuM3200/ADuM3201 are extremely immune and can be affected only by extremely large currents operated at high frequency and very close to the component. For the 1 MHz example, one must place a 0.5 kA current 5 mm away from the ADuM3200/ADuM3201 to affect the component operation.

Figure 14. Maximum Allowable Current for Various Current-to-ADuM3200/ADuM3201 Spacings

Note that at combinations of strong magnetic fields and high frequencies, any loops formed by printed circuit board traces could induce sufficiently large error voltages to trigger the threshold of succeeding circuitry. Care must be taken in the layout of such traces to avoid this possibility.

POWER CONSUMPTION

The supply current at a given channel of the ADuM3200/ ADuM3201 isolator is a function of the supply voltage, the channel data rate, and the channel output load.

For each input channel, the supply current is given by

$$
\begin{array}{ll}
I_{D D I}=I_{D D I(Q)} & f \leq 0.5 f_{r} \\
I_{D D I}=I_{D D I}(D) \times\left(2 f-f_{r}\right)+I_{D D I(Q)} & f>0.5 f_{r}
\end{array}
$$

For each output channel, the supply current is given by

$$
\begin{array}{rr}
I_{D D O}=I_{D D O}(Q) & f \leq 0.5 f_{r} \\
I_{D D O}=\left(I_{D D O}(D)+\left(0.5 \times 10^{-3}\right) \times C_{L} V_{D D O}\right) \times\left(2 f-f_{r}\right)+I_{D D O}(Q) \\
& f>0.5 f_{r}
\end{array}
$$

where:
$I_{D D I(D)}, I_{D D O(D)}$ are the input and output dynamic supply currents per channel (mA/Mbps).
C_{L} is the output load capacitance (pF).
$V_{D D O}$ is the output supply voltage (V).
f is the input logic signal frequency (MHz , half of the input data rate, NRZ signaling).
f_{r} is the input stage refresh rate (Mbps).
$I_{D D I(Q),} I_{D D O(Q)}$ are the specified input and output quiescent supply currents (mA).
To calculate the total $\mathrm{I}_{\mathrm{DD} 1}$ and $\mathrm{I}_{\mathrm{DD} 2}$ supply current, the supply currents for each input and output channel corresponding to $\mathrm{I}_{\mathrm{DD} 1}$ and $\mathrm{I}_{\mathrm{DD} 2}$ are calculated and totaled. Figure 6 provides perchannel input supply currents as a function of data rate.

Figure 7 and Figure 8 provide per-channel output supply currents as a function of data rate for an unloaded output condition and for a 15 pF output condition, respectively. Figure 9 through Figure 11 provide total $I_{D D 1}$ and $I_{D D 2}$ supply current as a function of data rate for ADuM3200 and ADuM3201 channel configurations.

INSULATION LIFETIME

All insulation structures eventually break down when subjected to voltage stress over a sufficiently long period. The rate of insulation degradation depends upon the characteristics of the voltage waveform applied across the insulation. In addition to the testing performed by the regulatory agencies, Analog Devices carries out an extensive set of evaluations to determine the lifetime of the insulation structure within the ADuM3200/ADuM3201.

Analog Devices performs accelerated life testing using voltage levels higher than the rated continuous working voltage. Acceleration factors for several operating conditions are determined. These factors allow calculation of the time to failure at the actual working voltage.

The values shown in Table 31 summarize the peak voltage for 50 years of service life for a bipolar ac operating condition, and the maximum CSA/VDE approved working voltages. In many cases, the approved working voltage is higher than the 50 -year service life voltage. Operation at these high working voltages can lead to shortened insulation life.

The insulation lifetime of the ADuM3200/ADuM3201 depends on the voltage waveform type imposed across the isolation barrier. The iCoupler insulation structure degrades at different rates depending on whether the waveform is bipolar ac, unipolar ac, or dc. Figure 15, Figure 16, and Figure 17 illustrate these different isolation voltage waveforms.
A bipolar ac voltage environment is the most stringent. The goal of a 50 -year operating lifetime under the ac bipolar condition determines the Analog Devices recommended maximum working voltage.

In the case of unipolar ac or dc voltage, the stress on the insulation is significantly lower. This allows operation at higher working voltages while still achieving a 50 -year service life. The working voltages listed in Table 31 can be applied while maintaining the 50 -year minimum lifetime, provided that the voltage conforms to either the unipolar ac or dc voltage cases. Any cross-insulation voltage waveform that does not conform to Figure 16 or Figure 17 must be treated as a bipolar ac waveform and the peak voltage must be limited to the 50 -year lifetime voltage value listed in Table 31.

Note that the voltage presented in Figure 16 is shown as sinusoidal for illustration purposes only. It is meant to represent any voltage waveform varying between 0 V and some limiting value. The limiting value can be positive or negative, but the voltage cannot cross 0 V .
rated peak voltage

Figure 15. Bipolar AC Waveform
RATED PEAK VOLTAGE

Figure 16. Unipolar AC Waveform
RATED PEAK VOLTAGE

Figure 17. DC Waveform

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-012-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 18. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8)

ORDERING GUIDE

Model ${ }^{1,2}$	Number of Inputs, VDD1 Side	Number of Inputs, VDD2 Side	Maximum Data Rate (Mbps)	Maximum Propagation Delay, 5 V (ns)	Maximum Pulse Width Distortion (ns)	Temperature Range (${ }^{\circ} \mathrm{C}$)	Package Description	Package Option
ADuM3200ARZ	2	0	1	150	40	-40 to +105	8-Lead SOIC_N	R-8
ADuM3200ARZ-RL7	2	0	1	150	40	-40 to +105	8-Lead SOIC_N	R-8
ADuM3200BRZ	2	0	10	50	3	-40 to +105	8-Lead SOIC_N	R-8
ADuM3200BRZ-RL7	2	0	10	50	3	-40 to +105	8-Lead SOIC_N	R-8
ADuM3200CRZ	2	0	25	45	3	-40 to +105	8-Lead SOIC_N	R-8
ADuM3200CRZ-RL7	2	0	25	45	3	-40 to +105	8-Lead SOIC_N	R-8
ADuM3200WARZ	2	0	1	150	40	-40 to +125	8-Lead SOIC_N	R-8
ADuM3200WARZ-RL7	2	0	1	150	40	-40 to +125	8-Lead SOIC_N	R-8
ADuM3200WBRZ	2	0	10	50	3	-40 to +125	8-Lead SOIC_N	R-8
ADuM3200WBRZ-RL7	2	0	10	50	3	-40 to +125	8-Lead SOIC_N	R-8
ADuM3200WCRZ	2	0	25	45	3	-40 to +125	8-Lead SOIC_N	R-8
ADuM3200WCRZ-RL7	2	0	25	45	3	-40 to +125	8-Lead SOIC_N	R-8
ADuM3201ARZ	1	1	1	150	40	-40 to +105	8-Lead SOIC_N	R-8
ADuM3201ARZ-RL7	1	1	1	150	40	-40 to +105	8-Lead SOIC_N	R-8
ADuM3201BRZ	1	1	10	50	3	-40 to +105	8-Lead SOIC_N	R-8
ADuM3201BRZ-RL7	1	1	10	50	3	-40 to +105	8-Lead SOIC_N	R-8
ADuM3201CRZ	1	1	25	45	3	-40 to +105	8-Lead SOIC_N	R-8
ADuM3201CRZ-RL7	1	1	25	45	3	-40 to +105	8-Lead SOIC_N	R-8
ADuM3201WARZ	1	1	1	150	40	-40 to +125	8-Lead SOIC_N	R-8
ADuM3201WARZ-RL7	1	1	1	150	40	-40 to +125	8-Lead SOIC_N	R-8
ADuM3201WBRZ	1	1	10	50	3	-40 to +125	8-Lead SOIC_N	R-8
ADuM3201WBRZ-RL7	1	1	10	50	3	-40 to +125	8-Lead SOIC_N	R-8
ADuM3201WCRZ	1	1	25	45	3	-40 to +125	8-Lead SOIC_N	R-8
ADuM3201WCRZ-RL7	1	1	25	45	3	-40 to +125	8-Lead SOIC_N	R-8

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.
${ }^{2} \mathrm{~W}=$ Qualified for Automotive Applications.

AUTOMOTIVE PRODUCTS

The ADuM3200W/ADuM3201W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

ADuM3200/ADuM3201

NOTES
Data Sheet ADuM3200/ADuM3201

NOTES

NOTES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital Isolators category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
SI8380P-IUR NSI8120N1 NSI8021N1-DSPR IL260VE IL261-1E IL3485-3E IL514E IL515E IL611-1E IL612A-3E IL710S-1E IL711-1E IL711-2E IL721VE IL814TE ADN4652BRSZ-RL7 ADUM1447ARSZ ADUM1447ARSZ-RL7 ADUM230E1BRIZ-RL ISO7820DW ISO7341CDW ISO7330FCQDWRQ1 ADUM1440ARSZ ADUM1445ARSZ ADUM1246ARSZ-RL7 ADUM4150ARIZ-RL ADUM4150BRIZ-RL ADUM5211ARSZ-RL7 ISO7730DBQR IL3522E IL260E IL3085E IL3422-3E IL3585-3E IL510-1E IL610-1E IL611-2E IL613-3E IL710V-1E IL716-1E ISO7310FCQDRQ1 ISO7342CDWR ISO7810FDW ISO7820FDW IL611-3E ADN4655BRWZ ADUM1440ARSZ-RL7 ADUM3473ARSZ ADUM6210ARSZ ADUM3474ARSZ

[^0]: ${ }^{1}|C M|$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD}}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

[^1]: ${ }^{1}|C M|$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD}}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

[^2]: ${ }^{1}|C M|$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD}}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

[^3]: ${ }^{1}|C M|$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD}}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

[^4]: ${ }^{1}|C M|$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD}}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

[^5]: ${ }^{1}|C M|$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}$ DD. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

[^6]: ${ }^{1}|\mathrm{CM}|$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}>0.8 \mathrm{~V}_{\mathrm{DD}}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

[^7]: ${ }^{1}$ All voltages are relative to their respective ground. See the DC Correctness and Magnetic Field Immunity section for information on immunity to external magnetic fields.

