EN55022B Compliant 36V, 5A Step-Down μ Module ${ }^{\bullet}$ Regulator

DESCRIPTION

Demonstration circuit DC1297B features the LTM ${ }^{\circledR} 4612 E V$, an EN55022 Class B certified synchronous step-down power module. The board accepts an input voltage from 5 V to 36 V and delivers a jumper programmable output voltage of $3.3 \mathrm{~V}, 5 \mathrm{~V}$ or 12 V . The rated load current is 5 A for $3.3 \mathrm{~V} / 5 \mathrm{~V}$, 3 A for 12 V V OUT. Current derating is necessary for certain $\mathrm{V}_{\text {IN }}$, $\mathrm{V}_{\text {OUT }}$, and thermal conditions. DC1297B supports programming of the output ramp-up and rampdown through the TRACK/SS pin. The output may be set
to coincidentally or ratiometrically track to another voltage rail. The LTM4612 data sheet must be read in conjunction with this demo manual for working on or modifying the demo circuit 1297B.

Design files for this circuit board are available at http://www.linear.com/demo

[^0]PGRFORMANCE SUMMARY $\left(T_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

PARAMETER	CONDITIONS	VALUE
Input Voltage Range		5 V to 36 V
Output Voltage $\mathrm{V}_{\text {OUT }}$	Jumper Selectable	$3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V} ; \pm 2 \%$
Maximum Continuous Output Current	Derating is Necessary for Certain $\mathrm{V}_{\text {IN }}, ~ V_{\text {OUT }}$, and Thermal Conditions	$5 \mathrm{~A}_{\text {DC }}$ for $3.3 \mathrm{~V}, 5 \mathrm{~V}$ $3 \mathrm{~A}_{\text {DC }}$ for 12 V
Default Operating Frequency		850 kHz for $\mathrm{V}_{\text {OUT }}=12 \mathrm{~V} ; 350 \mathrm{kHz}$ for $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V} ;$ 235 kHz for $\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}$
Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=5 \mathrm{~A}$	90.1%, See Figure 3 for Detail

BOARD PHOTO

DEMO MANUAL DC1297B

PUICK START PROCEDURE

Demonstration circuit DC1297B is an easy way to evaluate the performance of the LTM4612EV. Please refer to Figure 1 for proper measurement equipment setup and follow the procedure below:

1. Place jumpers in the following positions for a typical $5 \mathrm{~V}_{\text {OUT }}$ application:

MODE	MARG1	MARGO	VOUT SELECT	RUN
CCM	LO	LO	5 V	ON

2. With power off, connect the input power supply, load and meters as shown in Figure 1. Preset the load to OA and the input supply to be 12 V .
3. Turn on the power at the input. The output voltage should be $5 \mathrm{~V} \pm 2 \%$ (4.9V~5.1V).
4. Once the proper output voltage is established, adjustthe load within the operating range and observe the output voltage regulation, ripple voltage, efficiency and other parameters.
5. To measure input and output ripple, please refer to Figure 2 for proper setup.
6. For optional load transient test, apply adjustable pulse signal between IOSTEP_CLK and GND pins. The pulse amplitude sets the current step. The pulse signal should have very small duty cycle ($<5 \%$) to limit the thermal stress on the transient load circuit. The output transient current can be monitored at BNC connector $\mathrm{J} 3(10 \mathrm{mV} / \mathrm{A})$, the output voltage can be monitored at BNC connector J4.
7. Due to the 400 ns minimum off time limit of LTM4612, $\mathrm{V}_{\text {IN }}$ needs to be higher than 18.5 V for $12 \mathrm{~V} \mathrm{~V}_{\text {OUT }}$, and higherthan 5.85 V for $5 \mathrm{~V} \mathrm{~V}_{\text {OUT }}$. Otherwise, the switching frequency needs to be reduced by adding a resistor at R6. Please refer to the LTM4612 datasheet for details.

PUICK START PROCEDURE

Figure 1. Test Setup of DC1297B

Figure 2. Scope Probe Placements for Measuring Input or Output Ripple

DEMO MANUAL DC1297B

PUICK START PROCEDURE

Figure 3. Measured DC1297B Efficiency at $12 \mathrm{~V}_{\mathrm{IN}}, 24 \mathrm{~V}_{\mathrm{IN}}, 36 \mathrm{~V}_{\mathrm{IN}}$ (DCM mode enabled)

DEMO MANUAL DC1297B

PUICK START PROCEDURE

$\mathbf{V}_{\text {IN }}(\mathbf{V})$	$\mathbf{V}_{\text {OUT }}(\mathbf{V})$	$\mathbf{C}_{\text {OUT }}$ Ceramic	Mode
12	5	$2 \times 47 \mu \mathrm{~F} / 16 \mathrm{~V}+10 \mu \mathrm{~F} / 16 \mathrm{~V}$	CCM

Figure 4: Measured Load Transient Response (1.25A to 5A Load Step)

$\mathbf{V}_{\text {IN }}(\mathbf{V})$	$\mathbf{V}_{\text {OUT }}(\mathbf{V})$	$\mathbf{C}_{\text {OUT }}$ Ceramic	Mode
36	12	$2 \times 47 \mu \mathrm{~F} / 16 \mathrm{~V}+10 \mu \mathrm{~F} / 16 \mathrm{~V}$	CCM

Figure 5. Measured Load Transient Response (0.75A to 3A Load Step)

Figure 6. Measured Output Voltage Ripple (300MHz BW)

DEMO MANUAL DC1297B

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required Circuit Components				
1	1	CFF	Cap, NPO 47pF 50V 10\%	AVX 06035A470KAT1A
2	1	$\mathrm{C}_{\text {IN1 }}$	Cap, Alum 100 ${ }^{\text {F 5 50V 10\% }}$	SANYO 50CE100FS (now SUNCON 50CE100FS)
3	3	$\mathrm{C}_{\mathrm{IN} 2}, \mathrm{C}_{\text {IN3 }}, \mathrm{C8}$	Cap, X5R 10ヶF 50V 20\%	TAIYO YUDEN UMK325BJ106MM-T
4	2	C ${ }_{\text {OUT2 } 2}$, $\mathrm{C}_{\text {OUT1 }}$	Cap, X5R 47 $\mu \mathrm{F} 16 \mathrm{~V}$ 20\%	Taiyo Yuden EMK325BJ476MM
5	1	CouT4	Cap, X5R 10رF 16V 20\%	TDK C3225X5R1C106M
6	1	$\mathrm{C}_{S S}$	Cap, X7R 0.1险16V 20\%	AVX 0603YC104MAT2A
7	1	D1	Zener Diode, 5.1V	On Semi. MMBZ5231B
8	1	R15	Res, Chip 10k 0.06W 5\%	Vishay CRCW060310KOJNEA
9	2	R12, R2	Res, Chip 51k 0.06W 5\%	Vishay CRCW060351KOJNEA
10	1	R4	Res, Chip 392k 0.06W 1\%	Vishay CRCW0603392KFKEA
11	1	R16	Res, Chip 13.7k 0.06W 1\%	Vishay CRCW060313K7FKEA
12	1	U1	I.C., Volt. Reg.	Linear Technology Corp. LTM4612EV

Additional Demo Board Circuit Components

1	0	C $_{\text {OUT3, }}, \mathrm{C}_{\text {IN4 }}, \mathrm{C}_{\text {IN5 }}$ (Opt)	Cap, 1210 TBD	
2	1	C $_{\text {OUT5 }}$	Cap, 1 $\mu \mathrm{F}$	
3	0	C2, C3,C6, C7, CP (Opt)	Cap, 0603 TBD	
4	1	C1	Cap, X7R 1 1 F 16V 10\%	TDK C1608X7R1C105K
5	1	Q1	Mosfet, N-Channel 30V	Siliconix SUD50N03-10
6	1	R1	Res, Chip 10k 0.06W 5\%	Vishay CRCW060310K0JNEA
7	1	R3	Res, LRC 0.01 Ω 1W 5\%	IRC LR2512-01-R010-J
8	2	R9, R5	Res/Jumper, Chip 0 $1 / 16 \mathrm{~W} 1$ AMP	Vishay CRCW0603000Z
9	0	R6, R7, R8, R10, R11, R13 (Opt)	Res, 0603 TBD	
10	1	R14	Res, Chip 22.1k 0.06W 1\%	Vishay CRCW060322K1FKEA
11	1	R17	Res, Chip 5.23k 0.06W 1\%	Vishay CRCW06035K23FKEA

Hardware For Demo Board Only				
1	12	E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12	Turret, Testpoint	Mill Max 2501-2-00-80-00-00-07-0
2	4	JP1, JP2, JP3, JP4	Headers, 3 Pins 2mm Ctrs.	Samtec TMM-103-02-L-S
3	3	JP5, JP6, JP7	Jumper, 2 Pins 2mm Ctrs.	Samtec TMM-102-02-L-S
4	4	J1, J2, J5, J6	Connector, Banana Jack	Keystone 575-4
5	2	J3, J4	BNC Connector	Connex 112404
6	5	XJP1, XJP2, XJP3, XJP4, XJP6	Shunt, 2mm Ctrs.	Samtec 2SN-BK-G
7	4		STAND-OFF, NYLON, 0.50" Tall	KEYSTONE, 8833 (SNAP ON)

SCHEMATIC DIAGRAM

Information furnished by Linear Technology Corporation is believed to be accurate and reliable However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

DEMO MANUAL DC1297B

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).
No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.
This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

[^0]: $\boldsymbol{\mathcal { G }}$, LT, LTC, LTM, μ Module, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

