DESCRIPTIO

Demonstration circuit 1195 features the LTM ${ }^{\circledR} 8023$, a step-down regulator preconfigured to deliver 3.3 V at up to 2 A from a 5 V to 36 V input supply. The LTM8023 is a step-down converter, so minimum amount of headroom is required to keep the output in regulation. In addition, the input voltage required to turn on is higher than that required to run (see Minimum Input Voltage section in the data sheet for detail). The optional Burst Mode ${ }^{\circledR}$ operation of LTM8023 supports high efficiency and low output ripple at light load conditions.

The LTM8023 data sheet gives a complete description of the part, operation and application information. The LTM8023 data sheet must be read in conjunction with this manual to operate or modify demo circuit 1195.

Design files for this circuit board are available at http://www.linear.com/demo

[^0]PGRFORMARCE SUMMARY ($\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

PARAMETER	CONDITION	VALUE
Input Voltage Range		5 V (Note 1) to 36V
Output Voltage Vout		3.3 V
Maximum Output Current		2 A
Typical Switching Frequency		600 kHz

Note 1: The circuit requires more than 5 V to run at full load. See Figure 1 and the data sheet for detail.

BOARD PHOTO

DEMO MANUAL DC1195A

PUICK START PROCEDURE

Demonstration circuit 1195 is a simple way to evaluate the performance of the LTM8023. Refer to Figure 2 and Figure 3 for proper measurement equipment setup and follow the procedure below:

NOTE. When measuring the input or output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the input or output voltage ripple by touching the probe tip directly across the $\mathrm{V}_{\text {IN }}$ or $V_{\text {OUT }}$ and GND terminals. See Figure 3 for proper scope probe technique.

1. Place JP1 on the ON position.
2. With power off, connect the input power supply to $\mathrm{V}_{\text {IN }}$ and GND.
3. Turn on the power at the input. The output voltage should rise to 3.3 V .
4. Once the proper output voltage is established, adjust the load within the operating range and observe the output voltage regulation, ripple voltage, efficiency and other parameters.

Figure 1. Load Current vs Input Voltage (3.3V VOT)

PUICK START PROCEDURE

Figure 2. Proper Measurement Equipment Setup

Figure 3. Measuring Input or Output Ripple

Figure 4. Efficiency

DEMO MANUAL DC1195A

PARTS LIST

ITEM	QUANTITY	REFERENCE-DESCRIPTION	DESCRIPTION	MANUFACTURER'S PART NUMBER
1	1	CIN	Cap, 22 $2 \mathrm{~F} 20 \%$ 50V Alum	Sanyo 50CE22BS
2	1	C1	Cap, 2.2 $\mu \mathrm{F} 10 \% 50 \mathrm{~V}$ X7R, 1206	Murata GRM31CR71H225KA88L
3	1	C2	Cap, 22 $\mu \mathrm{F} 20 \%$ 10V X5R, 1206	Taiyo Yuden LMK316BJ226ML-T
4	1	C3	Cap, 0.14F 10\% 50V X7R, 0603	TDK C1608X7R1H104K
5	5	E1, E2, E4, E5, E9	Turret	Mill-Max 2501-2-00-80-00-00-07-0
6	4	E3, E6, E7, E8	Turret	Mill-Max 2308-2-00-80-00-00-07-0
7	1	JP1	Header, 3 Pin, 2mm	Samtec TMM-103-02-L-S
8	1	R1	Res, 154k 1\% 1/16W, 0402	Vishay CRCW0402154KFKEA
9	1	R2	Res, 56.2k 1\% 1/16W, 0402	Vishay CRCW040256K2FKED
10	2	R4, R3	Res, 100k 1\% 1/16W, 0402	Vishay CRCW0402100KFKED
11	1	R5	Res, 10k 5\% 1/16W, 0402	Vishay CRCW040210KOJNED
12	1	U1	IC, Module	Linear Technology LTM8023EV
13	4		Standoff, Snap On	Keystone 8831
14	1	XJP1	Shunt, 2mm	Samtec 2SN-BK-G

SCHEMATIC DIAGRAM

DEMO MANUAL DC1195A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).
No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.
This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

[^0]: $\boldsymbol{\mathcal { Y }}$, LT, LTC, LTM, Linear Technology, Burst Mode, μ Module and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners

