Dual 1.3A, 1.2MHz Boost/Inverter in 3mmx3mm

DESCRIPTION

Demonstration circuit 1280A is a dual output converter featuring the LT3471EDD in Boost and Inverter configurations. Both converters are powered from the same 4.5 V to 10 V input source. The Boost converter puts out 12 V at 300 mA and the Inverter -12 V at 200 mA . The demo circuit demonstrates small size and low component count. The LT3471 operates with inputs as high as 16 V but in this demo board the input is limited by the magnitude of the Boost output. In a Boost converter the input needs to be less than the output. The DC1280A is designed so that the Inverting converter can easily be configured as a Boost. Instructions are included in the schematic.
Both circuits are designed to demonstrate the soft start feature, advantages of the 1.2 MHz switching frequency and the internal $42 \mathrm{~V} / 1.3 \mathrm{~A}$ switches.

Both outputs on this demo board can be modified for higher voltages. These circuits are intended for space-conscious applications such as digital cameras, cellular phones, palmtop computers PC cards, miniature disk drives, xDSL power supplies, flash memory products, local 5 V or 12 V supplies and LCD displays.

Design files for this circuit board are available. Call the LTC factory.

I, LTC, LTM, LT, Burst Mode, OPTI-LOOP, Over-The-Top and PolyPhase are registered trademarks of Linear Technology Corporation. Adaptive Power, C-Load, DirectSense, Easy Drive, FilterCAD, Hot Swap, LinearView, μ Module, Micropower SwitcherCAD, Multimode Dimming, No Latency $\Delta \Sigma$, No Latency Delta-Sigma, No $R_{\text {SEnse }}$, Operational Filter, PanelProtect, PowerPath, PowerSOT, SmartStart, SoftSpan, Stage Shedding, SwitcherCAD, ThinSOT, UltraFast and VLDO are trademarks of Linear Technology Corporation. Other product names may be trademarks of the companies that manufacture the products.

PERFORMANCE SUMMARY FOR BOOST CONVERTER Specifications are at $\mathrm{TA}=\mathbf{2 5}^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX
$V_{I N}$	Input Supply Range		4.5	UNITS	
$V_{\text {OUT }}$	Output Voltage Range	$\mathrm{V}_{I N}=4.5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=300 \mathrm{~mA}$	11.64	12	12.36
RIPPLE		$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=300 \mathrm{~mA}$	V		
EFFICIENCY		$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=300 \mathrm{~mA}$	40	mV	

PERFORMANCE SUMMARY FOR INVERTING REGULATOR Specifications are at
$\mathrm{TA}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX
$V_{\text {IN }}$	Input Supply Range		4.5	UNITS	
$V_{\text {OUT }}$	Output Voltage Range	$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=200 \mathrm{~mA}$	-11.64	-12	-12.36
RIPPLE		$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=200 \mathrm{~mA}$	V		
EFFICIENCY		$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=200 \mathrm{~mA}$	10	mV	

QUICK START PROCEDURE

Demonstration circuit 1280 is easy to set up to evaluate the performance of the LT3471EDD. Re-
fer to Figure 1 for proper measurement equipment setup and follow the procedure below:

NOTE. When measuring the input or output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the input or output voltage ripple by touching the probe tip directly across the Vin or Vout and GND terminals. See Figure 2 for proper scope probe technique.

1. Place jumpers in the following positions:

JP1 ON
JP2 ON
4. Check for the proper output voltages.

NOTE. If there is no output, temporarily disconnect the load to make sure that the load is not set too high.
5. Once the proper output voltages are established, adjust the loads within the operating range and observe the output voltage regulation, ripple voltages, efficiency and other parameters.
2. With power off, connect the input power supply (4.5V to 10 V) to Vin and GND.
3. Turn on the power at the input.

Figure 1. Proper Measurement Equipment Setup for DC1280A

Figure 2. Measuring Input or output Ripple

Figure 3. Boost Converter Efficiency at 4.5Vin

Figure 4. Inverting Regulator Efficiency at 4.5Vin

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

