FEATURES

Low Offset Voltage: $100 \mu \mathrm{~V}$ max
Low Drift: $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max
Wide Gain Range: 1 to $\mathbf{1 0 , 0 0 0}$
High Common-Mode Rejection: 115 dB min
High Bandwidth (G = 1000): 200 kHz typ
Gain Equation Accuracy: 0.5\% max
Single Resistor Gain Set
Input Overvoltage Protection
Low Cost
Available in Die Form
APPLICATIONS
Differential Amplifier
Strain Gage Amplifier
Thermocouple Amplifier
RTD Amplifier
Programmable Gain Instrumentation Amplifier
Medical Instrumentation
Data Acquisition Systems

GENERAL DESCRIPTION

The AMP02 is the first precision instrumentation amplifier available in an 8-lead package. Gain of the AMP02 is set by a single external resistor and can range from 1 to 10,000 . No gain set resistor is required for unity gain. The AMP02 includes an input protection network that allows the inputs to be taken 60 V beyond either supply rail without damaging the device.
Laser trimming reduces the input offset voltage to under $100 \mu \mathrm{~V}$. Output offset voltage is below 4 mV , and gain accuracy is better than 0.5% for a gain of 1000 . ADI's proprietary thin-film resistor process keeps the gain temperature coefficient under $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

FUNCTIONAL BLOCK DIAGRAM

Figure 1. Basic Circuit Connections

Due to the AMP02's design, its bandwidth remains very high over a wide range of gain. Slew rate is over $4 \mathrm{~V} / \mathrm{\mu s}$, making the AMP02 ideal for fast data acquisition systems.
A reference pin is provided to allow the output to be referenced to an external dc level. This pin may be used for offset correction or level shifting as required. In the 8 -lead package, sense is internally connected to the output.
For an instrumentation amplifier with the highest precision, consult the AMP01 data sheet.

REV. E

Parameter	Symbol	Conditions	AMP02E			AMP02F			Unit
			Min	Typ	Max	Min	Typ	Max	
POWER SUPPLY									
Supply Voltage Range Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{S}} \\ & \mathrm{I}_{\mathrm{SY}} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \end{aligned}$	± 4.5		± 18	± 4.5		± 18	V
				5	6		5	6	mA
				5	6		5	6	mA

NOTES

${ }^{1}$ Input voltage range guaranteed by common-mode rejection test.
${ }^{2}$ Guaranteed by design.
${ }^{3}$ Gain tempco does not include the effects of external component drift.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

Supply Voltage	$\pm 18 \mathrm{~V}$
Common-Mode Input Voltage	$[(\mathrm{V}-)-60 \mathrm{~V}]$ to $[(\mathrm{V}+)+60 \mathrm{~V}]$
Differential Input Voltage	$[(\mathrm{V}-)-60 \mathrm{~V}]$ to $[(\mathrm{V}+)+60 \mathrm{~V}]$
Output Short-Circuit Duration	Continuous
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Function Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec$)$	$300^{\circ} \mathrm{C}$

NOTES
${ }^{1}$ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{2}$ Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.
${ }^{3} \theta_{\mathrm{JA}}$ is specified for worst case mounting conditions, i.e., θ_{JA} is specified for device in socket for P-DIP package; θ_{JA} is specified for device soldered to printed circuit board for SOIC package.

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}{ }^{\mathbf{3}}$	$\boldsymbol{\theta}_{\mathrm{JC}}$	Unit
8-Lead Plastic DIP (P)	96	37	${ }^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead SOIC (S)	92	27	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ORDERING GUIDE

Model	$\mathbf{V}_{\text {Ios }} \boldsymbol{\operatorname { m a x }}$ @ $\mathbf{T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathbf{C}$	$\mathbf{V}_{\text {oos }} \boldsymbol{\operatorname { m a x } @}$ $\mathbf{T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathbf{C}$	Temperature Range	Package Description
AMP02EP	$100 \mu \mathrm{~V}$	4 mV	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead Plastic DIP
AMP02FP	$200 \mu \mathrm{~V}$	8 mV	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead Plastic DIP
AMP02AZ/883C	$200 \mu \mathrm{~V}$	10 mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead CERDIP
AMP02FS	$200 \mu \mathrm{~V}$	8 mV	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead SOIC
AMP02GBC				Die
AMP02FS-REEL	$200 \mu \mathrm{~V}$	8 mV	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead SOIC

Figure 2. Simplified Schematic

Die Characteristics

WAFER TEST LIMITS * $\left(@ V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Parameter	Symbol	Conditions	AMP02 GBC Limits	Unit
Input Offset Voltage	$\mathrm{V}_{\text {IOS }}$		200	$\mu \mathrm{V}$ max
Output Offset Voltage	$\mathrm{V}_{\text {OOS }}$		8	$m \mathrm{max}$
Power Supply Rejection	PSR	$\begin{aligned} & V_{S}= \pm 4.8 \mathrm{~V} \text { to } \pm 18 \mathrm{~V} \\ & \mathrm{G}=1000 \\ & \mathrm{G}=100 \\ & \mathrm{G}=10 \\ & \mathrm{G}=1 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \\ & 95 \\ & 75 \end{aligned}$	dB
Input Bias Current	I_{B}		20	$n A \max$
Input Offset Current	$\mathrm{I}_{\text {OS }}$		10	$n A \max$
Input Voltage Range	IVR	Guaranteed by CMR Tests	± 11	V min
Common-Mode Rejection	CMR	$\begin{aligned} & V_{C M}= \pm 11 \mathrm{~V} \\ & G=1000 \\ & G=100 \\ & G=10 \\ & G=1 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \\ & 95 \\ & 75 \end{aligned}$	dB
Gain Equation Accuracy		$\mathrm{G}=\frac{50 \mathrm{k} \Omega}{\mathrm{R}_{\mathrm{G}}}+1, \mathrm{G}=1000$	0.7	\% max
Output Voltage Swing	$\mathrm{V}_{\text {OUT }}$	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	± 12	V min
Supply Current	$\mathrm{I}_{\text {SY }}$		6	$m A \max$

*Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualifications through sample lot assembly and testing.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AMP02 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Typical Performance Characteristics-AMP02

TPC 1. Typical Distribution of Input Offset Voltage

TPC 4. Typical Distribution of Output Offset Voltage

TPC 7. Input Offset Current vs. Temperature

TPC 2. Typical Distribution of $T C V_{\text {Ios }}$

TPC 5. Typical Distribution of TCV ${ }_{\text {oos }}$

TPC 8. Input Bias Current vs. Temperature

TPC 3. Input Offset Voltage Change vs. Supply Voltage

TPC 6. Output Offset Voltage Change vs. Supply Voltage

TPC 9. Input Bias Current vs. Supply Voltage

TPC 10. Closed-Loop Voltage Gain vs. Frequency

TPC 13. Positive PSR vs. Frequency

TPC 16. Voltage Noise Density vs. Frequency

TPC 11. Common-Mode Rejection vs. Frequency

TPC 14. Negative PSR vs. Frequency

TPC 17. RTI Voltage Noise Density vs. Gain

TPC 12. Common-Mode Rejection vs. Voltage Gain

TPC 15. Total Harmonic Distortion vs. Frequency

TPC 18. 0.1 Hz to 10 Hz Noise $A_{V}=1000$

TPC 19. Maximum Output Swing vs. Frequency

TPC 22. Supply Current vs. Supply Voltage

TPC 20. Maximum Output Voltage vs. Load Resistance

TPC 23. Slew Rate vs. Voltage Gain

TPC 21. Closed Loop Output Impedance vs. Frequency

APPLICATIONS INFORMATION

Input and Output Offset Voltages

Instrumentation amplifiers have independent offset voltages associated with the input and output stages. The input offset component is directly multiplied by the amplifier gain, whereas output offset is independent of gain. Therefore at low gain, output-offset errors dominate while at high gain, input-offset errors dominate. Overall offset voltage, $V_{O S}$, referred to the output ($R T O$) is calculated as follows:

$$
V_{O S}(R T O)=\left(V_{I O S} \times G\right)+V_{O O S}
$$

where $V_{I O S}$ and $V_{O O S}$ are the input and output offset voltage specifications and G is the amplifier gain.
The overall offset voltage drift $T C V_{O S}$, referred to the output, is a combination of input and output drift specifications. Input offset voltage drift is multiplied by the amplifier gain, G, and summed with the output offset drift:

$$
T C V_{O S}(R T O)=\left(T C V_{I O S} \times G\right)+T C V_{O O S}
$$

where $T C V_{I O S}$ is the input offset voltage drift, and $T C V_{O O S}$ is the output offset voltage drift. Frequently, the amplifier drift is referred back to the input ($R T I$), which is then equivalent to an input signal change:

$$
T C V_{O S}(R T I)=T C V_{I O S}+\frac{T C V_{O O S}}{G}
$$

For example, the maximum input-referred drift of an AMP02EP set to $G=1000$ becomes:

$$
T C V_{O S}(R T I)=2 \mu V /{ }^{\circ} \mathrm{C}+\frac{100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}}{1000}=2.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}
$$

Input Bias and Offset Currents

Input transistor bias currents are additional error sources that can degrade the input signal. Bias currents flowing through the signal source resistance appear as an additional offset voltage. Equal source resistance on both inputs of an IA will minimize offset changes due to bias current variations with signal voltage and temperature; however, the difference between the two bias currents (the input offset current) produces an error. The magnitude of the error is the offset current times the source resistance.

A current path must always be provided between the differential inputs and analog ground to ensure correct amplifier operation. Floating inputs such as thermocouples should be grounded close to the signal source for best common-mode rejection.

Gain

The AMP02 only requires a single external resistor to set the voltage gain. The voltage gain, G, is:

$$
G=\frac{50 k \Omega}{R_{G}}+1
$$

and

$$
R_{G}=\frac{50 k \Omega}{G-1}
$$

The voltage gain can range from 1 to 10,000 . A gain set resistor is not required for unity-gain applications. Metal-film or wirewound resistors are recommended for best results.
The total gain accuracy of the AMP02 is determined by the tolerance of the external gain set resistor, R_{G}, combined with the gain equation accuracy of the AMP02. Total gain drift combines the mismatch of the external gain set resistor drift with that of the internal resistors ($20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ). Maximum gain drift of the AMP02 independent of the external gain set resistor is $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
All instrumentation amplifiers require attention to layout so thermocouple effects are minimized. Thermocouples formed between copper and dissimilar metals can easily destroy the $\mathrm{TCV}_{\text {OS }}$ performance of the AMP02, which is typically $0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Resistors themselves can generate thermoelectric EMFs when mounted parallel to a thermal gradient.

The AMP02 uses the triple op amp instrumentation amplifier configuration with the input stage consisting of two transimpedance amplifiers followed by a unity-gain differential amplifier. The input stage and output buffer are laser-trimmed to increase gain accuracy. The AMP02 maintains wide bandwidth at all gains as shown in Figure 3. For voltage gains greater than 10, the bandwidth is over 200 kHz . At unity gain, the bandwidth of the AMP02 exceeds 1 MHz .

Figure 3. The AMP02 Keeps Its Bandwidth at High Gains

Common-Mode Rejection

Ideally, an instrumentation amplifier responds only to the difference between the two input signals and rejects common-mode voltages and noise. In practice, there is a small change in output voltage when both inputs experience the same common-mode voltage change; the ratio of these voltages is called the common-mode gain. Common-mode rejection (CMR) is the logarithm of the ratio of differential-mode gain to common-mode gain, expressed in dB. Laser trimming is used to achieve the high CMR of the AMP02.

Figure 4. Triple Op Amp Topology

Figure 4 shows the triple op amp configuration of the AMP02. With all instrumentation amplifiers of this type, it is critical not to exceed the dynamic range of the input amplifiers. The amplified differential input signal and the input common-mode voltage must not force the amplifier's output voltage beyond $\pm 12 \mathrm{~V}$ ($\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$) or nonlinear operation will result.
The input stage amplifier's output voltages at V_{1} and V_{2} equal:

$$
\begin{aligned}
V_{1} & =-\left(1+\frac{2 R}{R_{G}}\right) \frac{V_{D}}{2}+V_{C M} \\
& =-G \frac{V_{D}}{2}+V_{C M} \\
V_{2} & =\left(1+\frac{2 R}{R_{G}}\right) \frac{V_{D}}{2}+V_{C M} \\
& =G \frac{V_{D}}{2}+V_{C M}
\end{aligned}
$$

where:

$$
\begin{aligned}
V_{D} & =\text { Differential input voltage } \\
& =(+\mathrm{IN})-(-\mathrm{IN}) \\
V_{C M} & =\text { Common-mode input voltage } \\
G & =\text { Gain of instrumentation amplifier }
\end{aligned}
$$

If V_{1} and V_{2} can equal $\pm 12 \mathrm{~V}$ maximum, the common-mode input voltage range is:

$$
C M V R= \pm\left(12 V-\frac{G V_{D}}{2}\right)
$$

Grounding

The majority of instruments and data acquisition systems have separate grounds for analog and digital signals. Analog ground may also be divided into two or more grounds that will be tied together at one point, usually at the analog power supply ground. In addition, the digital and analog grounds may be joined-normally at the analog ground pin on the A/D converter. Following this basic practice is essential for good circuit performance.
Mixing grounds causes interactions between digital circuits and the analog signals. Since the ground returns have finite resistance and inductance, hundreds of millivolts can be developed between the system ground and the data acquisition components. Using separate ground returns minimizes the current flow in the sensitive analog return path to the system ground point. Consequently, noisy ground currents from logic gates interact with the analog signals.
Inevitably, two or more circuits will be joined together with their grounds at differential potentials. In these situations, the differential input of an instrumentation amplifier, with its high CMR, can accurately transfer analog information from one circuit to another.

Sense and Reference Terminals

The sense terminal completes the feedback path for the instrumentation amplifier output stage and is internally connected directly to the output. For SOIC devices, connect the sense terminal to the output. The output signal is specified with respect to the reference terminal, which is normally connected to analog ground. The reference may also be used for offset correction level shifting. A reference source resistance will reduce the common-mode rejection by the ratio of $25 \mathrm{k} \Omega / \mathrm{R}_{\text {REF }}$. If the reference source resistance is 1Ω, the CMR will be reduced $88 \mathrm{~dB}(25 \mathrm{k} \Omega / 1 \Omega=88 \mathrm{~dB})$.

Overvoltage Protection

Instrumentation amplifiers invariably sit at the front end of instrumentation systems where there is a high probability of exposure to overloads. Voltage transients, failure of a transducer, or removal of the amplifier power supply while the signal source is connected may destroy or degrade the performance of an unprotected device. A common technique is to place limiting resistors in series with each input, but this adds noise. The AMP02 includes internal protection circuitry that limits the input current to $\pm 4 \mathrm{~mA}$ for a 60 V differential overload (see Figure 5) with power off, $\pm 2.5 \mathrm{~mA}$ with power on.

Figure 5. AMP02's Input Protection Circuitry Limits Input Current During Overvoltage Conditions

Power Supply Considerations

Achieving the rated performance of precision amplifiers in a practical circuit requires careful attention to external influences. For example, supply noise and changes in the nominal voltage directly affect the input offset voltage. A PSR of 80 dB means that a change of 100 mV on the supply (not an uncommon value) will produce a $10 \mu \mathrm{~V}$ input offset change. Consequently, care should be taken in choosing a power unit that has a low output noise level, good line and load regulation, and good temperature stability. In addition, each power supply should be properly bypassed.

OUTLINE DIMENSIONS

8-Lead Plastic Dual-in-Line Package [PDIP]
(N-8)
Dimensions shown in inches and (millimeters)

8-Lead Ceramic DIP - Glass Hermetic Seal [CERDIP]
(Q-8)
Dimensions shown in inches and (millimeters)

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

16-Lead Standard Small Outline Package [SOIC] Wide Body
 (R-16)

Dimensions shown in millimeters and (inches)

COMPLIANT TO JEDEC STANDARDS MS-013AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR reference only and are not Appropriate for use in design

AMPO2

Revision History

LocationPage1/03-Data Sheet changed from REV. D to REV. E.
Edits to Figure 2 3
Edits to Die Characteristics 4
Updated OUTLINE DIMENSIONS 11

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Instrumentation Amplifiers category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
ADA4254RU-EBZ JM38510/13501BGA MCP6N16-001E/MF LT1102IN8\#PBF AD694BRZ-REEL7 LT1101ISW JM38510/13502BGA AD521JDZ AD521KDZ AD521LDZ AD524ADZ AD524BDZ AD524CDZ AD620ANZ AD621BNZ AD621BR AD622ANZ AD623ANZ AD623BNZ AD624ADZ AD624CDZ AD624SD/883B AD625ADZ AD625BDZ AD625JNZ AD625KNZ AD625SD AD627BNZ AD693AD AD693AE AD693AQ AD694AQ AD694ARZ-REEL AD694BRZ-REEL AD694JNZ AD8221ARMZ-R7 AD8222HBCPZ-WP AD8224ACPZ-R7 AD8224BCPZ-WP AD8224HBCPZ-WP AD8226ARMZ-R7 AD8228ARMZ AD8228ARMZ-R7 AD8229HDZ AD8236ARMZ-R7 AD8237ARMZ-R7 AD8253ARMZ AD8293G160BRJZ-R7 AD8293G80BRJZ-R2 AD8553ARMZ

