

DEMO MANUAL DC1207A

LT3504

Quad 40V/1A Step-Down Switching Regulator with 100% Duty Cycle Operation

DESCRIPTION

The demo circuit 1207A is a quad current mode PWM step-down DC/DC converter featuring the LT®3504. The demo circuit is designed for 5V, 3.3V, 2.5V and 1.8V outputs from a 5.4V to 40V input. The current capability of each channel is up to 1A. Individual soft-start and current limit for each output as well as synchronous function simplify the complex design of quad-output power converters.

Each converter is synchronized to either a common external clock input or a resistor programmable 250kHz to 2.2MHz internal oscillator. Programmable frequency allows optimization between efficiency and external component

size. Each output can be independently disabled using its own RUN/SS pin.

The LT3504 data sheet gives a complete description of the device, operation and application information. The data sheet must be read in conjunction with this quick start guide for the demo circuit 1207A.

Design files for this circuit board are available at http://www.linear.com/demo

T, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

PERFORMANCE SUMMARY Specifications are at T_A = 25°C

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V _{IN}	Input Supply Range		5.4		40	V
V _{OUT1}	Output Voltage 1		4.75	5	5.15	V
V _{OUT2}	Output Voltage 2		3.135	3.3	3.40	V
V _{OUT3}	Output Voltage 3		2.375	2.5	2.575	V
V _{OUT4}	Output Voltage 4		1.71	1.8	1.854	V
Frequency	Switching Frequency		0.9	1	1.1	MHz
I _{OUT1}	V _{OUT1} Maximum Output Current	V _{IN} = 5.4 ~ 40V	1			A
I _{OUT2}	V _{OUT2} Maximum Output Current	V _{IN} = 5.4 ~ 40V	1			A
I _{OUT3}	V _{OUT3} Maximum Output Current	V _{IN} = 5.4 ~ 40V	1			A
I _{OUT4}	V _{OUT4} Maximum Output Current	V _{IN} = 5.4 ~ 40V	1			А
V _{OUT1(AC)}	V _{OUT1} Output Ripple	V _{IN} = 5.4 ~ 40V, I _{OUT1} = 1A, BW = 20MHz			20	mV
V _{OUT2(AC)}	V _{OUT2} Output Ripple	$V_{IN} = 5.4 \sim 40V$, $I_{OUT2} = 1A$, $BW = 20MHz$			20	mV
V _{OUT3(AC)}	V _{OUT3} Output Ripple	V _{IN} = 5.4 ~ 40V, I _{OUT3} = 1A, BW = 20MHz			20	mV
V _{OUT4(AC)}	V _{OUT4} Output Ripple	V _{IN} = 5.4 ~ 40V, I _{OUT4} = 1A, BW = 20MHz			20	mV

DESCRIPTION

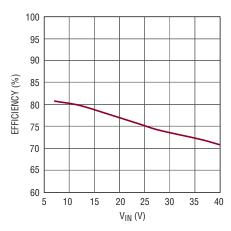


Figure 1. System Efficiency at f = 1MHz with All Channels Sourcing 1A Current

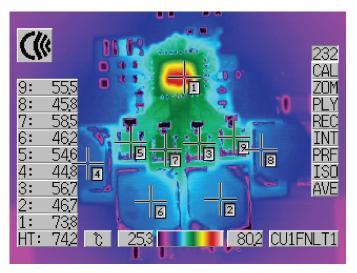


Figure 2. Thermal Image at V_{IN} = 12V, f = 1MHz with All Channels Sourcing 1A Current

QUICK START PROCEDURE

The demo circuit 1207A is easy to set up to evaluate the performance of the LT3504. Refer to Figure 3 for proper measurement equipment setup and follow the procedure below:

NOTE: When measuring the input or output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the input or output voltage ripple by touching the probe tip directly across the VIN or VOUT and GND terminals. See Figure 4 for proper scope probe technique.

- 1. Place JP1-JP5 on ON position.
- 2. With power off, connect the input power supply to VIN and GND.

3. Turn on the power at the input.

NOTE: Make sure that the input voltage does not exceed 40V.

4. Check for the proper output voltages.

NOTE. If there is no output, temporarily disconnect the load to make sure that the load is not set too high.

5. Once the proper output voltages are established, adjust the load within the operating range and observe the output voltage regulation, ripple voltage, efficiency and other parameters

QUICK START PROCEDURE

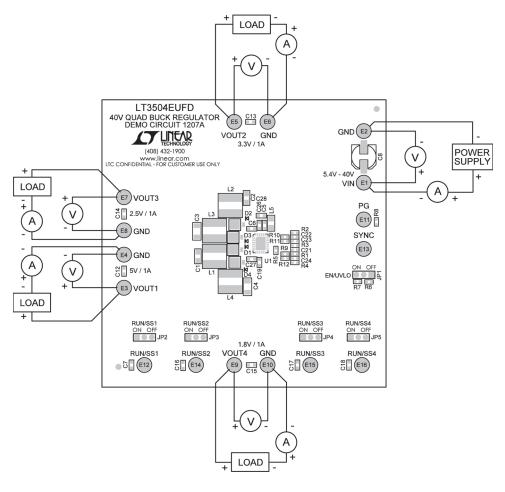


Figure 3. DC1207A Proper Equipment Setup

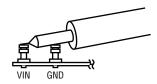
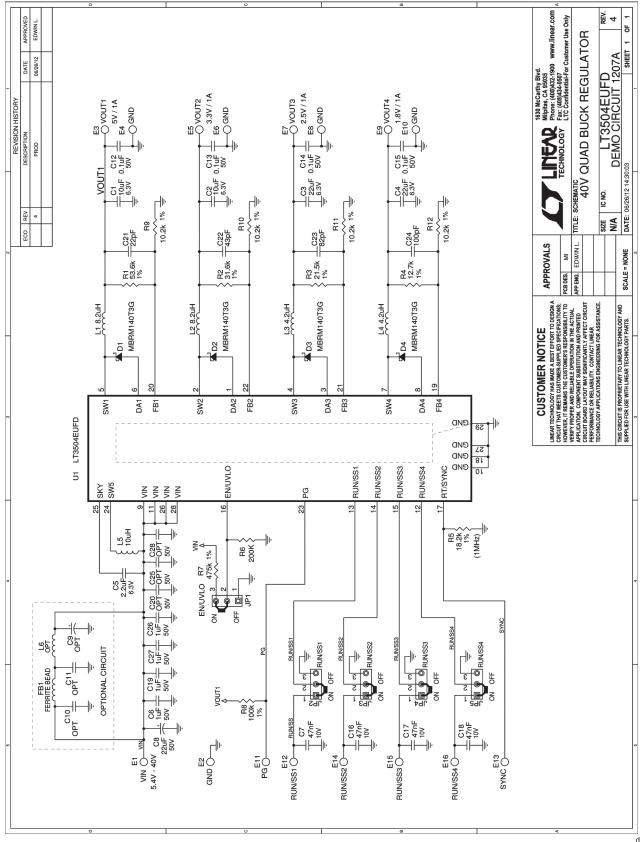



Figure 4. Measuring Input or Output Ripple

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER	
Required Circ	uit Compor	ents	·		
1	2	C1, C2	CAP, 0805 10µF 10% 6.3V X5R	AVX 08056D106KAT2A	
2	2	C3, C4	CAP, 1206 22µF 10% 6.3V X5R	AVX 12066D226KAT2A	
3	1	C5	CAP, 0603 2.2µF 10% 6.3V X5R	TAIYO YUDEN JMK107BJ225KAT	
4	4	C6, C19, C26, C27	CAP, 0603 1µF 10% 50V X5R	TDK C1608X5R1H105K	
5	4	C7, C16, C17, C18	CAP, 0603 47nF 10% 10V X7R	AVX 0603ZC473KAT2A	
6	1	C21	CAP, 0402 22pF 5% 16V NPO	AVX 0402YA220JAT2A	
7	1	C22	CAP, 0402 43pF 5% 25V NPO	AVX 04023A430JAT	
8	1	C23	CAP, 0402 82pF 5% 50V NPO	AVX 04025A820JAT	
9	1	C24	CAP, 0402 100pF 10% 16V X7R	AVX 0402YC101KAT	
10	4	D1-D4	DIODE, SCHOTTKY BARRIER RECTIFIER	ON SEMI MBRM140T3G	
11	2	L1, L2	IND, 8.2µH	SUMIDA CDRH5D28-8R2	
12	2	L3, L4	IND, 4.2µH	SUMIDA CDRH5D28-4R2	
13	1	L5	IND, 10μH	TAIYO YUDEN CBC2016100M	
14	1	R1	RES, 0402 53.6k 1% 1/16W	VISHAY CRCW040253K6FKED	
15	1	R2	RES, 0402 31.6k 1% 1/16W	VISHAY CRCW040231K6FKED	
16	1	R3	RES, 0402 21.5k 1% 1/16W	VISHAY CRCW040221K5FKEA	
17	1	R4	RES, 0402 12.7k 1% 1/16W	VISHAY CRCW040212K7FKED	
18	1	R5	RES, 0402 18.2k 1% 1/16W	VISHAY CRCW040218K2FKED	
19	1	R6	RES, 0402 200k 5% 1/16W	VISHAY CRCW0402200KJNED	
20	1	R7	RES, 0402 475k 1% 1/16W	VISHAY CRCW0402475KFKED	
21	1	R8	RES, 0402 100k 1% 1/16W	NIC NRC06F1003TRF	
22	4	R9-R12	RES, 0402 10.2k 1% 1/16W	VISHAY CRCW040210K2FKED	
23	1	U1	IC, 40V QUAD BUCK REGULATOR	LINEAR TECH. LT3504EUFD	
Additional De	mo Board C	Circuit Components			
1	1	C8	CAP, 22μF 20% 50V ALUM	SANYO 50CE22BS	
2	0	C9	CAP, OPTION	OPTION	
3	0	C10	CAP, 0603 OPTION	OPTION	
4	0	C11	CAP, 1206 OPTION	OPTION	
5	4	C12-C15	CAP, 0603 0.1µF 10% 50V X7R	MURATA GRM188R71H104KA93D	
6	0	FB1	FERRITE BEAD OPTION	OPTION	
7	0	L6	IND, OPTION	OPTION	
Hardware—F	or Demo Bo	ard Only		·	
1	16	E1-E16	TURRET	MILL MAX 2501-2-00-80-00-00-07-0	
2	5	JP1-JP5	HEADER, 3-PIN, 2mm	SAMTEC TMM-103-02-L-S	
3	5	JP1-JP5	SHUNT, 2mm	SAMTEC 2SN-BK-G	

SCHEMATIC DIAGRAM

DEMO MANUAL DC1207A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:

This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for **ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY** and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.

If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.

LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.

Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. **Common sense is encouraged**.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology 1630 McCarthy Blvd. Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management IC Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP1300.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM
BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM

NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL1.8EV/NOPB LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ