DEMO MANUAL DC1052A

LTC4218 Hot Swap Controller

DESCRIPTIOn

Demonstration circuit DC1052A includes two separate circuits for performance evaluation of the LTC ${ }^{\circledR} 4218$ Hot Swap ${ }^{\text {TM }}$ controller. The standard version of the controller (LTC4218) is intended to operate with 2.9 V to 26.5 V rails, while the LTC4218-12 has internal adjustment for 12 V applications.
One circuit of DC1052A located on the upper board area is assembled with the LTC4218 configured for operation with a 24 V rail. The circuit on the lower board area includes the LTC4218-12. Circuit breaker thresholds in both cases are adjusted to 7.5A.
The LTC4218 features accurate current limiting with foldback and a ground-referred current monitor. The current monitor sources a current that is proportional to the sense
voltage, and it may be converted into a voltage signal with an appropriate resistor.
The current limit may be reduced by placing an external resistor between GND and the ISET pin.

The LTC4218 protects the load from overvoltage and undervoltage conditions.
The DC1052A schematic allows the LTC4218 to operate in turn-on and turn-off modes as well as in the steady-state mode with different loads, and in the fault state.

Design files for this circuit board are available at http://www.linear.com/demo
$\boldsymbol{\mathcal { O }}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and Hot Swap is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners.

PERFORMANCESUMMARY Specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
24V Circuit						
$V_{D D}$	Input Supply Range	Typical Value	19.89	24	26.34	V
$\mathrm{V}_{\text {DD(UVL) }}$	Input Supply Undervoltage Range	$V_{\text {DD }}$ Rising	19.32	19.89	20.68	V
$\mathrm{V}_{\mathrm{DD}(\mathrm{OVH})}$	Input Supply Overvoltage Range	$V_{\text {DD }}$ Rising	25.56	26.34	27.39	V
$\mathrm{V}_{\text {OUT(PG) }}$	Output Voltage Defined as Power Good	V SOURCE Rising	20.00	20.75	21.57	V
$\mathrm{t}_{\text {tIMER }}$	Timer Period		0.9	1.235	1.76	ms
limit	Current Limit	$V_{\text {FB }}=1.23 \mathrm{~V}$ ($\mathrm{V}_{\text {OUT }}$ in the Range 20.33 V to 21.16 V) $\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$ to 0.15 V ($\mathrm{V}_{\text {OUT }}$ in the Range 0 V to 2.6 V)	$\begin{aligned} & \hline 7.05 \\ & 1.38 \end{aligned}$	$\begin{gathered} \hline 7.5 \\ 1.88 \end{gathered}$	$\begin{aligned} & \hline 7.95 \\ & 2.37 \end{aligned}$	A
$\mathrm{C}_{\text {MAX24 }}$	Maximal Load Capacitance	Successful Power-Up Mode		600		$\mu \mathrm{F}$
$\mathrm{C}_{\text {MIN24 }}$	Minimal Load Capacitance	Unsuccessful Power-Up Mode		1800		$\mu \mathrm{F}$
12V Circuit						
V_{DD}	Input Supply Range	Typical Value	9.88	12	15.05	V
VDD(UVL)	Input Supply Undervoltage Range	$V_{\text {DD }}$ Rising	9.6	9.88	10.2	V
$\mathrm{V}_{\mathrm{DD} \text { (OVH) }}$	Input Supply Overvoltage Range	$V_{\text {DD }}$ Rising	14.7	15.05	15.4	V
$\mathrm{V}_{\text {OUT(PG) }}$	Output Voltage Defined as Power Good	$V_{\text {SOURCE }}$ Rising	10.2	10.5	10.8	V
$\mathrm{t}_{\text {tIMER }}$	Timer Period		0.9	1.235	1.76	ms
limit	Current Limit	$V_{F B}=1.23 \mathrm{~V}$ ($\mathrm{V}_{\text {OUT }}$ in the Range 10.3 V to 10.4 V) $\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$ to 0.15 V ($\mathrm{V}_{\text {OUT }}$ in the Range 0 V to 1.27 V)	$\begin{aligned} & \hline 7.05 \\ & 1.38 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 7.5 \\ 1.88 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 7.95 \\ & 2.37 \\ & \hline \end{aligned}$	A
$\mathrm{C}_{\text {MAX12 }}$	Maximal Load Capacitance	Successful Power-Up Mode		900		$\mu \mathrm{F}$
$\mathrm{C}_{\text {MIN12 }}$	Minimal Load Capacitance	Unsuccessful Power-Up Mode		1800		$\mu \mathrm{F}$
						dc1052af

DEMO MANUAL DC1052A

operating principles

The LTC4218 is suited for low voltage power control in applications for hot board insertion or removal with electronic circuit breaker function, foldback current limit and load current monitoring. The LTC4218 has a rich set of features to support Hot Swap applications, including:

- 2% accurate undervoltage and overvoltage protection
- Adjustable 5\% accurate current limit
- Adjustable inrush current control
- Load current monitoring
- Adjustable current limit timer before power is turned off
- Power good and fault signaling

PUICK START PROCEDURE

Demonstration circuit 1052A is easy to set up to evaluate the performance of the LTC4218 and LTC4218-12. Refer to Figure 1 for the proper measurement equipment setup and follow the procedure below.

For the 24 V circuit:

1. Place jumpers in the following positions:

JP1	FAULT	Signal
JP2	AUX_UV	ON

2. With power off, connect the 24 V power supply terminals to the $24 \mathrm{~V}_{\mathrm{IN}}$ (E1) and GND (E4) turrets.
3. Turn on the 24 V supply and verify the output voltage between the $\mathrm{V}_{\text {OUT }}$ (E2) and GND (E3) turrets. Green LEDs 24VIN (D2) and $V_{\text {OUT }}$ (D4) should light up.
4. Check the current limit by providing an electronic or resistive load. It should be in the range of 7.05 A to 7.95A. During this measurement, verify the current monitor performance. The monitor signal related to the current limit level should be $2.0 \mathrm{~V} \pm 0.17 \mathrm{~V}$. The monitor signal has a $3.75 \mathrm{~A} / \mathrm{V}$ scale.
5. Use an oscilloscope to check the output voltage slew rate without a load connected. It should be in the range of $1680 \mathrm{~V} /$ s to $2300 \mathrm{~V} / \mathrm{s}$. Use an $1800 \mu \mathrm{~F}$ capacitive load to confirm that during power-up, the timer period expires and a current limit fault is indicated by the FAULT red LED (D5). The PG red LED (D6) indicates that the output voltage is lower than the power good level.

For the 12V circuit:
6. Place jumpers in the following positions:

JP3	$\overline{\text { FAULT }}$	Signal
JP4	AUX_UV	ON

7. With power off, connect the 12 V power supply terminals to the $12 \mathrm{~V}_{\text {IN }}$ (E9) and GND (E12) turrets.
8. Turn on the 12 V supply and verify the output voltage at the $\mathrm{V}_{\text {OUT }}$ (E10) and GND (E11) turrets. Green LEDs $12 V_{\text {IN }}$ (D9) and $V_{\text {OUT }}$ (D11) should light up.
9. Check the current limit by providing an electronic or resistive load. It should be in the range of 7.05 A to 7.95A. During this measurement verify the current monitor performance. The monitor signal related to the current limit level should be $2.0 \mathrm{~V} \pm 0.17 \mathrm{~V}$. The monitor signal has a $3.75 \mathrm{~A} / \mathrm{V}$ scale.
10. Check the output voltage slew rate with an oscilloscope without a load connected. It should be in the range of $1680 \mathrm{~V} / \mathrm{s}$ to $2300 \mathrm{~V} / \mathrm{s}$.
11. Use an $1800 \mu \mathrm{~F}$ capacitive load to confirm that during power-up the timer period expires and a current limit fault is indicated by the FAULT red LED (D12) accompanied by the PG red LED (D13) to indicate that the output voltage is lower than the power good level.

PUICK START PROCEDURE

Figure 1. Proper Measurement Equipment Setup

DEMO MANUAL DC1052A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
1	4	C1, C2, C4, C6	CAP., CER X7R $0.1 \mu \mathrm{~F} 16 \mathrm{~V} 0603$	AVX 0603YC104KAT2A
2	2	C3, C5	CAP., CER X7R 0.01~F 50V 0603	AVX 06035C103KAT2A
3	0	COUT1, COUT2	OPTIONAL	
4	0	CIN1, CIN2	OPTIONAL	
5	8	E5-E8, E13-E16	TURRET, TEST PIN, .061"	MILL-MAX 2308-2-00-44
6	8	E1-E4, E9-E12	TURRET, TEST PIN, .095"	MILL-MAX 2501-2
7	4	JP1-JP4	JUMPER, 0.079, 3 PIN	SAMTEC, TMM-103-02-L-S
8	4	JP1-JP4	SHUNT,	SAMTEC, 2SN-BK-G
9	4	D5, D6, D12, D13	LED, SMT RED	PANASONIC, LN1251C
10	4	D2, D4, D9, D11	LED, SMT GREEN	PANASONIC, LN1351C
11	1	D1	DIODE, 600W TRANSIENT VOLTAGE SUPPRESSOR	DIODES INC., SMBJ24A
12	1	D8	DIODE, 600W TRANSIENT VOLTAGE SUPPRESSOR	DIODES INC., SMBJ12A
13	0	D3, D10, D17, D14	OPTIONAL	SMA
14	2	Q1, Q2	MOSFET N-CHANNEL 30V, POWER PAK-SO-8	VISHAY, Si7880ADP
15	2	R1, R13	RES., CHIP, 0.002 ${ }^{\text {1/4W } 1 \% 1206}$	VISHAY, WSL12062L000FEA
16	2	R8, R18	RES., CHIP, 10, 1/16W 5\% 0603	VISHAY, CRCW060310ROJNEA
17	2	R11, R19	RES., CHIP, 1k 1/16W 5\% 0603	VISHAY, CRCW06031K00JNEA
18	1	R10	RES., CHIP, 3.24k 1/16W 1\% 0603	Vishay, CRCW06033K24FKEA
19	4	R14-R17	RES., CHIP, 3.30k 1/16W 5\% 0603	VISHAY, CRCW06033K30JNEA
20	4	R2, R4, R5, R6	RES., CHIP, 6.80k 1/4W 5\% 1206	VISHAY, CRCW12066K80JNEA
21	2	R9, R12	RES., CHIP, 10k 1/16W 1\% 0603	VISHAY, CRCW060310KOFKEA
22	2	RMON1, RMON2	RES., CHIP, 20k 1/16W 5\% 0805	VISHAY, CRCW080520KOJNEA
23	1	R7	RES., CHIP, 158k 1/16W 1\% 0603	VISHAY, CRCW0603158KFKEA
24	1	R3	RES., CHIP, 200k 1/16W 1\% 0603	VISHAY, CRCW0603200KFKEA
25	0	RSET1, RSET2	OPTIONAL	
26	1	U1	IC., HOT SWAP CONTROLLER	LINEAR, LTC4218CGN
27	1	U2	IC., HOT SWAP CONTROLLER	LINEAR, LTC4218CDHC-12

SCHEMATIC DIAGRAM

DEMO MANUAL DC1052A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPÓSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).
No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

