DEMO MANUAL DC043 Micropower A/D Demo Board LTC 1286 Micropower 12-Bit A/D Converter Demo Board

DESCRIPTION

The LTC ${ }^{\circledR} 1286$ is a micropower, 12.5 ksps , sampling 12-bit A/D converter which draws only 1.25 mW from a single 5V supply. The LTC1286 demo board provides the user with a way to evaluate the LTC1286 A/D converter. In addition, the LTC1286 demo board is intended to illustrate the layout and bypassing techniques required to obtain optimum performance from this part. The LTC1286 demo board is designed to be easy to use and requires only a 7 V to 15 V supply, a clock signal and an analog input signal. As shown in the Board Photo, the LTC1286 is a very space efficient solution for A/D users. By combining a micropower 12-bit A/D, sample-and-hold, serial port and auto shutdown circuit into a single 8-pin SOIC package, all the data acquisition circuitry including the bypass caps can be placed into an area of only 0.1 square inch.
This manual shows how to use the demo board. Included are timing diagrams, power supply requirements and
analog input range information. Additionally, a schematic, parts list, drawings and dimensions of all the PC board layers are included. An explanation of the layout and bypass strategies used in this board is also included so that anyone designing a PC board using the LTC1286 will be able to get the maximum performance from the device.

feATURES

- Proven μ Power 12-Bit ADC Surface Mount Layout
- Actual ADC Footprint Only 0.1 Inch ${ }^{2}$ Including Bypass Capacitors
- 71dB SINAD, 84 dB THD and $\pm 0.25 \mathrm{LSB}$ DNL
- Gerber Files for This Circuit Board Are Available. Call the LTC Factory.
$\overline{\mathbf{L T}}$, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL PGRFORMANCE CHARACTERISTICS AND BOARD PHOTO

Actual Size

DEMO MANUAL DC043

SCHEmATIC DIAGRAM

PARTS LIST

REFERENCE DESIGNATOR	QUANTITY	PART NUMBER	DESCRIPTION	VENDOR	TELEPHONE
C1 to C4, C7, C9, C11	7	12065C104KATMA	$0.1 \mu \mathrm{~F} 50 \mathrm{~V} 10 \%$, X7R Capacitor	AVX	(803) 946-0362
C5	1	TAJD476K016R	47 $\mu \mathrm{F}$ 16V 10\%, Tantalum Capacitor	AVX	(207) 282-5111
C8	1	TAJC106K025R	10 $\mu \mathrm{F}$ 25V 10\%, Tantalum Capacitor	AVX	(207) 282-5111
C10	1	1206CG150J9BB2	15pF 50V 10\%, X7R Capacitor	Philips	(407) 744-4200
D0 to D11	12	LN1251C	2.1V 45mW SMT Red LED	Panasonic	(201) 348-5217
E1, E2	2	1502-02	0.094" Turrent Terminal	Keystone	(718) 956-0666
JP1 to JP4	4	TSW-1-2-07-G-S	0.100cc 2-Pin 0.025-SQR Jumper	Samtec	(800) 726-8329
JP5	1	TSW-1-3-07-G-S	0.100cc 3-Pin 0.025-SQR Header	Samtec	(800) 726-8329
JP6	1	TSW-1-8-07-G-D	0.100cc 16-Pin 2-Row Header	Samtec	(800) 726-8329
JP7	1	JL-100-25-T	Jumper Link (0.100 Wire)	Samtec	(800) 726-8329
J1	1	227699-3	50Ω Vert. PC-MNT BNC CON	AMP	(717) 564-0100
J2, J3	2	575-4	0.175-ID Low-Pro Banana Jack	Keystone	(718) 956-0666
R1 to R12	12	CR32-621J-T	620 1 1/8W 5\% Chip Resistor	AVX	(803) 448-9411
R14	1	9C12063A51R0JM	51 $1 / 8 \mathrm{~W} 5 \%$ Chip Resistor	Philips	(817) 325-7871
R15	1	CR32-102J-T	1k 1/8W 5\% Chip Resistor	AVX	(803) 448-9411
U1	1	LTC1286CS8	12-Bit SER ADC I.C.	LTC	(408) 432-1900
U2, U3	2	MC74HC595AD	8-Bit SHFT REG I.C.	Motorola	(602) 655-3005
U4	1	MC74HC161D	4-Bit BIN CNTR I.C.	Motorola	(602) 655-3005
U5	1	MC74HC14AD	HEX Inverter	Motorola	(602) 655-3005
U6	1	LT1121CST-5	5V Regulator	LTC	(408) 432-1900
U7	1	LT1021DCS8-5	5V Reference	LTC	(408) 432-1900
	4	SNT-100-BK-T	0.100cc Shunt	Samtec	(800) 726-8329
	4	HTSP-3	\#4-40 $\times 1 / 2^{\prime \prime}$ F/F Plastic Standoff	Micro Plastic	(501) 453-8861
	4	Any	\#4-40, 3/8" Phillips Pan Head Screw		

OPERATION

OPERATING THE BOARD

Powering the Board

To use the demo board, apply a 7 V to 15 V power source capable of supplying $\geq 100 \mathrm{~mA}$ to the banana jacks (J2 and J 3). Be careful to observe the correct polarity. Internal regulators provide 5 V to the V_{CC} and $\mathrm{V}_{\text {REF }}$ pin of the LTC1286. A LT1121-5 regulator provides 5 V for the digital circuitry.

Applying the Analog Input

Analog signals are applied to the LTC1268 demo board using turret terminals +IN and -IN. The analog signal input range is 0 V to 5 V . Optimum performance is achieved
using a signal source that has low output impedance, is low noise and has low distortion. Signal generators such as the $B \& K$ Type 1051 sine generator give excellent results.

Applying the Clock Signal

The clock signal is applied to BNC connector J 1 and the $\overline{\text { CS }}$ signal is generated on the board. The clock input uses TTL or CMOS levels. The maximum clock frequency is 200kHz. After applying the clock signal and while it is active, a high-to-low logic leveltransition on the LTC1286's $\overline{\mathrm{CS}}$ input initiates a conversion and data transfer as shown in Figure 1.

operation

Figure 1. Timing Diagram

Reading the Output Data

The ADC serial data outputs are buffered by the two 74HC595 latches and are available as a parallel output on connector JP6. The latches are used to drive the LEDs and connector (Refer to the LTC1286 data sheet for details on different digital interface modes).

The LTC1286 output data is in unipolar format. A Data Ready line, RDY, (JP6 pin 13) is provided to latch the data. Data is valid on the rising edge of RDY. Connector JP6 has two ground pins (JP6 pin 15 and JP6 pin 16). These pins should be connected to the digital ground of a data receiving system.

The LTC1286 data word can be acquired with a logic analyzer. By using a logic analyzer that has a PC-compatible floppy drive, (such as an HP1663A), conversion data can be stored on a disk and easily transferred to a PC. Once the data is transfered to a PC, programs such as Mathcad or Excel can be used to calculate FFTs. The FFTs can be used to obtain LTC1286 AC specifications such as signal-to-noise ratio and total harmonic distortion.

LEDs D0 to D11 provide a visual display of the LTC1286 digital output word. D0 is the LSB and D11 is the MSB. Jumper JP1 can be removed to disable the LEDs reducing supply consumption by up to 56 mA .

Driving CS and CLK

Jumpers for $\overline{C S}$, CLK, and $D_{\text {OUT }}(J P 2$ to JP4) are shorted for normal operation. The jumpers can be removed and $\overline{\mathrm{CS}}$ and CLK lines can be externally driven if desired. See the LTC1286 data sheet for details on driving these lines.

LAYOUT

The use of separate analog and digital ground planes is a good practice for a well designed PC board using the LTC1286. The proper way to make the analog and digital ground planes can be seen by examining the solder side of the PCB layout. The two ground planes are completely isolated except for one connection near the top of the board. The two ground planes follow the same path on the component and solder sides of the board to reduce coupling between the ground planes. Further, any trace that opens a portion of the ground plane may reduce the ground plane's efficiency. Therefore, ensure that the analog ground plane's solder side has a limited number of plane-breaking traces within it. The analog and digital traces do not cross each other (whether on the board's top or bottom side) or run adjacent to each other.

BYPASSING

It is important that the supply and reference bypass capacitors for the LTC1286 be placed as close as possible to the supply and reference pins. The ground side of the capacitors should have very short paths to analog ground. The $V_{C C}$ and $V_{\text {REF }}$ pins should be bypassed with high quality ceramic capacitors of at least $0.1 \mu \mathrm{~F}$.

OPERATION

Table 1.

JUMPER	JUMPER NAME	JUMPER CONNECTION
JP1	LED Enable	Shorted to enable LEDs. Open to disable the LEDs.
JP2	$\overline{\text { CS }}$	Shorted for normal operation. If open, the $\overline{\text { CS }}$ line can be driven externally to select or deselect the LTC1286.
JP3	DOUT $^{\text {JP4 }}$	CLK
Shorted for normal operation. If open, the D Dut line can drive a scope probe.		

Table 2.

INPUT/OUTPUT PIN	FUNCTION
J1	Clock Input
J2	7V to 15V at $\geq 100 \mathrm{~mA}$
J3	Ground
+ IN	Positive Analog Input
- IN	Negative Analog Input
JP6-1	D1 (LSB)
JP6-2	D2
JP6-3	D3
JP6-4	D4
JP6-5	D5
JP6-6	D6
JP6-7	D8
JP6-8	D9
JP6-9	D10
JP6-10	D11 (MSB)
JP6-11	RDY. Can be used by an external system to latch the JP6-12
JP6-13	ADC's output. Latch data on the rising edge.
	Data. Serial data output of the ADC
JP6-14	Ground. Connect to the digital ground of a data receiving system.
JP6-15	

DEMO MANUAL DC043

PCß LAYOUT AnD FILm

Circuit: Component Side

Component Side Solder Mask

Circuit: Solder Side

Solder Side Solder Mask

PCB LAYOUT ARD FILm

Component Side Silkscreen

PC FAB DRAWING

NOTES:

1. MATERIAL IS FR4, 0.062" THICK WITH 2 OUNCE COPPER
2. PCB WILL BE DOUBLE-SIDED WITH PLATED THROUGH-HOLES
3. HOLE SIZES ARE AFTER PLATING. PLATED THROUGH HOLE WALL THICKNESS MINIMUM 0.0014" (10Z.).
4. USE PADMASTER PROCESS.
5. SOLDER MASK BOTH SIDES WITH PC401 USING FILM PROVIDED.
6. SILKSCREEN COMPONENT SIDE USING FILM PROVIDED. USE WHITE, NON-CONDUCTIVE INK.
7. ALL DIMENSIONS ARE IN INCHES.

SYMBOL	DIAMETER	\# OF HOLES
A	0.094	2
C	0.210	2
D	0.120	4
E	0.043	5
F	0.039	159
UNMARKED	0.020	57
	TOTAL HOLES	229

NORTHEAST REGION

Linear Technology Corporation 3220 Tillman Drive, Suite 120
Bensalem, PA 19020
Phone: (215) 638-9667
FAX: (215) 638-9764
Linear Technology Corporation
266 Lowell St., Suite B-8
Wilmington, MA 01887
Phone: (508) 658-3881
FAX: (508) 658-2701

FRANCE

Linear Technology S.A.R.L.
Immeuble "Le Quartz"
58 Chemin de la Justice
92290 Chatenay Malabry
France
Phone: 33-1-41079555
FAX: 33-1-46314613
GERMANY
Linear Techonolgy GmbH
Untere Hauptstr. 9
D-85386 Eching
Germany
Phone: 49-89-3197410
FAX: 49-89-3194821

JAPAN

Linear Technology KK
5F NAO Bldg.
1-14 Shin-Ogawa-cho Shinjuku-ku
Tokyo, 162 Japan
Phone: 81-3-3267-7891
FAX: 81-3-3267-8510

U.S. Area Sales Offices

SOUTHEAST REGION

Linear Technology Corporation
17060 Dallas Parkway
Suite 208
Dallas, TX 75248
Phone: (214) 733-3071
FAX: (214) 380-5138
CENTRAL REGION
Linear Technology Corporation
Chesapeake Square
229 Mitchell Court, Suite A-25
Addison, IL 60101
Phone: (708) 620-6910
FAX: (708) 620-6977

International Sales Offices

KOREA

Linear Technology Korea Branch
Namsong Building, \#505
Itaewon-Dong 260-199
Yongsan-Ku, Seoul
Korea
Phone: 82-2-792-1617
FAX: 82-2-792-1619
SINGAPORE
Linear Technology Pte. Ltd. 507 Yishun Industrial Park A
Singapore 2776
Phone: 65-753-2692
FAX: 65-754-4113

SOUTHWEST REGION

Linear Technology Corporation
22141 Ventura Blvd.
Suite 206
Woodland Hills, CA 91364
Phone: (818) 703-0835
FAX: (818) 703-0517

NORTHWEST REGION
Linear Technology Corporation
782 Sycamore Dr.
Milpitas, CA 95035
Phone: (408) 428-2050
FAX: (408) 432-6331

TAIWAN

Linear Technology Corporation
Rm. 801, No. 46, Sec. 2
Chung Shan N. Rd.
Taipei, Taiwan, R.O.C.
Phone: 886-2-521-7575
FAX: 886-2-562-2285

UNITED KINGDOM
Linear Technology (UK) Ltd.
The Coliseum, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom
Phone: 44-276-677676
FAX: 44-276-64851

World Headquarters

Linear Technology Corporation
1630 McCarthy Blvd.
Milpitas, CA 95035-7487
Phone: (408) 432-1900
FAX: (408) 434-0507

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Data Conversion IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-AD5063EBZ EVAL-AD5422LFEBZ EVAL-AD7265EDZ EVAL-AD7641EDZ EVAL-AD7674EDZ EVAL-AD7719EBZ EVAL-AD7767-1EDZ EVAL-AD7995EBZ AD9114-DPG2-EBZ AD9211-200EBZ AD9251-20EBZ AD9251-65EBZ AD9255-125EBZ AD9284250EBZ AD9613-170EBZ AD9627-125EBZ AD9629-20EBZ AD9709-EBZ AD9716-DPG2-EBZ AD9737A-EBZ AD9787-DPG2-EBZ AD9993-EBZ DAC8555EVM ADS5482EVM ADS8372EVM EVAL-AD5061EBZ EVAL-AD5062EBZ EVAL-AD5443-DBRDZ EVALAD5570SDZ EVAL-AD7450ASDZ EVAL-AD7677EDZ EVAL-AD7992EBZ EVAL-AD7994EBZ AD9119-MIX-EBZ AD9148-M5375EBZ AD9204-80EBZ AD9233-125EBZ AD9265-105EBZ AD9265-80EBZ AD9608-125EBZ AD9629-80EBZ AD9648-125EBZ AD964920EBZ AD9650-80EBZ AD9765-EBZ AD9767-EBZ AD9778A-DPG2-EBZ ADS8322EVM LM96080EB/NOPB EVAL-AD5445SDZ

