DEMO MANUAL DC1228A

## DESCRIPTIOn

Demonstration circuit 1228A is an isolated flyback converter featuring the LT®3573. This demo circuit is designed for a 5.0 V output from a 10 V to 30 V input. The maximum output current is 1 A when the input voltage is higher than 20V. No third winding or opto-isolator is required for regulation. The part senses the isolated output voltage directly from the primary-side flyback waveform.
The LT3573 operates with input supply voltages from 3V to 40 V , and can deliver an output power up to 7 W with no external power devices. The LT3573 utilizes boundary mode operation to provide a small magnetic solution
with improved load regulation. The LT3573 can be used in industrial, automotive and medical applications where an isolated output is required.
The LT3573 data sheet gives a complete description of the part, operation and application information. The data sheet must be read in conjunction with this quick start guide for demonstration circuit 1228A.
Design files for this circuit board are available at http://www.linear.com/demo/DC1228A
$\boldsymbol{\triangle T}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

## PERFORMADCESUMMARY Specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| PARAMETER | CONDITION | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input Voltage Range |  | 10 |  | 30 | V |
| Output Voltage V OUT $^{\text {det }}$ | $V_{\text {IN }}=10 \mathrm{~V}$ to 30 V | 4.75 | 5 | 5.25 | V |
| Maximum Output Current I OUT | $\begin{aligned} & V_{\text {IN }}=10 \mathrm{~V} \text { to } 20 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}=20 \mathrm{~V} \text { to } 30 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 0.7 \\ & 1.0 \end{aligned}$ |  |  | A |
| Switching Frequency | $\begin{aligned} & \mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0.7 \mathrm{~A} \\ & \mathrm{~V}_{\text {IN }}=24 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~A} \end{aligned}$ |  | $\begin{aligned} & 169 \\ & 238 \end{aligned}$ |  | kHz kHz |
| Voltage Ripple V ${ }_{\text {OUT }}$ | $\mathrm{V}_{\text {IN }}=24 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~A}$ |  | 100 |  | mV |
| Efficiency | $\mathrm{V}_{\text {IN }}=24 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~A}$ |  | 84 |  | \% |

## DEMO MANUAL DC1228A

## DUICK START PROCEDURE

Demonstration circuit 1228A is easy to set up to evaluate the performance of the LT3573. Refer to Figure 1 for proper measurement equipment setup and follow the procedure below:

NOTE: When measuring the input or output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. See Figure 2 for proper scope probe technique.

1. With power off, connect the input power supply to $\mathrm{V}_{\text {IN }}$ and GND.
2. Turn on the power at the input.

NOTE: Make sure that the input voltage does not exceed 30V.
3. Check for the proper output voltages.

NOTE: If there is no output, temporarily disconnect the load to make sure that the load current is not set too high.
4. Once the proper output voltage is established, adjust the load current within the operating range and observe the output voltage regulation, ripple voltage, efficiency and other parameters.

## PUICK START PROCEDURE



Figure 1. Proper Measurement Equipment Setup


Figure 2. Measuring Input or Output Ripple

## DEMO MANUAL DC1228A

## PARTS LIST

| ITEM | QTY | REFERENCE | PART DESCRIPTION | MANUFACTURER/PART NUMBER |
| :---: | :---: | :--- | :--- | :--- |

Required Circuit Components

| 1 | 1 | C2 | CAP., X7R, 4.7 7 F 50V, 1210 | MURATA, GRM32ER71H475K |
| :---: | :---: | :---: | :---: | :---: |
| 2 | 1 | C4 | CAP., X7R, 47 $\mu \mathrm{F} 10 \mathrm{~V}, 1210$ | MURATA, GRM32ER71A476K |
| 3 | 1 | C7 | CAP., X7R, $0.1 \mu \mathrm{~F} 16 \mathrm{~V}, 0402$ | TDK, C1005X7R1C104MT |
| 4 | 1 | C8 | CAP., NPO, 100pF 50V,0402 | AVX, 04025A101JAT2A |
| 5 | 2 | C12, C9 | CAP., X7R, 1 1 F 50V, 0805 | MURATA, GRM21BR71H105K |
| 6 | 1 | C10 | CAP., X7R, 0.22 $5 \mathrm{~F} 25 \mathrm{~V}, 0603$ | MURATE, GRM188R71E224K |
| 7 | 1 | C11 | CAP., X7R, 4700pF 25V, 0402 | AVX, 04023C472KAT2A |
| 8 | 1 | C13 | CAP., NPO, 10pF 50V, 0402 | AVX, 04025A100JAT2A |
| 9 | 1 | D1 | DIODE, SCHOTTKY BARRIER RECTIFIER 3.0A | DIODES INC., B340A-13-F |
| 10 | 1 | D2 | DIODE, SWITCHING, SOD323 | DIODES INC., 1N4148WS-7-F |
| 11 | 1 | D3 | DIODE, SCHOTTKY MINI, SOD323 | CENTRAL SEMI., CMDSH-3 |
| 12 | 1 | R3 | RES., CHIP 357k 1/16W 1\%, 0402 | VISHAY, CRCW0402357KFKED |
| 13 | 1 | R6 | RES., CHIP 93.1k 1/16W 1\%, 0402 | VISHAY, CRCW040293K1FKED |
| 14 | 1 | R7 | RES., CHIP 84.5k 1/16W 1\%, 0402 | VISHAY, CRCW040284K5FKED |
| 15 | 1 | R8 | RES., CHIP 2k 1/10W 1\%, 0805 | VISHAY, CRCW08052K00FKEA |
| 16 | 1 | R9 | RES., CHIP 20k 1/16W 1\%, 0402 | VISHAY, CRCW040220KOFKED |
| 17 | 1 | R10 | RES., CHIP 10k 1/16W 1\%, 0402 | VISHAY, CRCW040210KOFKED |
| 18 | 1 | R11 | RES., CHIP 6.04k 1/16W 1\%, 0402 | VISHAY, CRCW04026K04FKED |
| 19 | 1 | R15 | RES., CHIP 12.4k 1/16W 1\%, 0402 | VISHAY, CRCW040212K4FKED |
| 20 | 1 | T1 | XFMR, 750370047 | WÜRTH, 750370047 |
| 21 | 1 | U1 | IC., LT3573EMSE, MSE16 | LINEAR TECH., LT3573EMSE |

Additional Demo Board Circuit Components

| 1 | 1 | C1 | CAP., ELECTROLYTIC, 22 $\mu$ F 50V, C-SANYO-CE-BS-6.3X6.0 | SANY0, 50CE22BS |
| :--- | :--- | :--- | :--- | :--- |
| 2 | 0 | C5 | CAP., $22 \mu$ F 50V, C-SANYO-CE-BS-6.3X6.0 OPT | SANY0, 50CE22BS |
| 3 | 0 | C14 | CAP., 1206 OPT | OPT |
| 4 | 0 | C19 | CAP., X7R, $4.7 \mu F 50 \mathrm{~V}, 1210$ OPT | MURATA, GRM32ER71H475K |
| 5 | 0 | C20 | CAP., X7R, $0.01 \mu$ F 50V, 0603 OPT | AVX, 06035C103KAT |
| 6 | 0 | FB1 | BEAD, 1206 0PT | TAIYO YUDEN, FB MJ3216HS800 |
| 7 | 0 | L1 | IND, PWR, L-CDRH4D22/HP 0PT | SUMIDA, CDRH4D22HPNP-100MC |
| 8 | 0 | R2 | RES., 0603 OPT | OPT |
| 9 | 1 | R4 | RES., CHIP $499 \Omega$ 1/10W $1 \%, 0805$ | VISHAY, CRCW0805499RFKEA |

## Hardware: For Demo Board Only

| 1 | 5 | E1, E2, E3, E5, E6 | TP, TURRET, 0.094" | MILL-MAX, 2501-2-00-80-00-00-07-0 |
| :---: | :---: | :---: | :--- | :--- |

## SCHEMATIC DIAGRAM



## DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

> Mailing Address:

Linear Technology<br>1630 McCarthy Blvd.<br>Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

