Data Sheet

FEATURES

RoHS-compliant, 16-lead, QSOP package
Low power operation: 5 V
1.2 mA per channel maximum @ 0 Mbps to 2 Mbps
2.8 mA per channel maximum @ 10 Mbps

High temperature operation: $105^{\circ} \mathrm{C}$
Up to 10 Mbps data rate (NRZ)
Low default output state
1000 V rms isolation rating
Safety and regulatory approvals (pending)
UL recognition
1000 V rms for 1 minute per UL 1577

APPLICATIONS

General-purpose, unidirectional, multichannel isolation

GENERAL DESCRIPTION

The ADuM7510 ${ }^{1}$ is a unidirectional 5-channel isolator based on the Analog Devices, Inc., i Coupler technology. In contrast to the ADuM1510, the ADuM7510 has a lower isolation rating, offering a reduced cost option for applications that can accept a 1 kV ac isolation. Combining high speed CMOS and monolithic air core transformer technology, these isolation components provide outstanding performance characteristics superior to alternatives such as optocoupler devices.
By avoiding the use of LEDs and photodiodes, i Coupler devices eliminate the design difficulties commonly associated with optocouplers. The typical optocoupler concerns regarding uncertain current transfer ratios, nonlinear transfer functions, and temperature and lifetime effects are eliminated with the simple i Coupler digital

FUNCTIONAL BLOCK DIAGRAM

interfaces and stable performance characteristics. The need for external drivers and other discrete components is eliminated with these i Coupler products. Furthermore, i Coupler devices run at one-tenth to one-sixth the power consumption of optocouplers at comparable signal data rates.
The ADuM7510 isolator provides five independent isolation channels supporting data rates up to 10 Mbps . Each side operates with the supply voltage of 4.5 V to 5.5 V . Unlike other optocoupler alternatives, the ADuM7510 isolator has a patented refresh feature that ensures dc correctness in the absence of input logic transitions and during power-up/power-down conditions.

Rev. B

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©2010-2012 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications. 3
Electrical Characteristics-5 V Operation. 3
Package Characteristics 4
Insulation and Safety-Related Specifications 4
Recommended Operating Conditions 4
Regulatory Information 4
REVISION HISTORY
2/12-Rev. A to Rev. B
Created Hyperlink for Safety and Regulatory ApprovalsEntry in Features Section. 1
Change to Printed Circuit Board (PCB) Layout Section 8
Absolute Maximum Ratings 5
ESD Caution5
Pin Configuration and Function Descriptions 6
Typical Performance Characteristics 7
Applications Information 8
Printed Circuit Board (PCB) Layout 8
Propagation Delay-Related Parameters. 8
DC Correctness and Magnetic Field Immunity. 8
Power Consumption 9
Power-Up/Power-Down Considerations 9
Outline Dimensions 10
Ordering Guide 10

1/10-Revision A: Initial Version

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS— 5 V OPERATION

All voltages are relative to their respective ground. $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$; all minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted; all typical specifications are at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=5 \mathrm{~V}$.

Table 1.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
DC SPECIFICATIONS						
Input Quiescent Supply Current per Channel	$\mathrm{I}_{\mathrm{DII}}($ ()		0.4	0.7	mA	
Output Quiescent Supply Current per Channel	$\mathrm{I}_{\text {DDO (0) }}$		0.3	0.5	mA	
Total Supply Current, Five Channels ${ }^{1}$						
$\mathrm{V}_{\mathrm{DD} 1}$ Supply Current, Quiescent	$\mathrm{I}_{\mathrm{DD1} \text { (Q) }}$		2.0	3.5	mA	$\mathrm{V}_{\text {IA }}=\mathrm{V}_{\text {IB }}=\mathrm{V}_{\text {IC }}=\mathrm{V}_{\text {ID }}=\mathrm{V}_{\text {IE }}=0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{DD} 2}$ Supply Current, Quiescent	$\mathrm{I}_{\mathrm{DD2} 2}(\mathrm{Q})$		1.5	2.5	mA	$\mathrm{V}_{\text {IA }}=\mathrm{V}_{\text {IB }}=\mathrm{V}_{\text {IC }}=\mathrm{V}_{\text {ID }}=\mathrm{V}_{\text {IE }}=0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{DD1}}$ Supply Current, 10 Mbps Data Rate	$\mathrm{I}_{\mathrm{DD1}(10)}$		7.7	10	mA	5 MHz logic signal frequency
$\mathrm{V}_{\text {DD2 } 2}$ Supply Current, 10 Mbps Data Rate	$\mathrm{I}_{\mathrm{DD2} \text { (10) }}$		3.3	4.0	mA	5 MHz logic signal frequency
Input Currents		-10	+1	+10	$\mu \mathrm{A}$	$\mathrm{V}_{1 A}, \mathrm{~V}_{\text {IB }}, \mathrm{V}_{1 C}, \mathrm{~V}_{\text {ID }}, \mathrm{V}_{\text {IE }} \geq 0 \mathrm{~V}$
Logic High Input Threshold	V_{1+}			2.0	V	
Logic Low Input Threshold	$\mathrm{V}_{\text {IL }}$	0.8			V	
Logic High Output Voltages	$\mathrm{V}_{\text {OAH }}, \mathrm{V}_{\text {OBH }}$	$\mathrm{V}_{\mathrm{DD} 2}-0.4$	4.8		V	$\mathrm{I}_{\mathrm{ox}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{IH}}$
	$\begin{aligned} & \mathrm{V}_{\text {OCH, }} \mathrm{V}_{\text {ODH }} \\ & \mathrm{V}_{\text {OEH }} \end{aligned}$					
Logic Low Output Voltages	$\begin{aligned} & \mathrm{V}_{\mathrm{OAL}} \mathrm{~V}_{\mathrm{OBL}} \\ & \mathrm{~V}_{\mathrm{OCL}} \mathrm{~V}_{\mathrm{ODL}} \\ & \mathrm{~V}_{\mathrm{OEL}} \end{aligned}$		0.2	0.4	V	$\mathrm{I}_{\mathrm{Ox}}=+4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IL}}$
SWITCHING SPECIFICATIONS						
Minimum Pulse Width ${ }^{2}$	PW			100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Maximum Data Rate ${ }^{3}$		10			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Propagation Delay ${ }^{4}$	$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	20	27	40	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Pulse-Width Distortion, $\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|^{4}$	PWD			5	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Change vs. Temperature			5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay Skew ${ }^{5}$	$\mathrm{t}_{\text {PSK }}$			30	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching ${ }^{6}$	$\mathrm{t}_{\text {PSKCD }}$			5	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		2.5		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Common-Mode Transient Immunity at Logic High Output ${ }^{7}$	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	10	15		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DD} 1} / \mathrm{V}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Common-Mode Transient Immunity at Logic Low Output ${ }^{7}$	$\left\|\mathrm{CM}_{\mathrm{L}}\right\|$	10	15		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Rate	fr_{r}		1.2		Mbps	
Input Dynamic Supply Current per Channel ${ }^{8}$	$\mathrm{I}_{\text {DII (})^{\prime}}$		0.14		mA/Mbps	
Output Dynamic Supply Current per Channel ${ }^{8}$	$\mathrm{I}_{\mathrm{DDO}}^{(\mathrm{D})}$		0.045		mA/Mbps	

${ }^{1}$ Supply current values are for all five channels combined, running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel, operating at a given data rate, can be calculated as described in the Power Consumption section. See Figure 4 through Figure 6 for information on the per-channel supply current as a function of the data rate for unloaded and loaded conditions. See Figure 7 and Figure 8 for total $\mathrm{I}_{\mathrm{DD} 1}$ and $\mathrm{I}_{\mathrm{DD} 2}$ supply currents as a function of the data rate for the ADuM7510.
${ }^{2}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed. Operation below the minimum pulse width is not recommended.
${ }^{3}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
${ }^{4} t_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the $V_{\mid \times 1}$ signal to the 50% level of the falling edge of the $V_{\text {Ox }}$ signal. $t_{\text {PLH }}$ propagation delay is measured from the 50% level of the rising edge of the $V_{\text {Ix }}$ signal to the 50% level of the rising edge of the $V_{0 x}$ signal.
${ }^{5} t_{\text {PSK }}$ is the magnitude of the worst-case difference in $t_{\text {PHL }}$ and/or $t_{\text {PLH }}$ that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{6}$ Channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels within the same component.
${ }^{7} \mathrm{CM}_{H}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V} \times \mathrm{V}_{\mathrm{DD} 2}$. CM_{L} is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{8}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in the signal data rate. See Figure 4 through Figure 6 for information on the per-channel supply current as a function of the data rate for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a given data rate.

PACKAGE CHARACTERISTICS

Table 2.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
Resistance (Input-to-Output) ${ }^{1}$	$\mathrm{R}_{1-\mathrm{O}}$		10^{12}		Ω	
Capacitance (Input-to-Output) ${ }^{2}$	$\mathrm{C}_{1-\mathrm{O}}$		2.2		pF	$\mathrm{f}=1 \mathrm{MHz}$
Input Capacitance ${ }^{2}$	C_{1}		4.0		pF	
IC Junction-to-Ambient Thermal Resistance, QSOP	θ_{JA}		76		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Thermocouple located at center of package underside

${ }^{1}$ The device is considered a 2-terminal device. Pin 1 through Pin 8 are shorted together, and Pin 9 through Pin 16 are shorted together.
${ }^{2}$ Input capacitance is from any input data pin to ground.

INSULATION AND SAFETY-RELATED SPECIFICATIONS

Table 3.

Parameter	Symbol	Value	Unit	Test Conditions/Comments
Rated Dielectric Insulation Voltage	L(I01)	1000	V rms	1 minute duration
Minimum External Air Gap QSOP Package (Clearance)	mm	Measured from input terminals to output terminals, shortest distance through air		
Minimum External Tracking QSOP Package (Creepage)	L(IO2)	3.8 min	mm	Measured from input terminals to output terminals, shortest distance path along body
Tracking Resistance (Comparative Tracking Index)	CTI	>400	V	DIN IEC 112/VDE 0303 Part 1
Isolation Gaterial Group (DIN VDE 0110, 1/89, Table 1)				
Maximum Working Voltage Compatible with 50 Years Service Life	V $_{\text {IORM }}$	354	V peak	Continuous peak voltage across the isolation barrier

RECOMMENDED OPERATING CONDITIONS

All voltages are relative to their respective ground. See the DC Correctness and Magnetic Field Immunity section for information on immunity to external magnetic fields.

Table 4.

Parameter	Symbol	Min	Max	Unit
Operating Temperature	T_{A}	-40	+105	${ }^{\circ} \mathrm{C}$
Supply Voltages	$\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}$	4.5	5.5	V
Input Signal Rise and Fall Times			1.0	ms

REGULATORY INFORMATION

The ADuM7510 is approved by the organization listed in Table 5.
Table 5.

$$
\begin{aligned}
& \hline \text { UL (Pending) } \\
& \hline \text { Recognized under UL } 1577 \text { component recognition program }{ }^{1} \\
& \text { Single/basic insulation, } 1000 \mathrm{~V} \mathrm{rms} \text { isolation voltage } \\
& \text { File E214100 }
\end{aligned}
$$

[^0]
ABSOLUTE MAXIMUM RATINGS

Ambient temperature $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 6.

Parameter	Rating
Storage Temperature ($\mathrm{T}_{\text {ST }}$) Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Operating Temperature $\left(T_{A}\right)$ Range	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Supply Voltages ${ }^{1}\left(\mathrm{~V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}\right)$	-0.5 V to +7.0 V
Input Voltages ${ }^{1}$ $\left(V_{I A}, V_{I B}, V_{I C}, V_{I D}, V_{I E}\right)$	-0.5 V to $\mathrm{V}_{\mathrm{DDI}}+0.5 \mathrm{~V}$
Output Voltages ${ }^{1}$ $\left(\mathrm{V}_{O A}, \mathrm{~V}_{O B}, \mathrm{~V}_{O C}, \mathrm{~V}_{O D}, \mathrm{~V}_{O E}\right)$	-0.5 V to $\mathrm{V}_{\text {DDO }}+0.5 \mathrm{~V}$
Average Output Current per Pin ${ }^{2}$	
Side 1 (l_{01})	-10 mA to +10 mA
Side 2 (I_{02})	-10 mA to +10 mA
Common-Mode Transients ${ }^{3}$	$-100 \mathrm{kV} / \mu \mathrm{s}$ to $+100 \mathrm{kV} / \mu \mathrm{s}$

[^1]Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ADuM7510

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED. CONNECTING BOTH TO GND ${ }_{1}$ IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY CONNECTED. CONNECTING BOTH TO GND 2 IS RECOMMENDED.

Figure 2. Pin Configuration

Table 7. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	$\mathrm{V}_{\mathrm{DD} 1}$	Supply Voltage for Isolator Side 1 (4.5 V to 5.5 V).
2	GND_{1}	Ground 1. Ground reference for Isolator Side 1. Pin 2 and Pin 8 are internally connected, and connecting both to GND_{1} is recommended.
3	$\mathrm{V}_{\text {IA }}$	Logic Input A.
4	$V_{\text {IB }}$	Logic Input B.
5	$V_{\text {IC }}$	Logic Input C.
6	$V_{\text {ID }}$	Logic Input D.
7	$\mathrm{V}_{\text {IE }}$	Logic Input E.
8	GND ${ }_{1}$	Ground 1. Ground reference for Isolator Side 1. Pin 2 and Pin 8 are internally connected, and connecting both to GND_{1} is recommended.
9	GND_{2}	Ground 2. Ground reference for Isolator Side 2. Pin 9 and Pin 15 are internally connected, and connecting both to GND_{2} is recommended.
10	$\mathrm{V}_{\text {OE }}$	Logic Output E.
11	$\mathrm{V}_{\text {OD }}$	Logic Output D.
12	$\mathrm{V}_{\text {OC }}$	Logic Output C.
13	$\mathrm{V}_{\text {OB }}$	Logic Output B.
14	$\mathrm{V}_{\text {OA }}$	Logic Output A.
15	GND_{2}	Ground 2. Ground reference for Isolator Side 2. Pin 9 and Pin 15 are internally connected, and connecting both to GND_{2} is recommended.
16	$\mathrm{V}_{\mathrm{DD} 2}$	Supply Voltage for Isolator Side 2 (4.5 V to 5.5 V).

Table 8. Truth Table (Positive Logic)

$\begin{aligned} & V_{\text {Ix }} \\ & \text { Input }{ }^{1,2} \end{aligned}$	$\begin{array}{\|l\|} \hline \mathbf{V}_{\mathrm{DD} 1} \\ \text { State } \end{array}$	$\begin{array}{\|l\|} \hline \mathbf{V}_{\mathrm{DD} 2} \\ \text { State } \end{array}$	V_{ox} Output	Description
High	Powered	Powered	High	Normal operation, data is high.
Low	Powered	Powered	Low	Normal operation, data is low.
X	Unpowered	Powered	Low	Input unpowered. Outputs return to input state within $1 \mu \mathrm{~S}$ of $\mathrm{V}_{\mathrm{DD} 1}$ power restoration. See the Power-Up/Power-Down Considerations section for more details.
X	Powered	Unpowered	High-Z	Output unpowered. Output pins are in high impedance state. Outputs return to input state within $1 \mu \mathrm{~s}$ of $\mathrm{V}_{\mathrm{DD} 2}$ power restoration.

[^2]
TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. Thermal Derating Curve, Dependence of Safety-Limiting Values with Case Temperature per DIN V VDE V 0884-10

Figure 4. Typical I ID1 Supply Current per Channel vs. Data Rate

Figure 5. Typical IDD2 Supply Current per Channel vs. Data Rate (No Output Load)

Figure 6. Typical I DD2 Supply Current per Channel vs. Data Rate (15 pF Output Load)

Figure 7. Typical Total I ${ }_{D D 1}$ Supply Current vs. Data Rate

Figure 8. Typical Total I ${ }_{D D 2}$ Supply Current vs. Data Rate (15 pF Output Load)

APPLICATIONS INFORMATION

PRINTED CIRCUIT BOARD (PCB) LAYOUT

The ADuM7510 digital isolator requires no external interface circuitry for the logic interfaces. Power supply bypassing is strongly recommended at the input and output supply pins (see Figure 9). Bypass capacitors are most conveniently connected between Pin 1 and Pin 2 for $V_{D D 1}$ and between Pin 15 and Pin 16 for $V_{D D 2}$. The capacitor value should be between $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$. The total lead length between both ends of the capacitor and the input power supply pin should not exceed 10 mm . Bypassing between Pin 1 and Pin 8 and between Pin 9 and Pin 16 should also be considered unless the ground pair on each package side is connected close to the package.

Figure 9. Recommended PCB Layout
See the AN-1109 Application Note for board layout guidelines.

PROPAGATION DELAY-RELATED PARAMETERS

Propagation delay is a parameter that describes the length of time it takes for a logic signal to propagate through a component. The propagation delay to a logic low output can differ from the propagation delay to a logic high output.

Figure 10. Propagation Delay Parameters
Pulse width distortion is the maximum difference between these two propagation delay values and is an indication of how accurately the input signal timing is preserved.
Channel-to-channel matching refers to the maximum amount the propagation delay differs between channels within a single ADuM7510 component.
Propagation delay skew refers to the maximum amount the propagation delay differs among multiple ADuM7510 components operated under the same conditions.

DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY

Positive and negative logic transitions at the isolator input cause narrow ($\sim 1 \mathrm{~ns}$) pulses to be sent via the transformer to the decoder. The decoder is bistable and is, therefore, either set or reset by the pulses indicating input logic transitions. In the absence of logic transitions at the input for more than $\sim 1 \mu \mathrm{~s}$, a periodic set of refresh pulses indicative of the correct input state are sent to ensure dc correctness at the output.

If the decoder receives no pulses for more than about 5μ, the input side is assumed to be unpowered or nonfunctional, in which case, the isolator output is forced to a default low state by the watchdog timer circuit (see Table 8).
The limitation on the magnetic field immunity of the device is set by the condition in which induced voltage in the transformer receiving coil is sufficiently large to either falsely set or reset the decoder. The following analysis defines such conditions. The ADuM7510 is examined in a 4.5 V operating condition because it represents the most susceptible mode of operation of this product.
The pulses at the transformer output have an amplitude greater than 1.5 V . The decoder has a sensing threshold of about 1.0 V , thereby establishing a 0.5 V margin in which induced voltages can be tolerated. The voltage induced across the receiving coil is given by

$$
\mathrm{V}=(-d \beta / d t) \sum \Pi r_{n}^{2} ; n=1,2, \ldots, N
$$

where:
β is the magnetic flux density.
r_{n} is the radius of the $n^{\text {h }}$ turn in the receiving coil.
N is the number of turns in the receiving coil.
Given the geometry of the receiving coil in the ADuM7510 and an imposed requirement that the induced voltage be, at most, 50% of the 0.5 V margin at the decoder, a maximum allowable magnetic field is calculated, as shown in Figure 11.

Figure 11. Maximum Allowable External Magnetic Flux Density
For example, at a magnetic field frequency of 1 MHz , the maximum allowable magnetic field of 0.5 kgauss induces a voltage of 0.25 V at the receiving coil. This is about 50% of the sensing threshold and does not cause a faulty output transition. If such an event occurs with the worst-case polarity during a transmitted pulse, it reduces the received pulse from $>1.0 \mathrm{~V}$ to 0.75 V , still well above the 0.5 V sensing threshold of the decoder.

The preceding magnetic flux density values correspond to specific current magnitudes at given distances away from the ADuM7510 transformers. Figure 12 expresses these allowable current magnitudes as a function of frequency for selected distances. The ADuM7510 is very insensitive to external fields. Only extremely large, high frequency currents, very close to the component can potentially be a concern. For the 1 MHz example noted, a 1.2 kA current must be placed 5 mm away from the ADuM7510 to affect component operation.

Figure 12. Maximum Allowable Current for Various Current to ADuM7510 Spacings

Note that at combinations of strong magnetic field and high frequency, any loops formed by PCB traces can induce sufficiently large error voltages to trigger the thresholds of succeeding circuitry. Take care to avoid PCB structures that form loops.

POWER CONSUMPTION

The supply current at a given channel of the ADuM7510 isolator is a function of the supply voltage, the channel data rate, and the channel output load.
For each input channel, the supply current is given by

$$
\begin{array}{ll}
I_{D D I}=I_{D D I(Q)} & f \leq 0.5 f_{r} \\
I_{D D I}=I_{D D I(D)} \times\left(2 f-f_{r}\right)+I_{D D I}(Q) & f>0.5 f_{r}
\end{array}
$$

For each output channel, the supply current is given by

$$
\begin{array}{rr}
I_{D D O}=I_{D D O(Q)} & f \leq 0.5 f_{r} \\
I_{D D O}=\left(I_{D D O(D)}+\left(0.5 \times 10^{-3}\right) \times C_{L} \times V_{D D O}\right) \times\left(2 f-f_{r}\right)+I_{D D O(Q)} \\
& f \leq 0.5 f_{r}
\end{array}
$$

where:
$I_{D D I(D)}, I_{D D O(D)}$ are the input and output dynamic supply currents per channel (mA/Mbps).
C_{L} is the output load capacitance (pF).
$V_{D D O}$ is the output supply voltage (V).
f is the input logic signal frequency (MHz , half of the input data rate, NRZ signaling).
f_{r} is the input stage refresh rate (Mbps).
$I_{D D I(Q),} I_{D D O(Q)}$ are the specified input and output quiescent supply currents (mA).
To calculate the total $\mathrm{I}_{\mathrm{DD} 1}$ and $\mathrm{I}_{\mathrm{DD} 2}$ supply current, the supply currents for each input and output channel corresponding to IDD and $\mathrm{I}_{\mathrm{DD} 2}$ are calculated and totaled. Figure 4 and Figure 5 provide per-channel supply currents as a function of the data rate for an unloaded output condition. Figure 6 provides perchannel supply current as a function of the data rate for a 15 pF output condition. Figure 7 and Figure 8 provide total $I_{D D 1}$ and $\mathrm{I}_{\mathrm{DD} 2}$ supply current as a function of the data rate for ADuM7510 products.

POWER-UP/POWER-DOWN CONSIDERATIONS

The ADuM7510 behaves as specified in Table 8 during powerup and power-down operations. However, the part can transfer incorrect data when the power supplies are below the minimum operating voltage but the internal circuits are not completely off.
Power-up/power-down errors can occur at $V_{D D x}$ voltage near the operating threshold of 1.9 V . The encoder generates data pulses at low amplitude. The detector can miss data pulses that are near the detection threshold. If the transferring state is a logic high, the encoder generates a pair of pulses; the decoder can reject one of the pulses for low amplitude. A single pulse is interpreted as a logic low, and the output can be placed in the wrong logic state for that refresh cycle.
Glitch-free operation is possible by following these recommendations.

- Slew the power on or off as quickly as possible.
- Use the default low operating mode by holding the inputs low until power is stable.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-137-AB
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 13. 16-Lead Shrink Small Outline Package [QSOP] (RQ-16)
Dimensions shown in inches and (millimeters)

ORDERING GUIDE

	Number of Inputs, $\mathbf{V}_{\text {DD } 1}$ Side	Number of Inputs, $\mathbf{V}_{\text {DD2 }}$ Side	Maximum Data Rate	Maximum Propagation Melay, 5 V	Maximum Pulse Width Distortion	Temperature Range	Package Description
ADuM7510BRQZ	5	0	10 Mbps	40 ns	5 ns	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	$16-\mathrm{Lead} \mathrm{QSOP}$
Package							
Option							

[^3]${ }^{2}$ RL7 = 7" tape and reel option.
\square
Data Sheet ADuM7510

NOTES

NOTES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital Isolators category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
SI8380P-IUR IL3485-3E IL514E IL515E IL611-1E IL612A-3E IL711-1E IL711-2E IL721VE IL814TE ADN4652BRSZ-RL7 ADUM1441ARSZ ADUM1447ARSZ ADUM1447ARSZ-RL7 ADUM230D0BRIZ-RL ADUM230E1BRIZ-RL ISO7820DW ADUM1440ARSZ ADUM1445ARSZ ADUM1246ARSZ-RL7 ADUM231E0BRWZ-RL ADUM4150ARIZ-RL ADUM4150BRIZ-RL ADUM5211ARSZ-RL7 ISO7730DBQR IL3522E IL3422-3E IL510-1E IL610-1E IL611-2E IL613-3E IL716-1E ISO7342CDWR ISO7810FDW ISO7820FDW IL611-3E ADN4655BRWZ ADUM2211SRIZ-RL ADUM1440ARSZ-RL7 ADUM3471CRSZ-RL7 ADUM3473ARSZ ADUM6210ARSZ ADUM1446ARSZ-RL7 ADN4650BRWZ-RL7 ADUM7641ARQZ ADUM7643CRQZ ADUM7643CRQZ-RL7 ADM2582EBRWZ-REEL7 ADM2587EBRWZ-REEL7 ADM3251EARWZ

[^0]: ${ }^{1}$ In accordance with UL 1577 , each ADuM 7510 is proof tested by applying an insulation test voltage of 1200 V rms for 1 sec (current leakage detection limit $=5 \mu \mathrm{~A}$).

[^1]: ${ }^{1}$ All voltages are relative to their respective ground.
 ${ }^{2}$ See Figure 3 for maximum rated current values for various temperatures.
 ${ }^{3}$ Refers to common-mode transients across the insulation barrier. Commonmode transients exceeding the absolute maximum ratings may cause latchup or permanent damage.

[^2]: ${ }^{1} V_{1 x}$ and $V_{\text {ox }}$ refer to the input and output signals of a given channel (A, B, C, D, or E).
 ${ }^{2} \mathrm{X}=$ don't care.

[^3]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

