LED Driver with One Wire Control and Output Disconnect

WARNING!

DO NOT LOOK AT OPERATING LED.
This circuit produces light that can damage eyes.

DESCRIPTION

Demonstration circuit 1224 is a LED Driver with One Wire Control and Output Disconnect featuring the LT3593. The LT3593 is a step-up current mode DC/DC converter designed to drive up to 10 white LEDs in series from a Li-lon cell. The demo board has two sections. The top section showcases the small size LED drive. The maximum current is 20 mA . The bottom section is the control section that generates pulses for the CTRL pin of the LED driver. The number of pulses and its timing determine the current and brightness of the LEDs.
The LCD display in the bottom section shows the status of the commanding LED current level in the format as "LEVEL=value" and LED current level as "ILED=value". The LEVEL value responses to the UP button SW1 and DOWN button SW2 immedi-
ately. The ILED value only changes to the commanding LEVEL value after the SEND/STORE button SW3 is pushed. Pushing SEND/STORE button also save the LEVEL value in the memory of the micro-controller U2 as the default LED current level.

The LT3593 datasheet gives complete description of the part, operation and application information. The datasheet must be read in conjunction with this quick start guide for working on or modifying the demo circuit 1224.

Design files for this circuit board are available. Call the LTC factory.
$\overline{\mathbf{1 7}}$, LTC and LT are registered trademarks of Linear Technology Corporation. ThinSOT and PowerPath are trademarks of Linear Technology Corporation.

PERFORMANCE SUMMARY

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {IN }}$	Input Supply Range		3		5	V
+5V	Input Supply for Control Section		4.5	5	5.5	V
LEED_MAX	Maximum Output LED Current		19	20	21	mA
V OUT MAX	Maximum Output Voltage				40	V
η	Efficiency	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$, 8 White LEDs $\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$, 8 White LEDs		$\begin{aligned} & 81 \\ & 79 \\ & \hline \end{aligned}$		\%
VOPEN	Over voltage Protection	LED Open	36	38	40	V
Fs	Switching Frequency		0.85	1	1.15	MHz

QUICK START PROCEDURE

Demonstration circuit 1224 is easy to set up to evaluate the performance of the LT3593. Refer to Figure 1 for proper measurement equipment setup and follow the procedure below:

1. Place jumpers in the following positions:

JP1 PIC

2. With power off, connect a 3 V to 5 V power supply to V_{IN} and GND.
3. With power off, connect 4.5 V to 5.5 V power supply to +5 V and GND.
4. Connect a string of up to 10 LEDs between LED+ and LED-. The Cathode of the last LED connects to the LED-
5. Turn on the power at the input.

NOTE. Make sure that the input voltage does not exceed 5 V .
6 . Turn on the power at +5 V .
7. Check for the proper voltages and currents.

NOTE. By default of the demo board, the current is 20 mA when power is applied the very first time.
8. Adjust the UP (SW1), DOWN (SW2), SEND/STORE (SW3) to the value of interest between 0 and 32, where ILED=32 gives 20mA, ILED=1 gives 625uA, and ILED=0 shuts down the part.

Figure 1. Proper Measurement Equipment Setup

 5/29/2008
Demo Bd.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Lighting Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
MIC2870YFT EV ADP8860DBCP-EVALZ LM3404MREVAL ADM8843EB-EVALZ TDGL014 ISL97682IRTZEVALZ LM3508TLEV EA6358NH MAX16826EVKIT MAX16839EVKIT+ TPS92315EVM-516 MAX1698EVKIT MAX6956EVKIT+ OM13321,598 DC986A DC909A DC824A STEVAL-LLL006V1 IS31LT3948-GRLS4-EB 104PW03F PIM526 PIM527 MAX6946EVKIT+ MAX20070EVKIT\# MAX21610EVKIT\# MAX20090BEVKIT\# MAX20092EVSYS\# PIM498 AP8800EV1 ZXLD1370/1EV4 MAX6964EVKIT MAX25240EVKIT\# MAX25500TEVKITC\# MAX77961BEVKIT06\# 1216.1013 TPS61176EVM-566 TPS61197EVM TPS92001EVM-628 $\underline{1270} \underline{1271.2004} \underline{1272.1030} \underline{1273.1010} \underline{1278.1010} \underline{1279.1002} \underline{1279.1001} \underline{1282.1000} \underline{1293.1900} \underline{1293.1800} \underline{1293.1700} \underline{1293.1500}$

