FEATURES

4 A peak output current
 Precise timing characteristics

60 ns maximum isolator and driver propagation delay
5 ns maximum channel to channel matching
High junction temperature operation: $125^{\circ} \mathrm{C}$
3.3 V to 5 V input logic
7.6 V to 18 V output drive

Undervoltage lockout (UVLO) at $7.0 \mathrm{~V}_{\mathrm{DD} 2}$
Thermal shutdown protection at $\mathbf{> 1 5 0}{ }^{\circ} \mathrm{C}$
Default low output
High frequency operation: dc to $\mathbf{1 ~ M H z}$
CMOS input logic levels
High common-mode transient immunity: $\mathbf{2 5}$ kV/ $\mu \mathrm{s}$
Safety and regulatory approvals
UL recognition
2500 V rms for 1 minute per UL 1577
CSA Component Acceptance Notice 5A (pending)
VDE certificate of conformity (pending)
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12
$\mathrm{V}_{\text {IORM }}=560 \mathrm{~V}$ peak
Small footprint and low profile
Narrow-body, RoHS compliant, 8-lead SOIC
$4.9 \mathrm{~mm} \times 6 \mathrm{~mm} \times 1.55 \mathrm{~mm}$

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC standard)
Military temperature range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Controlled manufacturing baseline
1 assembly/test site
1 fabrication site
Enhanced product change notification
Qualification data available on request

APPLICATIONS

Isolated synchronous dc-to-dc converters MOSFET/IGBT gate drivers

GENERAL DESCRIPTION

The ADuM3221-EP ${ }^{1}$ is an isolated, 4 A dual-channel gate driver based on the Analog Devices, Inc., iCoupler technology. Combining high speed CMOS and monolithic transformer technology, this isolation component provides outstanding performance characteristics superior to the alternatives, such as the combination of pulse transformers and gate drivers.

The ADuM3221-EP provides digital isolation in two independent isolation channels. It has a maximum propagation delay of 60 ns and 5 ns channel to channel matching. In comparison to gate drivers that employ high voltage level translation methodologies, the $\mathrm{ADuM} 3221-\mathrm{EP}$ offers the benefit of true, galvanic isolation between the input and each output, enabling voltage translation across the isolation barrier. The ADuM3221-EP allows both outputs to be on at the same time. This device offers a default output low characteristic as required for gate drive applications.

The ADuM3221-EP operates with an input supply voltage ranging from 3.0 V to 5.5 V , providing compatibility with lower voltage systems. The outputs of the ADuM3221-EP can be operated at supply voltages from 7.6 V to 18 V .
The junction temperature of the ADuM3221-EP is specified from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Additional application and technical information can be found in the ADuM3221 data sheet.

Figure 1.
${ }^{1}$ Protected by U.S. Patents 5,952,849; 6,873,065; 7,075,239.

TABLE OF CONTENTS

Features 1
Enhanced Product Features 1
Applications 1
General Description 1
Functional Block Diagram 1
Revision History 2
Specifications 3
Electrical Characteristics-5 V Operation. 3
Electrical Characteristics-3.3 V Operation 4
Package Characteristics 5
Regulatory Information 5
Insulation and Safety Related Specifications 5
DIN V VDE V 0884-10 (VDE V 0884-10) Insulation Characteristics6
Recommended Operating Conditions 6
Absolute Maximum Ratings 7
ESD Caution 7
Pin Configuration and Function Descriptions 8
Typical Performance Characteristics 9
Outline Dimensions 12
Ordering Guide 12

REVISION HISTORY

7/2016—Revision 0: Initial Version

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—5 V OPERATION

All voltages are relative to their respective ground. $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD1}} \leq 5.5 \mathrm{~V}, 7.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 18 \mathrm{~V}$, unless stated otherwise. All minimum/ maximum specifications apply over $\mathrm{T}_{\mathrm{J}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. All typical specifications are at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=10 \mathrm{~V}$. Switching specifications are tested with CMOS signal levels.

Table 1.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
DC SPECIFICATIONS						
Input Supply Current, Two Channels, Quiescent	$\mathrm{I}_{\text {DII(Q) }}$		1.2	1.5	mA	
Output Supply Current, Two Channels, Quiescent	$\mathrm{I}_{\text {DDO(0) }}$		4.7	10	mA	
Total Supply Current, Two Channels ${ }^{1}$ DC to 1 MHz						
$\mathrm{V}_{\text {DD } 1}$ Supply Current	$\mathrm{I}_{\text {D1(0) }}$		1.4	1.7	mA	DC to 1 MHz logic signal frequency
$\mathrm{V}_{\text {DD2 }}$ Supply Current	$\mathrm{I}_{\text {D22(O) }}$		11	17	mA	DC to 1 MHz logic signal frequency
Input Currents	$\mathrm{I}_{1 A} \mathrm{I}_{1 B}$	-10	+0.01	+10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\text {IA }} \mathrm{V}^{\text {IB }}$ $\leq \mathrm{V}_{\mathrm{DD} 1}$
Logic High Input Threshold	$\mathrm{V}_{\text {H }}$	$0.7 \times \mathrm{V}_{\text {DD } 1}$			V	
Logic Low Input Threshold	$\mathrm{V}_{\text {IL }}$			$0.3 \times \mathrm{V}_{\text {D } 1}$	V	
Logic High Output Voltages	$\mathrm{V}_{\text {OAH, }} \mathrm{V}_{\text {OBH }}$	$V_{\text {DD } 2}-0.1$	$\mathrm{V}_{\text {D } 2}$		V	$\mathrm{I}_{\mathrm{ox}}{ }^{2}=-20 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \times \mathrm{H}}{ }^{3}$
Logic Low Output Voltages	$\mathrm{V}_{\text {OAL }} \mathrm{V}_{\text {OBL }}$		0.0	0.15	V	$\mathrm{IOx}^{2}=+20 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {Ix }}{ }^{4}$
Undervoltage Lockout, $\mathrm{V}_{\mathrm{DD} 2}$ Supply						
Positive Going Threshold	$\mathrm{V}_{\text {DD2UV+ }}$		7.0	7.5	V	
Negative Going Threshold	$V_{\text {DDIUV- }}$	6.0	6.5		V	
Hysteresis	$\mathrm{V}_{\text {DD2UVH }}$		0.5		V	
Output Short-Circuit Pulsed Current ${ }^{5}$	$\mathrm{I}_{\text {OA(SC), }}, \mathrm{I}_{\text {OB(SC) }}$	2.0	4.0		A	$\mathrm{V}_{\mathrm{DD} 2}=10 \mathrm{~V}$
Output Pulsed Source Resistance	$\mathrm{R}_{\text {оА }}, \mathrm{R}_{\text {ов }}$	0.3	1.3	3.0	Ω	$V_{\text {DD2 } 2}=10 \mathrm{~V}$
Output Pulsed Sink Resistance	$\mathrm{R}_{\text {OA }}, \mathrm{R}_{\text {OB }}$	0.3	0.9	3.0	Ω	$\mathrm{V}_{\mathrm{DD} 2}=10 \mathrm{~V}$
SWITCHING SPECIFICATIONS						
Pulse Width ${ }^{6}$	PW	50			ns	$\mathrm{C}_{\mathrm{L}}=2 \mathrm{nF}, \mathrm{V}_{\mathrm{DD} 2}=10 \mathrm{~V}$
Data Rate ${ }^{7}$				1	MHz	$\mathrm{C}_{\mathrm{L}}=2 \mathrm{nF}, \mathrm{V}_{\mathrm{DD} 2}=10 \mathrm{~V}$
Propagation Delay ${ }^{8}$	$\mathrm{t}_{\text {DLH, }} \mathrm{t}_{\text {DHL }}$	35	45	60	ns	$\mathrm{C}_{\mathrm{L}}=2 \mathrm{nF}, \mathrm{V}_{\mathrm{DD} 2}=10 \mathrm{~V}$
	$\mathrm{t}_{\text {DLH, }} \mathrm{t}_{\text {DHL }}$	36	50	68	ns	$\mathrm{C}_{\mathrm{L}}=2 \mathrm{nF}, \mathrm{V}_{\mathrm{DD} 2}=7.6 \mathrm{~V}$
Propagation Delay Skew ${ }^{9}$	$\mathrm{t}_{\text {PSK }}$			12	ns	$\mathrm{C}_{\mathrm{L}}=2 \mathrm{nF}, \mathrm{V}_{\mathrm{DD} 2}=10 \mathrm{~V}$
Channel to Channel Matching ${ }^{10}$	$\mathrm{t}_{\text {PSKCD }}$		1	5	ns	$\mathrm{C}_{\mathrm{L}}=2 \mathrm{nF}, \mathrm{V}_{\mathrm{DD} 2}=10 \mathrm{~V}$
	$\mathrm{t}_{\text {PSkcD }}$		1	7	ns	$\mathrm{C}_{\mathrm{L}}=2 \mathrm{nF}, \mathrm{V}_{\mathrm{DD} 2}=7.6 \mathrm{~V}$
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$	14	20	25	ns	$\mathrm{C}_{\mathrm{L}}=2 \mathrm{nF}, \mathrm{V}_{\mathrm{DD} 2}=10 \mathrm{~V}$
Dynamic Input Supply Current per Channel	$\mathrm{I}_{\text {DIII }}$		0.05		mA/Mbps	$\mathrm{V}_{\text {D } 2}=10 \mathrm{~V}$
Dynamic Output Supply Current per Channel	$\mathrm{I}_{\text {DDO(D) }}$		1.5		mA/Mbps	$\mathrm{V}_{\mathrm{DD} 2}=10 \mathrm{~V}$
Refresh Rate	f_{r}		1.2		Mbps	

${ }^{1}$ The supply current values for both channels are combined when running at identical data rates. Output supply current values are specified with no output load present. See Figure 8 and Figure 9 for total $V_{D D 1}$ and $V_{D D 2}$ supply currents as a function of frequency.
${ }^{2} I_{0 x}$ is the Channel x output current, where $x=A$ or B.
${ }^{3} \mathrm{~V}_{\text {lxH }}$ is the input side logic high.
${ }^{4} \mathrm{~V}_{\text {IxL }}$ is the input side logic low.
${ }^{5}$ Short-circuit duration less than 1μ s. Average power must conform to the limit shown in the Absolute Maximum Ratings section.
${ }^{6}$ The minimum pulse width is the shortest pulse width at which the specified timing parameter is guaranteed.
${ }^{7}$ The maximum data rate is the fastest data rate at which the specified timing parameter is guaranteed.
${ }^{8} \mathrm{t}_{\mathrm{DLH}}$ propagation delay is measured from the time of the input rising logic high threshold, V_{H}, to the output rising 10% threshold of the V_{Ox} signal. $\mathrm{t}_{\mathrm{DHL}}$ propagation delay is measured from the input falling logic low threshold, V_{IL}, to the output falling 90% threshold of the $\mathrm{V}_{0 \mathrm{x}}$ signal.
${ }^{9} \mathrm{t}_{\mathrm{PSK}}$ is the magnitude of the worst case difference in $\mathrm{t}_{\mathrm{DLH}}$ and/or $\mathrm{t}_{\mathrm{DHL}}$ that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{10}$ Channel to channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier.

ELECTRICAL CHARACTERISTICS—3.3 V OPERATION

All voltages are relative to their respective ground. $3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 7.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 18 \mathrm{~V}$, unless stated otherwise. All minimum/ maximum specifications apply over $\mathrm{T}_{\mathrm{J}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. All typical specifications are at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=10 \mathrm{~V}$. Switching specifications are tested with CMOS signal levels.

Table 2.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
DC SPECIFICATIONS						
Input Supply Current, Two Channels, Quiescent	$\mathrm{I}_{\text {DII(Q) }}$		0.7	1.0	mA	
Output Supply Current, Two Channels, Quiescent	$\mathrm{I}_{\text {DDO(Q) }}$		4.7	10	mA	
Total Supply Current, Two Channels ${ }^{1}$						
DC to 1 MHz						
$\mathrm{V}_{\mathrm{DD} 1}$ Supply Current	$\mathrm{I}_{\mathrm{DD1} \text { (Q) }}$		0.8	1.0	mA	DC to 1 MHz logic signal frequency
$\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{I}_{\mathrm{DD} 2(\mathrm{Q})}$		11	17	mA	DC to 1 MHz logic signal frequency
Input Currents	$\mathrm{I}_{\text {IA }}, \mathrm{I}_{\text {IB }}$	-10	+0.01	+10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IA}}, \mathrm{V}_{\mathrm{IB}} \leq \mathrm{V}_{\mathrm{DD} 1}$
Logic High Input Threshold	V_{IH}	$0.7 \times \mathrm{V}_{\mathrm{DD} 1}$			V	
Logic Low Input Threshold	$\mathrm{V}_{\text {IL }}$			$0.3 \times \mathrm{V}_{\mathrm{DD} 1}$	V	
Logic High Output Voltages	$\mathrm{V}_{\text {OAH, }}, \mathrm{V}_{\text {OBH }}$	$V_{\text {DD2 } 2}-0.1$	$\mathrm{V}_{\mathrm{DD} 2}$		V	$\mathrm{I}_{\mathrm{Ox}}^{2}=-20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IxH}}{ }^{3}$
Logic Low Output Voltages	$\mathrm{V}_{\text {OAL }}, \mathrm{V}_{\text {OBL }}$		0.0	0.15	V	$\mathrm{I}_{\mathrm{Ox}}^{2}=+20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IXL}}{ }^{4}$
Undervoltage Lockout, $\mathrm{V}_{\mathrm{DD} 2}$ Supply ${ }^{\text {S }}$						
Positive Going Threshold	$\mathrm{V}_{\text {DD2UV+ }}$		7.0	7.5	V	
Negative Going Threshold	$V_{\text {DD2UV- }}$	6.0	6.5		V	
Hysteresis	$\mathrm{V}_{\text {DD2UVH }}$		0.5		V	
Output Short-Circuit Pulsed Current ${ }^{5}$	$\mathrm{I}_{\mathrm{OA}(\mathrm{SC})}, \mathrm{I}_{\mathrm{OB}(\mathrm{SC})}$	2.0	4.0		A	$\mathrm{V}_{\mathrm{DD} 2}=10 \mathrm{~V}$
Output Pulsed Source Resistance	$\mathrm{R}_{\text {OA }}, \mathrm{R}_{\text {OB }}$	0.3	1.3	3.0	Ω	$\mathrm{V}_{\mathrm{DD} 2}=10 \mathrm{~V}$
Output Pulsed Sink Resistance	$\mathrm{R}_{\text {OA }}, \mathrm{R}_{\text {OB }}$	0.3	0.9	3.0	Ω	$\mathrm{V}_{\mathrm{DD} 2}=10 \mathrm{~V}$
SWITCHING SPECIFICATIONS						
Pulse Width ${ }^{6}$	PW	50			ns	$\mathrm{C}_{\mathrm{L}}=2 \mathrm{nF}, \mathrm{V}_{\mathrm{DD} 2}=10 \mathrm{~V}$
Data Rate ${ }^{7}$				1	MHz	$\mathrm{C}_{\mathrm{L}}=2 \mathrm{nF}, \mathrm{V}_{\mathrm{DD} 2}=10 \mathrm{~V}$
Propagation Delay ${ }^{8}$	$\mathrm{t}_{\text {DLH, }}, \mathrm{t}_{\text {DHL }}$	36	48	62	ns	$\mathrm{C}_{\mathrm{L}}=2 \mathrm{nF}, \mathrm{V}_{\mathrm{DD} 2}=10 \mathrm{~V}$
	$\mathrm{t}_{\text {DLH, }}, \mathrm{t}_{\text {DHL }}$	37	53	72	ns	$\mathrm{C}_{\mathrm{L}}=2 \mathrm{nF}, \mathrm{V}_{\mathrm{DD} 2}=7.6 \mathrm{~V}$
Propagation Delay Skew ${ }^{9}$	$\mathrm{t}_{\text {PSK }}$			12	ns	$\mathrm{C}_{\mathrm{L}}=2 \mathrm{nF}, \mathrm{V}_{\mathrm{DD} 2}=10 \mathrm{~V}$
Channel to Channel Matching ${ }^{10}$	$\mathrm{t}_{\text {PSKCD }}$		1	5	ns	$\mathrm{C}_{\mathrm{L}}=2 \mathrm{nF}, \mathrm{V}_{\mathrm{DD} 2}=10 \mathrm{~V}$
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$	14	20	25	ns	$\mathrm{C}_{\mathrm{L}}=2 \mathrm{nF}, \mathrm{~V}_{\mathrm{DD} 2}=10 \mathrm{~V}$
	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$	14	22	28	ns	$\mathrm{C}_{\mathrm{L}}=2 \mathrm{nF}, \mathrm{V}_{\mathrm{DD} 2}=7.6 \mathrm{~V}$
Dynamic Input Supply Current per Channel	$\mathrm{I}_{\text {DIII }(\mathrm{D})}$		0.025		mA/Mbps	$\mathrm{V}_{\mathrm{DD} 2}=10 \mathrm{~V}$
Dynamic Output Supply Current per Channel	$\mathrm{I}_{\text {DDO(}{ }^{\text {(})}}$		1.5		mA/Mbps	$\mathrm{V}_{\mathrm{DD} 2}=10 \mathrm{~V}$
Refresh Rate	fr_{r}		1.1		Mbps	

${ }^{1}$ The supply current values for both channels are combined when running at identical data rates. Output supply current values are specified with no output load present. See Figure 8 and Figure 9 for total $\mathrm{V}_{\mathrm{DD} 1}$ and $\mathrm{V}_{\mathrm{DD} 2}$ supply currents as a function of frequency.
${ }^{2} I_{0 x}$ is the Channel x output current, where $\mathrm{x}=\mathrm{A}$ or B .
${ }^{3} \mathrm{~V}_{\text {IXH }}$ is the input side logic high.
${ }^{4} V_{\text {IxL }}$ is the input side logic low.
${ }^{5}$ Short-circuit duration less than $1 \mu \mathrm{~s}$. Average power must conform to the limit shown in the Absolute Maximum Ratings section.
${ }^{6}$ The minimum pulse width is the shortest pulse width at which the specified timing parameter is guaranteed.
${ }^{7}$ The maximum data rate is the fastest data rate at which the specified timing parameter is guaranteed.
${ }^{8} \mathrm{t}_{\text {DLH }}$ propagation delay is measured from the time of the input rising logic high threshold, $\mathrm{V}_{\mathbb{H}}$, to the output rising 10% threshold of the V_{Ox} signal. $\mathrm{t}_{\mathrm{DHL}}$ propagation delay is measured from the input falling logic low threshold, V_{Lt}, to the output falling 90% threshold of the $\mathrm{V}_{0 \mathrm{x}}$ signal.
${ }^{9} t_{\text {PSK }}$ is the magnitude of the worst case difference in $\mathrm{t}_{\mathrm{DLH}}$ and/or $\mathrm{t}_{\mathrm{DHL}}$ that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{10}$ Channel to channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier.

PACKAGE CHARACTERISTICS

Table 3.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
Resistance (Input to Output) ${ }^{1}$	$\mathrm{R}_{1-\mathrm{O}}$		10^{12}		Ω	
Capacitance (Input to Output) ${ }^{1}$	$\mathrm{C}_{1-\mathrm{O}}$		1.0		pF	$\mathrm{f}=1 \mathrm{MHz}$
Input Capacitance	C_{1}		4.0		pF	
IC Junction to Case Thermal Resistance, Side 1	θ_{JCl}		46		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Thermocouple located at center of package underside
IC Junction to Case Thermal Resistance, Side 2	$\theta_{\text {Jco }}$		41		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Thermocouple located at center of package underside
IC Junction to Ambient Thermal Resistance	θ_{JA}		85		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Thermocouple located at center of package underside

${ }^{1}$ The device is considered a 2-terminal device; Pin 1 through Pin 4 are shorted together, and Pin 5 through Pin 8 are shorted together.

REGULATORY INFORMATION

The ADuM3221-EP is approved by the organizations listed in Table 4.
Table 4.

UL	CSA (Pending)	VDE (Pending)
Recognized Under UL 1577 Component Recognition Program ${ }^{1}$	Approved under CSA Component Acceptance Notice 5A	Certified according to DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 ${ }^{2}$
Single/Basic 2500 V rms Isolation Voltage	Basic insulation per CSA 60950-1-03 and IEC 60950-1, 400 V rms (566 V peak) maximum working voltage Functional insulation per CSA 60950-1-03 and IEC 60950-1, 800 V rms (1131 V peak) maximum working voltage	Reinforced insulation, 560 V peak
File E214100	File 205078	File 2471900-4880-0001

${ }^{1}$ In accordance with UL 1577 , each ADuM3221-EP is proof tested by applying an insulation test voltage $\geq 3000 \mathrm{Vrms}$ for 1 second (current leakage detection limit $=5 \mu \mathrm{~A}$).
${ }^{2}$ In accordance with DIN V VDE V 0884-10, each ADuM3221-EP is proof tested by applying an insulation test voltage $\geq 1050 \mathrm{~V}$ peak for 1 second (partial discharge detection limit $=5 \mathrm{pC}$). An asterisk (*) marking branded on the component designates DIN V VDE V 0884-10 approval.

INSULATION AND SAFETY RELATED SPECIFICATIONS
Table 5.

Parameter	Symbol	Value	Unit	Test Conditions/Comments
Rated Dielectric Insulation Voltage		2500	V rms	1 minute duration
Minimum External Air Gap (Clearance)	L(101)	4.90 min	mm	Measured from input terminals to output terminals, shortest distance through air
Minimum External Tracking (Creepage)	L(102)	4.01 min	mm	Measured from input terminals to output terminals, shortest distance path along body
Minimum Internal Gap (Internal Clearance)		0.017 min	mm	Insulation distance through insulation
Tracking Resistance (Comparative Tracking Index) Isolation Group	CTI	$\begin{aligned} & >175 \\ & \text { Illa } \end{aligned}$	V	DIN IEC 112/VDE 0303 Part 1 Material Group (DIN VDE 0110, 1/89, Table 1)

DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS

These isolators are suitable for reinforced isolation only within the safety limit data. Maintenance of the safety data is ensured by protective circuits. The asterisk $\left(^{*}\right.$) marking on the package denotes DIN V VDE V 0884-10 approval for a 560 V peak working voltage.

Table 6.

Description	Test Conditions/Comments	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110				
For Rated Mains Voltage $\leq 150 \mathrm{~V}$ rms			I to IV	
For Rated Mains Voltage $\leq 300 \mathrm{~V}$ rms			I to III	
For Rated Mains Voltage $\leq 400 \mathrm{~V}$ rms			I to II	
Climatic Classification			40/105/21	
Pollution Degree per DIN VDE 0110, Table 1			2	
Maximum Working Insulation Voltage		$\mathrm{V}_{\text {IORM }}$	560	\checkmark peak
Input to Output Test Voltage, Method B1	$\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\text {PR, }}, 100 \%$ production test, $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$	$V_{P R}$	1050	\checkmark peak
Input to Output Test Voltage, Method A				
After Environmental Tests Subgroup 1	$\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\text {PR, }} \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	896	\checkmark peak
After Input and/or Safety Tests Subgroup 2 and Subgroup 3	$\mathrm{V}_{\text {IORM }} \times 1.2=\mathrm{V}_{\text {PR }}, \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	672	\checkmark peak
Highest Allowable Overvoltage	Transient overvoltage, $\mathrm{t}_{\mathrm{TR}}=10 \mathrm{sec}$	$\mathrm{V}_{\text {TR }}$	4000	\checkmark peak
Safety Limiting Values	Maximum value allowed in the event of a failure (see Figure 2)			
Case Temperature		T_{s}	150	${ }^{\circ} \mathrm{C}$
Side 1 Current		I_{51}	160	mA
Side 2 Current		$\mathrm{I}_{\mathrm{s} 2}$	47	mA
Insulation Resistance at T_{5}	$\mathrm{V}_{10}=500 \mathrm{~V}$	R_{S}	$>10^{9}$	Ω

Figure 2. Thermal Derating Curve; Dependence of Safety Limiting Values on Case Temperature, per DIN V VDE V 0884-10 (Safety Limiting Current Is Defined as the Average Current at Maximum $V_{D D}$)

RECOMMENDED OPERATING CONDITIONS

Table 7.

Parameter	Symbol	Min	Max	Unit
Operating Junction	T_{J}	-55	+125	${ }^{\circ} \mathrm{C}$
\quad Temperature				
Supply Voltages ${ }^{1}$	$\mathrm{~V}_{\mathrm{DD} 1}$	3.0	5.5	V
	$\mathrm{~V}_{\mathrm{DD} 2}$	7.6	18	V
$\mathrm{~V}_{\mathrm{DD} 1}$ Rise Time	$\mathrm{t}_{\mathrm{VDD} 1}$		1	$\mathrm{~V} / \mu \mathrm{s}$
Common-Mode Transient Immunity, Input to Output		-25	+25	$\mathrm{kV} / \mu \mathrm{s}$
Input Signal Rise and Fall \quad Times			1	ms

[^0]
ABSOLUTE MAXIMUM RATINGS

Ambient temperature $=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 8.

Parameter	Rating
Storage Temperature $\left(\mathrm{T}_{\mathrm{ST}}\right)$	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage Ranges ${ }^{1}$	
$\quad \mathrm{~V}_{\mathrm{DD} 1}$	-0.5 V to +7.0 V
$\mathrm{~V}_{\mathrm{DD} 2}$	-0.5 V to +20 V
Input Voltage Range $\left(\mathrm{V}_{\mathrm{IA}} \mathrm{V}_{\mathrm{IB}}\right)^{1,2}$	-0.5 V to $\mathrm{V}_{\mathrm{DDI}}+0.5 \mathrm{~V}$
Output Voltage Range $\left(\mathrm{V}_{\mathrm{O}} \mathrm{V}_{\mathrm{OB}}\right)^{1,2}$	-0.5 V to $\mathrm{V}_{\mathrm{DDO}}+0.5 \mathrm{~V}$
Average Output Current per Pin $\left(\mathrm{I}_{\mathrm{O}}\right)^{3}$	-23 mA to +23 mA
Common-Mode Transients, $\left(\mathrm{CM}_{\mathrm{H}^{\prime}} \mathrm{CM}_{\mathrm{L}}\right)^{4}$	$-100 \mathrm{kV} / \mu \mathrm{sto}+100 \mathrm{kV} / \mu \mathrm{s}$

${ }^{1}$ All voltages are relative to their respective ground.
${ }^{2} V_{D D I}$ and $V_{D D O}$ refer to the supply voltages on the input and output sides of a given channel, respectively.
${ }^{3}$ See Figure 2 for information about maximum allowable current for various temperatures.
${ }^{4}$ Refers to common-mode transients across the insulation barrier. Commonmode transients exceeding the Absolute Maximum Rating can cause latch-up or permanent damage.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Table 9. Maximum Continuous Working Voltage ${ }^{1}$

Parameter	Max	Unit	Constraint
AC Bipolar Voltage	565	V peak	50-year minimum lifetime
AC Unipolar Voltage	1131	V peak	50-year minimum lifetime
DC Voltage	1131	V peak	50-year minimum lifetime

${ }^{1}$ Refers to the continuous voltage magnitude imposed across the isolation barrier.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 10. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	$\mathrm{~V}_{\mathrm{DD} 1}$	Supply Voltage for Isolator Side $1,3.0 \mathrm{~V}$ to 5.5 V.
2	$\mathrm{~V}_{\mathrm{IA}}$	Logic Input A.
3	$\mathrm{~V}_{\mathrm{IB}}$	Logic Input B.
4	GND_{1}	Ground 1. GND_{1} is the ground reference for Isolator Side 1.
5	GND_{2}	Ground 2. GND_{2} is the g round reference for Isolator Side 2.
6	$\mathrm{~V}_{\mathrm{OB}}$	Logic Output B.
7	$\mathrm{~V}_{\mathrm{OA}}$	Logic Output A.
8	$\mathrm{~V}_{\mathrm{DD} 2}$	Supply Voltage for Isolator Side 2, 7.6 V to 18 V.

Table 11. Truth Table (Positive Logic)

$\mathrm{V}_{\text {IA }}$ Input	$V_{\text {IB }}$ Input	$\mathrm{V}_{\mathrm{DD} 1}$ State	$\mathrm{V}_{\mathrm{DD} 2}$ State	$\mathrm{V}_{\text {OA }}$ Output	$\mathrm{V}_{\text {OB }}$ Output	Notes
Low	Low	Powered	Powered	Low	Low	
Low	High	Powered	Powered	Low	High	
High	Low	Powered	Powered	High	Low	
High	High	Powered	Powered	High	High	
Don't care	Don't care	Unpowered	Powered	Low	Low	Outputs return to the input state within $1 \mu \mathrm{~s}$ of $\mathrm{V}_{\mathrm{DD} 1}$ power restoration.
Don't care	Don't care	Powered	Unpowered	Low	Low	Outputs return to the input state within 1μ of $V_{D D 2}$ power restoration.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Output Waveform for 2 nF Load with 10 V Output Supply

Figure 5. Output Waveform for 1 nF Load with 10 V Output Supply

Figure 6. Output Waveform for 1 nF Load with 5Ω Series Resistance and 10 V Output Supply

Figure 7. Maximum Load; Gate Charge vs. Switching Frequency $\left(R_{G A T E}=1 \Omega\right)$

Figure 8. IDD1 Current vs. Frequency

Figure 9. IDD2 Current vs. Frequency with 2 nF Load

Figure 10. Propagation Delay vs. Junction Temperature

Figure 11. Propagation Delay vs. Input Supply Voltage, $V_{D D 2}=10 \mathrm{~V}$

Figure 12. Propagation Delay vs. Output Supply Voltage, $V_{D D 1}=5 \mathrm{~V}$

Figure 13. Rise/Fall Time vs. Output Supply Voltage

Figure 14. Propagation Delay Channel to Channel Matching vs. Output Supply Voltage

Figure 15. Propagation Delay Channel to Channel Matching vs. Junction Temperature, $V_{D D 2}=10 \mathrm{~V}$

Figure 16. Output Source Resistance $\left(R_{\text {OUT }}\right)$ vs. Output Supply Voltage

Figure 17. Maximum Source/Sink Current vs. Output Supply Voltage

ADuM3221-EP

OUTLINE DIMENSIONS

ORDERING GUIDE

Model ${ }^{1}$	No. of Inputs, $\mathrm{V}_{\mathrm{DD} 1}$ Side	Maximum Data Rate (MHz)	Maximum Propagation Delay, 5 V (ns)	Minimum $\mathrm{V}_{\mathrm{DD} 2}$ Operating Voltage (V)	Junction Temperature Range	Package Description	Package Option
ADuM3221TRZ-EP	2	1	60	7.6	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
ADuM3221TRZ-EP-RL7	2	1	60	7.6	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8

${ }^{1} Z=$ RoHS Compliant Part.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Gate Drivers category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
$\underline{00053 \mathrm{P} 0231} 5695657.404 .7355 .5$ LT4936 57.904 .0755 .05882900001 00600P0005 00-9050-LRPP 00-9090-RDPP 5951900000 01-1003W-10/32-15 0131700000 00-2240 LTP70N06 LVP640 5J0-1000LG-SIL LY1D-2-5S-AC120 LY2-US-AC240 LY3-UA-DC24 00576P0020 00600P0010 LZN4-UA-DC12 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275RDNP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 0207100000 020740000060100564 $\underline{01312} \underline{0134220000} \underline{60713816} \underline{\mathrm{M} 15730061} \underline{61161-90} \underline{61278-0020}$ 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-218-17149P 6131-220-21149P 6131-260-2358P 6131-265-11149P

[^0]: ${ }^{1}$ All voltages are relative to their respective ground.

