\propto LINEAR
 DEMO MANUAL DC 115
 12-BIT RAIL-TO-RAIL C ONVERTER
 LTC 1451 (5V) a nd
 LTC 1453 (3V) D/A Converters

DESCRIPTIO n

The LTC ${ }^{\circledR}$ 1451/LTC1453, respectively, are 5 V and 3 V 12bit, rail-to-rail output D/A converters. The LTC1451 draws 2 mW and the LTC1453 draws 0.75 mW . Both of these parts aremonotonic over theindustrial temperaturerange, with differential nonlinearity guaranteed to be less than 0.5 LSB. The LTC1451 and LTC1453 are complete with a rail-to-rail output buffer amplifier and reference in an SO 8 packagethat occupies just $0.1 \mathrm{inch}^{2}$, including abypass capacitor. The low power supply current and small size makes these circuits ideal for portable battery-powered applications. In addition, these circuits are also used for digital calibration, industrial process control and ATE The LTC1451/LTC1453 demonstration board allows the user to evaluate the LTC1451 and LTC1453 12-bit rail-to-rail D/A converters. In addition, the LTC1451/LTC1453 demonstration board is intended to demonstrate layout and bypassing techniques required to obtain optimum performance from these parts. The demonstration board is designedto beeasy to useand requires only one 7 V to 15 V supply. SincetheseDACs havea3-pinserial interface(SPI and QSPI compatible), the demonstration board includes parallel-to-serial conversion circuitry. The user can set any 12 -bit code by means of dip switches, or connect a

GPIOparallel bus to drivetheLTC1451/LTC1453. Theuser can also drivetheLTC1451/LTC1453 CLK, DiN and $\overline{C S} / L D$ inputs directly through connections to the appropriate terminals. Theoutputs of the parallel-to-serial conversion circuitry are brought out to these same terminals for monitoring or driving other serial parts. The rail-to-rail voltage output of the LTC1451/LTC1453 is available on a BNCconnector andtheonboard referenceof the LTC1451/ LTC1453 is brought out to aterminal. This manual shows howtousethis demonstrationboard and includes atiming diagramfor driving thepart with a12-bit bus. Additionally, aschematic, parts list, drawings and dimensions of all the PCboard layers are included. An explanation of the layout strategy is also provided. Gerber files for this circuit board are available. Call the LTC factory.
Some key features of this demonstration board include:

- 0.5 LSB Max Differential Nonlinearity ($0.2 L S B$ typ)
- Rail-to-Rail Ottput Capability
- Convenient 12-Bit Parallel-to-Serial Converter
- Separate Prototype Area
$\overline{\mathbf{Q}}$, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL PERFO RMAnCE CHARACTERISTICS AnD BO ARD PHO TO

Demo Board

DEMO MANUAL DC 115

12-BITRAIL-TO-RAIL C ONVERTER

PACKAGE AND SCHEMATIC DIAG RAMS

DEMO MANUAL DC 115
 12-BIT RAIL-TO-RAIL C O NVERTER

PARTS LIST

REFERENCE DESIGNATOR	QUANTITY	PART NUMBER	DESCRIPTION	VENDOR	TELEPHONE
C1	1	08055A121KATM	120pF50V NPO Chip Capacitor	AVX	(803) 946-0362
C, CA	2	TPSD106M035R0100	10」F35V 20\% Tantalum Capacitor	AVX	(803) 946-0238
C	1	TAJD476K016R	47 F F 16V 10\% Tantalum Capacitor	AVX	(803) 946-0238
C5 to C11	7	08055G104ZAT3S	$0.1 \mu \mathrm{~F} 50 \mathrm{~V} 20 \%$ Y5V Chip Capacitor	AVX	(803) 946-0362
E1, E2	2	575-4	Banana Jack	Keystone	(718) 956-8900
E3, E4	2	1502-02	Turret Terminal	Keystone	(718) 956-8900
JP1	1	3201S-7-G1	0.100 7X2 Header	Com Con	(818) 301-4200
JP2 (JP3, JP4, JP5)	2	3201S-3-G1	0.1003×2 Header	Com Con	(818) 301-4200
J1	1	112404	Vert PGMNT Connector	Connex	(805) 378-6464
R1 to R12	12	CR21-103J-T 0805	10k 1/8W 5\% Chip Resistor	AVX	(803) 946-0524
R13 to R24	12	CR21-204J-T 0805	200k 1/8W 5\% Chip Resistor	AVX	(803) 946-0524
R25, R28	2	CR21-512J-T 0805	5.1k 1/8W 5\% Chip Resistor	AVX	(803) 946-0524
R26	1	CR21-1182F-T0805	11.8k 1/8W 1\% Chip Resistor	AVX	(803) 946-0524
R27	1	CR21-100J-T 0805	10ת 1/8W 5\% Chip Resistor	AVX	(803) 946-0524
SW1,SW2	2	DM08 (MORS)	SMD Switch	APEM	(781) 246-1007
U1	1	74HC132AD	Quad 2-Input Nand Gate IC	Motorola	(602) 244-3576
U2	1	74H004AD	Hex Inverter IC	Motorola	(602) 244-3576
U3	1	74HC74AD	Dual D Fip/Fop Set IC	Motorola	(602) 244-3576
U4 (for 5V)	1	LT1121IS8-3.3/5	Micropower Regulator ICs	LTC	(408) 432-1900
U5 (for 5V)	1	LTC1451IS8	Use with 5V LTC1451IS8 IC	LTC	(408) 432-1900
U4 (for 3.3V)	1	LT1121IS8-5	Micopower Regulator ICs	LTC	(408) 432-1900
U5 (for 3.3V)	1	LTC1453IS8	Use with 3.3V LTC14531S8	LTC	(408) 432-1900
U6	1	74HC163AD	Presettable Counter IC	Motorola	(602) 244-3576
U7, U8	2	74HC165D	8-Bit Parallel Input IC	Motorola	(602) 244-3576
	4	4-40	1/2" Nylon Stand-Off Screw	Any	
	4	4-40	1/4" Screw	Any	
	3	OClJ230-G	Shunt	Com Con	(818) 301-4200

DEMO MANUAL DC 115

OPERATIO

OPERATING THE BOARD

Powering the Board

To use the demonstration board, apply 7 V to 15 V at 10 mA to banana jack E1 and OV (GND) to banana jack E2. An internal regulator is included: an LT1121-5 provides a5V supply for the LTC1451 board and an LT1121-3.3 provides a 3.3 V supply for the LTC1453 board.

Operation Using the Onboard Dip Switches to Set Input Code

The two banks of dip-switches, SW1 and SW2, can be used to set the appropriate 12-bit input code for the LTC1451/LTC1453. The onboard parallel-to-serial conversioncircuitry will generatetheappropriate serial stream of data (CLK, $D_{\text {IN }}$ and $\left.\overline{C S} / L D\right)$ for the LTC1451/LTC1453. The CLK, $D_{I N}$ and $\overline{C S} / L D$ signals are present on JP2-3, JP2-4 and JP2-5, respectively. The $\overline{C S} / L D$ signal is inverted by U2F, creating an LD signal for the user. The LD signal is present onJP2-2. TheLTC1451/LTC1453Dour is also brought out to Pin 6 of JP2 along with GND on Pin 1. This pin provides a convenient GND terminal when measuring or driving these signals. The LTC1451/LTC1453 onboard referenceis availableonterminal E3. TheLTC1451 has a 2.048 V reference and the LTC1453 has a 1.22 V reference.

Switch 1 onSW1 selects thelogicstate of theMSB(DB11) and switch 4 on SW2 selects the logic state of the LSB (DBO), as shown on the schematic. Switch 8 on SW2 selects the logic state of the SEECT signal. This signal activates the parallel-to-serial circuitry. Push the appropriate switch to the OFFposition to set abit high or to the ON position to set abit low. Setting the SEEECT switch to the OFF position places the parallel-to-serial circuitry in continuous mode. This mode continuously generates a serial stream of whatever is set on the databits (switches $1-8$ on SW1 and switches 1-4 on SW2). As soon as any
of thesebits are changed, the serial stream, and hencethe output of the LTC1451/LTC1453, changes appropriately. Move the SE ECT switch to the ON position to stop the parallel-to-serial circuitry. Any changes on the data-bit switches will be ignored until the SEEECT switch is returned to the OFF position.

Operation Using an External 12-Bit Parallel Bus

The inputs to the parallel-to-serial converter are also available on the pins of jumper JP1. Pin 3 is the MSB and Pin 14 is the LSB. The external data source is loaded by 200k pull-up resistors to V_{\propto} and by 10k pull-down resistors through the switches, SW1 and SW2, to GND. These must beoverdriven when an external 12-bit parallel dataword is applied to JP1. Theparallel-to-serial circuitry is activated by a falling-edge-triggered STROBE signal on Pin 2 of JP1. This STROBEpin is loaded by a5.1k pull-up resistor to V_{\propto} Besureto set theSEECT switch totheON position for noncontinuous mode. If SE ECT is still active, changing any bit on JP1 creates an instant change to the continuous serial data stream applied to the LTC1451/ LTC1453. As soon as the 12-bit data word is loaded into the LTC1451/LTC1453, the paralle-to-serial circuitry can be activated once by a falling edge on STROBE (see the timing diagram in Figure 1).

Driving the CLK, D_{IN} and CS/LD Pins Directly

Through JP2, the LTC1451/LTC1453's SPI-compatible serial interface can receive data directly from an external serial data source. Disconnect jumpers JP3, JP4 and JP5 and use JP2 to drive the digital inputs. On JP2, Pin 3 is CLK, Pin 4 is $D_{I N}$ and Pin 5 is CS/LD. The LTC1451/ LTC1453's daisy-chain serial data output, $\mathrm{D}_{\mathrm{O} \text {, }}$, is also availableon Pin6 of JP2. This is thedigital output from the onboard 12-bit shift register of the LTC1451/LTC1453. See timing diagram from LTC1451/LTC1452/LTC1453 data sheet for timing details.

OPERATIO

LAYOUT

Awell-designed printed circuit board layout incorporating the LTC1451/LTC1453 uses separate analog and digital ground planes. Because the LTC1451/LTC1453 has only oneGND pin, it is acceptableto useonly oneground plane on a PCB layout. However, if there is considerable digital circuitry on the board, such as on the LTC1451/LTC1453 demonstration board, it is advisable to have separate ground planes.

Figure 1. Timing Diagram For STROBE Signal

The demonstration board layout (section titled "PCB Layout and Film") shows the best way to configure and connect the ground planes and the appropriate supply bypassing.
Table 1. Functional Description of User Configurable Jumpers

JUMPER	JUMPER NAME	JUMPER CONNECTION
JP3	Din Erable	Open to Drive Din Pin Externally
JP4	O.KEnable	Open to Drive C_K Pin Externally
JP5	$\overline{\mathrm{CS}} / \mathrm{LD}$ Enable	Open to Drive $\overline{\mathrm{C}} / L \mathrm{LD} \mathrm{Pin} \mathrm{Externally}$

Table 2. Input and Output Pin Functional Description

INPUT/OUTPUT PIN	FUNCTION
E1	Supply Voltage: 7V to 15V at 10mA
E2	Supply Ground
E3	LTC1451/LTC1453 Reference Output
E4	Analog Ground Terminal
J1	LTC1451/LTC1453 Rail-to-Rail Voltage Cutput
JP1-1	Digital Ground
JP1-2	STROBE Input
JP1-3	DB11
JP1-4	DB10
JP1-5	DB9
JP1-6	DB8
JP1-7	DB7
JP1-8	DB5
JP1-9	DB4
JP1-10	DB3
JP1-11	DB2
JP1-12	DB1
JP1-13	DB0
JP1-14	Digital Ground
JP2-1	LD Output
JP2-2	CLKInput/Output
JP2-3	DIN Input/Output
JP2-4	LTC1451/LTC1453 Dor Output
JP2-5	JP2-6

PCB LAYOUT AnD FILM

Component Side Silkscreen

Component Side

Component Side Mask

Solder Side

Solder Side Mask

Pastemask Top

DEMO MANUALDC 115

PC FAB DRAWInG

SYMBOL	DIAMETER (INCH)	NUMBER OF HOLES	PLATED
A	0.020	75	YES
B	0.035	130	YES
C	0.040	26	YES
D	0.072	2	NO
E	0.062	4	YES
F	0.052	1	YES
G	0.094	2	YES
H	0.125	4	YES
I	0.205	2	YES

NOTES: UNLESS OTHERWISE SPECARED

1. MATERIAL: R4 OREQUIVALENT $\mathbb{P} O X Y, 2$ OZ OOPPERCAD. THICKNESS 0.061 ± 0.006 TOTAL OF2 LAYERS.
2. FNISH: ALL PLATED HOLES 0.001 MIN $/ 0.0015$ MAX OOPPER PLATE

E ECTRODEPOSITED TIN-LEAD COMPOSISTION. BEOREREOW, SOLDER MASK OVER BARECOPPR (SMOBC)
3. SOLDER MASK: BOTH SIDES USING GRETV PG-401 OR EQUIVALENT
4. SILKSCRBN: USING WHITENON-OONDUCTIVE POXY INK.
5. ALL DIMENSIONS ARE IN INCHES.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Data Conversion IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-AD5063EBZ EVAL-AD5422LFEBZ EVAL-AD7265EDZ EVAL-AD7641EDZ EVAL-AD7674EDZ EVAL-AD7719EBZ EVAL-AD7767-1EDZ EVAL-AD7995EBZ AD9114-DPG2-EBZ AD9211-200EBZ AD9251-20EBZ AD9251-65EBZ AD9255-125EBZ AD9284250EBZ AD9613-170EBZ AD9627-125EBZ AD9629-20EBZ AD9709-EBZ AD9716-DPG2-EBZ AD9737A-EBZ AD9787-DPG2-EBZ AD9993-EBZ DAC8555EVM ADS5482EVM ADS8372EVM EVAL-AD5061EBZ EVAL-AD5062EBZ EVAL-AD5443-DBRDZ EVALAD5570SDZ EVAL-AD7450ASDZ EVAL-AD7677EDZ EVAL-AD7992EBZ EVAL-AD7994EBZ AD9119-MIX-EBZ AD9148-M5375EBZ AD9204-80EBZ AD9233-125EBZ AD9265-105EBZ AD9265-80EBZ AD9608-125EBZ AD9629-80EBZ AD9648-125EBZ AD964920EBZ AD9650-80EBZ AD9765-EBZ AD9767-EBZ AD9778A-DPG2-EBZ ADS8322EVM LM96080EB/NOPB EVAL-AD5445SDZ

