Dual 12-Bit Double-Buffered Multiplying CMOS D/A Converter

DAC8222

FEATURES

Two Matched 12-Bit DACs on One Chip
Direct Parallel Load of All 12 Bits for High Data Throughput
Double-Buffered Digital Inputs
12-Bit Endpoint Linearity ($\pm 1 / 2$ LSB) Over Temperature
+5 V to +15 V Single Supply Operation
DACs Matched to 1\% Max
Four-Quadrant Multiplication
Improved ESD Resistance
Packaged in a Narrow 0.3" 24-Lead DIP and 0.3"
24- Lead SOL Package
Available in Die Form

APPLICATIONS
Automatic Test Equipment
Robotics/Process Control/Automation
Digital Gain/Attenuation Control
Ideal for Battery-Operated Equipment

GENERAL DESCRIPTION

The DAC8222 is a dual 12-bit, double-buffered, CMOS digital-to-analog converter. It has a 12 -bit wide data port that allows a 12 -bit word to be loaded directly. This achieves faster throughput time in stand-alone systems or when interfacing to a 16-bit processor. A common 12-bit input TTL/CMOS compatible data port is used to load the 12-bit word into either of the two DACs. This port, whose data loading is similar to that of a RAM's write cycle, interfaces directly with most 12 -bit and 16-bit bus systems. (See DAC8248 for a complete 8 -bit data bus interface product.) A common bus allows the DAC8222 to be packaged in a narrow 24 -lead $0.3^{\prime \prime}$ DIP and save PCB space.
The DAC is controlled with two signals, $\overline{\mathrm{WR}}$ and $\overline{\text { LDAC. With }}$ logic low at these inputs, the DAC registers become transparent. This allows direct unbuffered data to flow directly to either DAC output selected by DAC A/DAC B. Also, the DAC's

REV. C

[^0] otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL DIAGRAM

double-buffered digital inputs will allow both DACs to be simultaneously updated.

DAC8222's monolithic construction offers excellent DAC-toDAC matching and tracking over the full operating temperature range. The chip consists of two thin-film R-2R resistor ladder networks, four 12-bit registers, and DAC control logic circuitry. The device has separate reference-input and feedback resistors for each DAC and operates on a single supply from +5 V to +15 V . Maximum power dissipation at +5 V using zero or V_{DD} logic levels is less than 0.5 mW .

The DAC8222 is manufactured with highly stable thin-film resistors on an advanced oxide-isolated, silicon-gate, CMOS technology. Improved latch-up resistant design eliminates the need for external protective Schottky diodes.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 2000

DAC8222-SPECIFICATIONS

ELECTRICAL CHARACTERISTICS $\left(@ V_{D D}=+5 \mathrm{~V}\right.$ or $+15 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=V_{\text {REF }}=+10 \mathrm{~V}, \mathrm{~V}_{\text {OUt }}=V_{\text {OUt }}=0 \mathrm{~V}$; AGND $=\mathrm{DGND}=0 \mathrm{~V}$; $\mathrm{T}_{\mathrm{A}}=$ Full Temperature Range Specified in Absolute Maximum Ratings; unless otherwise noted. Specifications apply for DAC A and DAC B.)

[^1][^2]
ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)
V_{DD} to AGND . 0 V, 17 V
V_{DD} to DGND . 0 V, +17 V
AGND to DGND $-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Input Voltage to DGND $-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
$\mathrm{I}_{\text {OUTA }}, \mathrm{I}_{\text {OUtB }}$ to AGND $-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
$\mathrm{V}_{\text {ReFA }}, \mathrm{V}_{\text {Refb }}$ to AGND . $\pm 25 \mathrm{~V}$
$\mathrm{V}_{\text {RFBA }}, \mathrm{V}_{\text {RFBB }}$ to AGND . $\pm 25 \mathrm{~V}$
Operating Temperature Range
AW Version . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
EW, FW, FP Versions $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
GP, HP, HS Versions $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Junction Temperature . $+150^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec) $+300^{\circ} \mathrm{C}$

Package Type	$\boldsymbol{\theta}_{\mathbf{J A}}{ }^{\mathbf{1}}$	$\boldsymbol{\theta}_{\mathbf{J C}}$	Units
24-Lead Hermetic DIP (W)	69	10	${ }^{\circ} \mathrm{C} / \mathrm{W}$
24-Lead Plastic DIP (P)	62	32	${ }^{\circ} \mathrm{C} / \mathrm{W}$
24-Lead SOL (S)	72	24	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTE

${ }^{1} \theta_{\mathrm{JA}}$ is specified for worst-case mounting conditions, i.e., q_{JA} is specified for device in socket for Cerdip, and P-DIP packages; JA is specified for device soldered to printed circuit board for SO package.

CAUTION

1. Do not apply voltages higher than V_{DD} or less than GND potential on any terminal except $\mathrm{V}_{\mathrm{REF}}$ and R_{FB}.
2. The digital control inputs are Zener-protected; however, permanent damage may occur on unprotected units from high-energy electrostatic fields. Keep units in conductive foam at all times until ready to use.
3. Do not insert this device into powered sockets; remove power before insertion or removal.
4. Use proper antistatic handling procedures.
5. Devices can suffer permanent damage and/or reliability degradation if stressed above the limits listed under Absolute Maximum Ratings for extended periods.

PIN CONNECTIONS

24-Lead 0.3" Cerdip
24-Lead Plastic DIP
24-Lead SOL

28-Terminal LCC

NC = NO CONNECT

ORDERING GUIDE

Model	INL (LSB)	GFSE (LSB)	Temperature Range	Package Description	Package Option
DAC8222EW	$\pm 1 / 2$	± 1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Cerdip-24	$\mathrm{Q}-24$
DAC8222GP	$\pm 1 / 2$	± 2	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	P-DIP-24	N-24
DAC8222BTC/883*	± 1	± 4	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	LCC-28	$\mathrm{E}-28 \mathrm{~A}$
DAC8222FW	± 1	± 4	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Cerdip-24	Q-24
DAC8222FP	± 1	± 4	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	P-DIP-24	$\mathrm{N}-24$
DAC8222FS	± 1	± 4	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOL-24	R-24

*Consult factory for DAC8222/883 MIL-STD data sheet.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the DAC8222 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

DICE CHARACTERISTICS

1. AGND	13. DB4
2. $\mathrm{I}_{\text {OUT A }}$	14. DB3
3. $\mathrm{R}_{\mathrm{FBA}}$	15. DB2
4. VReFa	16. DB1
5. DGND	17. DB0 (LSB)
6. DB11(MSB)	18. DAC A/DAC B
7. DB10	19. $\overline{\text { LDAC }}$
8. DB9	20. $\overline{\mathrm{WR}}$
9. DB8	21. V_{DD}
10. DB7	22. $\mathrm{V}_{\text {REF }}$
11. DB6	23. $\mathrm{R}_{\text {FB в }}$
12. DB5	24. $\mathrm{I}_{\text {OUT }}$

Substrate (die backside) is internally connected to $V_{D D}$.

DIE SIZE 0.124×0.132 inch, 16,368 sq. mils
($3.15 \times 3.55 \mathrm{~mm}, 10.56$ sq. mm)

WAFER TEST LIMITS ($@ V_{\text {DD }}=+5 \mathrm{~V}$ or $\left.+15 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=\mathrm{V}_{\text {REF }}=+10 \mathrm{~V}, \mathrm{~V}_{\text {OUTA }}=\mathrm{V}_{\text {OUT } \mathrm{B}}=0 \mathrm{~V} ; \operatorname{AGND}=\mathrm{DGND}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	DAC8222G Limit	Units
Relative Accuracy	INL	Endpoint Linearity Error	± 1	LSB max
Differential Nonlinearity	DNL	All Grades are Guaranteed Monotonic	± 1	LSB max
Full Scale Gain Error ${ }^{1}$	$\mathrm{G}_{\text {FSE }}$	Digital Inputs $=111111111111$	± 4	LSB max
Output Leakage (I OUT A, $\mathrm{I}_{\text {OUT B }}$)	$\mathrm{I}_{\text {LKG }}$	Digital Inputs $=000000000000$ Pads 2 and 24	± 50	$n A$ max
Input Resistance ($\mathrm{V}_{\text {REF }}, \mathrm{V}_{\text {REF B }}$)	$\mathrm{R}_{\text {REF }}$	Pads 4 and 22	8/15	$\mathrm{k} \Omega$ max
Input Resistance Match	$\frac{\Delta \mathrm{R}_{\mathrm{REF}}}{\mathrm{R}_{\mathrm{REF}}}$		± 1	\% max
Digital Input High	$\mathrm{V}_{\text {INH }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=+15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.4 \\ & 13.5 \end{aligned}$	V min V min
Digital Input Low	$\mathrm{V}_{\text {INL }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=+15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.5 \end{aligned}$	V max V min
Digital Input Current	$\mathrm{I}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}} ; \mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$	± 1	$\mu \mathrm{A}$ max
Supply Current	I_{DD}	All Digital Inputs $\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$ All Digital Inputs 0 V or V_{DD}	2 0.1	mA max
DC Supply Rejection ($\Delta \mathrm{Gain} / \Delta \mathrm{V}_{\mathrm{DD}}$)	PSR	$\Delta \mathrm{V}_{\mathrm{DD}}= \pm 5 \%$	0.002	\%/\% max

[^3]TYPICAL PERFORMANCE CHARACTERISTICS

Figure 1. Channel-to-Channel Matching (DAC A and B are Superimposed)

Figure 4. Nonlinearity vs. $V_{\text {REF }}$

Figure 7. Nonlinearity vs. Code (DAC A and B are Superimposed)

Figure 2. Differential Nonlinearity vs. $V_{\text {REF }}$

Figure 5. Nonlinearity vs. $V_{\text {REF }}$

Figure 8. Nonlinearity vs. Code at T_{A} $=-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$ for DAC A and B (All Superimposed)

Figure 3. Differential Nonlinearity vs. $V_{\text {REF }}$

Figure 6. Nonlinearity vs. $V_{D D}$

Figure 9. Absolute Gain Error Changes vs. $V_{\text {REF }}$

DAC8222

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 10. Full-Scale Gain Error vs. Temperature

Figure 11. Logic Input Threshold Voltage vs. Supply Voltage (VD)

Figure 12. Supply Current vs. Temperature

Figure 13. Supply Current vs. Logic Input Voltage

Figure 14. Multiplying Mode Frequency Response vs. Digital Code

Figure 15. Output Leakage Current vs. Temperature

Figure 16. Analog Crosstalk vs. Frequency

Figure 17. Interface Timing vs. $V_{D D}$

Figure 18. Burn-In Circuit

PARAMETER DEFINITIONS
 RESOLUTION (n)

The resolution of a DAC is the number of states $\left(2^{n}\right)$ into which the full-scale range (FSR) is divided (or resolved); where n is equal to the number of bits.

RELATIVE ACCURACY (INL)

Relative accuracy, or integral nonlinearity, is the maximum deviation of the analog output (from the ideal) from a straight line drawn between the end points. It is expressed in terms of least significant bit (LSB), or as a percent of full scale.

DIFFERENTIAL NONLINEARITY (DNL)

Differential nonlinearity is the worst case deviation of any adjacent analog output from the ideal 1 LSB step size. The deviation of the actual "step size" from the ideal step size of 1 LSB is called the differential nonlinearity error or DNL. DACs with DNL greater than ± 1 LSB may be nonmonotonic $\pm 1 / 2$ LSB INL guarantees monotonicity and ± 1 LSB maximum DNL.

GAIN ERROR ($\mathbf{G}_{\mathrm{FSE}}$)

Gain error is the difference between the actual and the ideal analog output range, expressed as a percent of full-scale or in terms of LSB value. It is the deviation in slope of the DAC transfer characteristic from ideal.

See Orientation in Digital-to-Analog Converters Section of the current data book, for additional parameter definitions.

GENERAL CIRCUIT DESCRIPTION CONVERTER SECTION

The DAC8222 contains four 12-bit registers (two input registers and two DAC registers), two highly stable thin-film R-2R resistor ladder networks, and interface control logic circuitry. Also included are 24 single-pole, double-throw, NMOS transistor current switches.

Figure 19. Simplified Single DAC Circuit Configuration. (Switches Are Shown for All Digital Inputs at Zero)

Figure 20. N-Channel Current Steering Switch
Figure 19 shows a simplified circuit for the R-2R ladder network and transistor switches for one DAC. R is typically $11 \mathrm{k} \Omega$. The transistor switches are binarily scaled in size to maintain a constant voltage drop across each switch. Figure 20 shows a single NMOS transistor switch.
The binary-weighted currents are switched between $\mathrm{I}_{\text {OUT }}$ and AGND by the N -channel MOS transistor switches. The selection between $\mathrm{I}_{\text {OUT }}$ and AGND is determined by the digital input code. It is important to note here that the voltage difference

DAC8222

between $\mathrm{I}_{\text {OUT }}$ and AGND terminals be as close to zero as practical in order to keep DAC errors to a minimum. This is normally done by connecting AGND to the noninverting input of an op amp and $\mathrm{I}_{\text {OUt }}$ to the inverting input. The DAC's internal resistor (R_{FB}) can be used for the feedback resistor by connecting the op amp's output directly to the DAC's $R_{\text {FB }}$ terminal. The op amp also provides the current-to-voltage conversion for the DAC's output current. The output voltage is dependent on the DAC's digital input code and $\mathrm{V}_{\text {REF }}$, and is given by:

$$
V_{\text {OUT }}=-V_{R E F} \times D / 4096
$$

where D is the digital input code integer number that is between 0 and 4095.
The DAC's input resistance, $\mathrm{V}_{\text {REF }}$ (Figure 19), is always equal to a constant value, R . This means that $\mathrm{V}_{\mathrm{REF}}$ can be driven by a reference voltage or current, ac or dc (positive or negative). It is recommended that a low-temperature-coefficient external R_{FB} resistor be used if a current source is employed.

The DAC's output capacitance ($\mathrm{C}_{\text {OUt }}$) is code dependent and varies from 90 pF (all digital inputs low) to 120 pF (all digital inputs high).

Figure 19 shows a transistor switch in series with the R-2R ladder terminating resistor and R_{FB} resistor. They were designed into the DAC to binarily match the ladder leg switches and improve power supply rejection and gain error temperature coefficient. The gates of these transistor switches are connected to V_{DD}, so that an "open-circuit" exists when V_{DD} is not applied. This means that an op amp's output voltage will go to either "rail" if powered up before the DAC. Also, R_{FB} resistance cannot be measured without V_{DD} being applied.

Figure 21. Digital Input Structure For One Bit

DIGITAL SECTION

The DAC8222's digital inputs are CMOS inserters. They were designed to convert TTL and CMOS input logic levels into voltage levels to drive the internal circuitry. The digital inputs are TTL compatible at $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$ and CMOS compatible at $\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}$. The DAC8222 can use +5 V CMOS logic levels with $\mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V}$; however, supply current will rise to approximately $5 \mathrm{~mA}-6 \mathrm{~mA}$.
Figure 21 shows the DAC's digital input register structure for one bit. This circuit drives the DAC register. Digital controls ϕ and $\bar{\phi}$ shown are generated from $\overline{\mathrm{DAC} \mathrm{A}} / \mathrm{DAC} \mathrm{B}$ and $\overline{\mathrm{WR}}$ control signals.

As shown in Figure 21, these inputs are electrostatic-discharge protected with two internal distributed diodes; they are connected between V_{DD} and DGND. Each digital input has a typical input current of less than 1 nA .
When the digital inputs are in the region of +1.2 V to +2.8 V (peaking at +1.8 V) using $\mathrm{a}+5 \mathrm{~V}$ power supply or in the region of +1.7 V to +12 V (peaking at +3.9 V) with a +15 V power supply, the input register transistors are operating in their linear region and draw current from the power supply. It is therefore, recommended that the digital input voltages be as close to the supply rails (V_{DD} and DGND) as is practically possible to keep supply currents at a minimum. The DAC8222 may be operated with any supply voltage between the range of +5 V to +15 V .

INTERFACE CONTROL LOGIC

The DAC8222's input control logic circuitry is shown in Figure 22. Note how the $\overline{\mathrm{WR}}$ signal is used in conjunction with $\overline{\overline{\mathrm{DAC}}}$ $\underline{\bar{A}} /$ DAC B to load data into either input register. $\overline{\text { LDAC }}$ loads data from the input registers to the DAC register; the DAC's analog output voltage is determined by the data contained in each DAC register.
The truth table for the DAC registers is shown in the Mode Selection Table. Note how the input register is transparent when $\overline{\mathrm{WR}}$ is low and $\overline{\mathrm{LDAC}}$ is high, and that the DAC register is transparent when $\overline{\mathrm{WR}}$ is high and $\overline{\mathrm{LDAC}}$ is low ($\overline{\mathrm{LDAC}}$ updates the DAC's analog output voltage). The DAC is transparent from input to output when $\overline{\mathrm{WR}}$ and $\overline{\mathrm{LDAC}}$ are both low, and the DAC is latched (input and output is not being updated) when $\overline{\mathrm{WR}}$ and $\overline{\mathrm{LDAC}}$ are both high.

Figure 22. Input Control Logic

Table I. Mode Selection

	In			Regist	Status	
DAC $\overline{\text { A }} / \mathrm{B}$	$\overline{\text { WR }}$	$\overline{\text { LDAC }}$	Input Register	DAC Register	Input Register	DAC Register
L	L	L	WRITE	WRITE	LATCHED	WRITE
H	L	L	LATCHED	WRITE	WRITE	WRITE
L	L	H	WRITE	LATCHED	LATCHED	LATCHED
H	L	H	LATCHED	LATCHED	WRITE	LATCHED
X	H	L	LATCHED	WRITE	LATCHED	WRITE
X	H	H	LATCHED	LATCHED	LATCHED	LATCHED

L = Low, H = High, X = Don't Care

INTERFACE CONTROL LOGIC

$\overline{\text { DAC A }} /$ DAC B (Pin 18)-DAC Selection. Active low for $\overline{D A C ~ A ~}$ and active high for DAC B.
WR (Pin 20)-ㅎRITE. Active Low. Used to write data into either DAC A or DAC B input registers, or active high latches data into the input registers.
$\overline{\text { LDAC }}$ (Pin 19)- $\overline{\text { LOAD DAC. Active Low. Used to simulta- }}$ neously transfer data from $\overline{\mathrm{DAC} \mathrm{A}}$ and DAC B input registers to both DAC outputs. The DAC becomes transparent (activity on the digital inputs appear at the analog output) when both $\overline{\mathrm{WR}}$ and $\overline{\mathrm{LDAC}}$ are low. Data is latched into the output registers on the rising edge of $\overline{\mathrm{LDAC}}$.

WRITE TIMING CYCLES

Two timing diagrams are shown and are at the user's discretion which to use.
The TWO-CYCLE UPDATE, as the name implies, allows both DAC registers to be loaded and the outputs updated in two cycles. Data is first loaded into one DAC's input register on the first write cycle, and then new data loaded into the other DAC's input register while simultaneously updating both DAC outputs on the second cycle.
The THREE-CYCLE UPDATE allows $\overline{\mathrm{DAC} \mathrm{A}}$ and DAC B registers to be loaded and analog output to be updated at a later time. The first two cycles load both DACs as above, and the third cycle updates the outputs.
The $\overline{\mathrm{LDAC}}$ and $\overline{\mathrm{DAC} \mathrm{A}} / \mathrm{DAC}$ B control pins can be tied together and controlled with a single strobe. When using the DAC in this configuration, DAC B must be loaded first.

Figure 23. Write Cycle Timing Diagram

Figure 24. Unipolar Configuration (Two-Quadrant Multiplication)

APPLICATIONS INFORMATION

UNIPOLAR OPERATION

Figure 24 shows a simple unipolar (2-quadrant multiplication) circuit using the DAC8222 and OP270 dual op amp (use two OP42s for higher speeds), and Table II the corresponding code table. Resistors R1, R2, and R3, R4 are used only if full-scale gain adjustments are required. Low temperature coefficient (approximately $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$) resistors or trimmers should be used. Maximum full-scale error without these resistors for the top grade device and $\mathrm{V}_{\mathrm{REF}}= \pm 10 \mathrm{~V}$ is 0.024% and 0.097% for the low grade. C 1 and C 2 provide phase compensation to help reduce overshoot and ringing when high speed op amps are used.
Full-scale adjustment is accomplished by loading the digital inputs with all 1 s and adjusting R1 (or R3) so that

$$
V_{O U T}=V_{R E F} \times\left(\frac{4095}{4096}\right)
$$

Full-scale can also be adjusted by varying $\mathrm{V}_{\text {REF }}$ voltage, thus eliminating R1, R2, R3 and R4. Zero adjustment is performed by setting the DAC's digital inputs to all 0 s and adjusting the op amp's offset adjust so that $\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}$. To maintain monotonicity and minimize gain and linearity errors, it is recommended that the op amp offset voltage be adjusted to less than 10% of 1 LSB $(244 \mu \mathrm{~V})$ over the operating temperature range of interest.

Table II. Unipolar Binary Code Table (Refer to Figure 24)

Binary Number in DAC Register MSB	LSB
Analog Output, $\mathbf{V}_{\text {OUT }}$ (DAC A or DAC B)	
111111111111	$-\mathrm{V}_{\text {REF }}\left(\frac{4095}{4096}\right)$
100000000000	$-\mathrm{V}_{\text {REF }}\left(\frac{2048}{4096}\right)=-1 / 2 \mathrm{~V}_{\text {REF }}$
000000000001	
000000000000	
NOTE 1 LSB $=\left(2^{-12}\right)\left(\mathrm{V}_{\text {REF }}\right)=\frac{1}{4096}\left(\mathrm{~V}_{\text {REF }}\right)$	

BIPOLAR OPERATION

The bipolar (offset binary) four-quadrant operation configuration using the DAC8222 is shown in Figure 25 and the corresponding code in Table III. The circuit makes use of the OP470 a quad op amp (use four OP42s for higher speeds).
Resistors R1, R2, R3, and R4 may be omitted and full-scale output voltage may be adjusted by varying $\mathrm{V}_{\text {REF }}$ or the value of R5 and R8. If resistors R1, R2, R3, and R4 are omitted,

Figure 25. Bipolar Configuration (Four-Quadrant Multiplication)

Table III. Bipolar (Offset Binary) Code Table (Refer to Figure 25)

Binary Number in DAC Register MSB LSB	Analog Output, $\mathbf{V}_{\text {OUT }}$ $(\overline{\text { DAC A or DAC B) }}$
111111111111	$+\mathrm{V}_{\text {REF }}\left(\frac{2047}{2048}\right)$
100000000001	$+\mathrm{V}_{\text {REF }}\left(\frac{1}{2048}\right)$
100000000000	0 V
011111111111	$-\mathrm{V}_{\text {REF }}\left(\frac{1}{2048}\right)$
000000000000	$-\mathrm{V}_{\text {REF }}\left(\frac{2048}{2048}\right)$

NOTE
$1 \mathrm{LSB}=\left(2^{-11}\right)\left(\mathrm{V}_{\mathrm{REF}}\right)=\frac{1}{2048}\left(\mathrm{~V}_{\mathrm{REF}}\right)$
resistors R5, R6, R7, should be ratio-matched to 0.01% so that gain error meets data sheet specifications. (Corresponding resistors, R8, R9, and R10 for DAC B should also be matched to $0.01 \%)$. The resistors should have identical temperature coefficients if operating over the full temperature range.
Zero and full-scale are adjusted one of two ways and are at the user's discretion. Zero-output can be adjusted by first setting the digital inputs to 100000000000 and adjusting R1 (R3 for DAC B) so that $\mathrm{V}_{\text {OUta }}$ (or $\mathrm{V}_{\text {OUt b }}$) equals 0 V . If R1, R2 (R3, R 4 for DAC B) are omitted, then $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ can be adjusted by varying R6, R7 (R9, R10 for DAC B) ratios. Full-scale is adjusted by setting the digital inputs to 111111111111 and varying R5 (R8 for DAC B). Full-scale can also be adjusted by varying $\mathrm{V}_{\text {REF }}$. Full-scale output is equal to $\mathrm{V}_{\text {REF }}$ minus one LSB .

Figure 26. Single Supply Operation (Current Switching Mode)

SINGLE SUPPLY OPERATION CURRENT STEERING MODE

Because the DAC8222's R-2R resistor ladder terminating resistor is internally connected to AGND, it lends itself well to single supply operation in the current steering mode. This means that AGND can be raised above system ground as shown in Figure 26. The output voltage range will be from +5 V to +10 V depending on the digital input code and is given by:

$$
V_{O U T}=V_{O S}+(n / 4096)\left(V_{O S}\right)
$$

where $V_{O S}=$ Offset Reference Voltage (+5 V in Figure 26)

$$
n=\text { Decimal Equivalent of the Digital Input Word }
$$

VOLTAGE SWITCHING MODE

Figure 27 shows the DAC8222 in a single supply voltage switching mode of operation. In this configuration, the DAC's $\mathrm{R}-2 \mathrm{R}$ ladder acts as a voltage divider. The output voltage at the $\mathrm{V}_{\mathrm{REF}}$ pin exhibits a constant impedance R (typically $11 \mathrm{k} \Omega$) and must be buffered by an op amp. R_{FB} pins are not used in this circuit configuration. The reference input voltage must be maintained within +1.25 V of AGND and V_{DD} from +12 V to +15 V to preserve device accuracy.
The output voltage expression is given by:

$$
V_{O U T}=V_{R E F}(n / 4096)
$$

where $n=$ Decimal Equivalent of the Digital Input Word

APPLICATIONS TIPS

GENERAL GROUND MANAGEMENT

Grounding techniques should be tailored to each individual system. Ground loops should be avoided, and ground current paths should be as short as possible and have a low impedance.
The DAC8222's AGND and DGND pins should be tied together at the device socket to prevent digital transients from appearing at the analog output. This common point then becomes the single ground point connection. AGND and DGND should then be brought out separately and tied to their respective power supply grounds. Ground loops can be created if both grounds are tied together at more than one location, i.e., tied together at the device and at the digital and analog power supplies.
A PC board ground plane can be used for the single point ground connection should the connections not be practical at the device socket. If neither of these connections is practical or allowed, the device should be placed as close as possible to the system's single point ground connection. Back-to-back Schottky diodes should then be connected between AGND and DGND.

POWER SUPPLY DECOUPLING

Power supplies used with the DAC8222 should be well filtered and regulated. Local supply decoupling consisting of a $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ tantalum capacitor in parallel with a $0.1 \mu \mathrm{~F}$ ceramic is highly recommended. The capacitors should be connected between the V_{DD} and DGND pins and at the device socket.

*REGISTERS AND DIGITAL CIRCUITRY OMITTED FOR SIMPLICITY.
Figure 27. Single Supply Operation (Voltage Switching Mode)

Figure 28. Digitally-Programmable Window Detector (Upper/Lower Limit Detector)

BASIC APPLICATIONS

PROGRAMMING WINDOW DETECTOR

Figure 28 shows the DAC8222 used in a programmable window detector configuration. The required upper and lower limits for the test are loaded into $\overline{\mathrm{DAC} \mathrm{A}}$ and DAC B. If a signal at the test input is not within the programmed limits, the output will indicate a logic zero.

MICROPROCESSOR INTERFACE CIRCUITS

The DAC8222's versatile loading structure greatly simplifies interfacing to 16 -bit bus systems; it also reduces the number of "glue" logic components. Data loading into its 12 -bit wide data input is achieved by use of only two control signals, $\overline{\mathrm{WR}}$ and $\overline{\text { LDAC. DAC selection is controlled with a single } \overline{\mathrm{DAC} \mathrm{A}} / \mathrm{DAC} \mathrm{B}}$ line.
Figures 29 and 30 show how easily the DAC8222 interfaces with the 8086 and 68000 16-bit microprocessors.

*REGISTERS AND CONTROL CIRCUITRY OMITTED FOR SIMPLICITY.
Figure 29. DAC8222 to 8086 Interface

*REGISTERS AND CONTROL CIRCUITRY OMITTED FOR SIMPLICITY.
Figure 30. DAC8222 to 68000 Interface

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

24-Lead Plastic DIP
(N-24)

28-Terminal Leadless Ceramic Chip Carrier (E-28A)

24-Lead Wide-Body SOL
(R-24)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital to Analog Converters - DAC category:
Click to view products by Analog Devices manufacturer:

Other Similar products are found below :
5962-8871903MYA 5962-8876601LA AD5311BRMZ-REEL7 AD664AJ AD7534JPZ TCC-103A-RT 057536E 5962-89657023A
702423BB TCC-202A-RT AD664BE TCC-303A-RT TCC-206A-RT AD5770RBCBZ-RL7 DAC8229FSZ-REEL AD5673RBCPZ-2 MCP48FVB24-20E/ST MCP48FEB18-20E/ST MCP48FEB18-E/MQ MCP47FVB04-20E/ST MCP48FEB28T-20E/ST MCP47FVB04TE/MQ MCP48FVB28T-20E/ST MCP47FVB28T-20E/ST MCP48FVB24T-E/MQ MCP47FEB14T-E/MQ MCP48FVB14T-20E/ST MCP48FEB08T-E/MQ MCP47FEB08T-E/MQ MCP48FVB08T-20E/ST MCP48FEB04T-20E/ST MCP47FEB04T-E/MQ MCP48FVB04T20E/ST MCP48CVB18-E/ML MCP48CVB08-E/ML MCP47CMB28-E/ML MCP48CMB18-E/ML MCP48CVB14-E/ML MCP48CMB04E/ML MCP48CMB08-E/ML MCP47CVB04-E/ML MCP47CMB14-E/ML MCP48CMB14-E/ML MCP48CVB28-20E/ST MCP47CMB1420E/ST MCP47CMB04-20E/ST MCP48CVB18-20E/ST MCP47CMB04-E/ML MCP47CMB24-20E/ST MCP48CMB04-20E/ST

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or

[^1]: NOTES
 ${ }^{1}$ Measured using internal R_{FB} and R_{FB}. Both DAC digital inputs $=111111111111$.
 ${ }^{2}$ Guaranteed and not tested.
 ${ }^{3}$ See timing diagram.
 ${ }^{4}$ From 50% of digital input to 90% of final analog output current.
 $\mathrm{V}_{\text {REFA }}=\mathrm{V}_{\text {REF }}=+10 \mathrm{~V}$; OUT A, OUT B load $=100 \Omega, \mathrm{C}_{\mathrm{EXT}}=13 \mathrm{pF}$.
 ${ }^{5} \underline{\mathrm{WR}}, \underline{\mathrm{LDAC}}=0 \mathrm{~V} ; \mathrm{DB} 0-\mathrm{DB} 11=0 \mathrm{~V}$ to V_{DD} or V_{DD} to 0 V .

[^2]: ${ }^{6}$ Settling time is measured from 50% of the digital input change to where the output voltage settles within $1 / 2$ LSB of full scale.
 ${ }^{7}$ Gain TC is measured from $+25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {MIN }}$ or from $+25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {MAX }}$.
 ${ }^{8}$ These limits apply for the commercial and industrial grade products.
 ${ }^{9}$ Absolute temperature coefficient is approximately $+50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
 ${ }^{10}$ These limits also apply as typical values for $\mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V}$ with +5 V CMOS logic levels and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
 Specifications subject to change without notice.

[^3]: NOTES
 ${ }^{1}$ Measured using internal $\mathrm{R}_{\mathrm{FBA}}$ and $\mathrm{R}_{\mathrm{FB} \text { B }}$.
 Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.

