100W Isolated Forward Converter with Synchronous Rectification

DESCRIPTIOn

Demonstration circuit 1300A-C is a 100 W Isolated Forward Converter with Synchronous Rectification featuring the LTC3725 / LTC3726.
This circuit was designed to demonstrate the high levels of performance, efficiency, and small solution size attainable using this part in a Resonant-Reset Forward Converter power supply. It operates at 250 kHz and produces a regulated $15 \mathrm{~V}, 6.7 \mathrm{~A}$ output from an input voltage range of 9 to 36 V : suitable for automotive, industrial, and other applications. It has a quarter-brick footprint area. Synchronous rectification helps to attain efficiency exceeding 90%. Secondaryside control eliminates complex optocoupler feedback, providing fast transient response with minimum output capacitance. For other output requirements, see

DC1300A-A/B (5V@20A / 12V@8.4A) or DC1174AA/B/C (5V@10A /12V@4.2A / 15V@3.3A). For telecom input requirements, see DC1031A-A/B/C (2.5V/3.3V/5V@20A), or DC1032A-A (12V@12A), or DC888A-A/B/C (3.3V@50A / 5V@35A/12V@20A).

Design files for this circuit board are available. Call the LTC factory.
© , LTC, LTM, LT, Burst Mode, OPTI-LOOP, Over-The-Top and PolyPhase are registered trademarks of Linear Technology Corporation. Adaptive Power, C-Load, DirectSense, Easy Drive, FilterCAD, Hot Swap, LinearView, μ Module, Micropower SwitcherCAD, Multimode Dimming, No Latency $\Delta \Sigma$, No Latency Delta-Sigma, No $\mathrm{R}_{\text {sense }}$, Operational Filter, PanelProtect, PowerPath, PowerSOT, SmartStart, SoftSpan, Stage Shedding, SwitcherCAD, ThinSOT, UltraFast and VLDO are trademarks of Linear Technology Corporation. Other product names may be trademarks of the companies that manufacture the products.

PGRFORMA

SYMBOL	PARAMETER	CONDITIONS	MIN TYP MAX	UNITS
VIN	Input Supply Range		9* 36	V
V OUT	Output Voltage		15.0	V
IOUT	Output Current Range	200LFM	6.7	A
FSW	Switching (Clock) Frequency		250	kHz
V OUT P-P	Output Ripple	$\mathrm{V}_{\text {IN }}=18 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=6.7 \mathrm{~A}(20 \mathrm{MHz} \mathrm{BW})$	50	$\mathrm{mV} \mathrm{P}^{\text {P }}$
IREG	Output Regulation	Line and Load (9-36V, 0-6.7A)	± 0.04 *	\%
$\overline{P_{\text {OUT }} / \mathrm{P}_{\text {IN }}}$	Efficiency (see Figure 3)	$\mathrm{V}_{\text {IN }}=18 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=6.7 \mathrm{~A}$	89*	\%
	Isolation	Basic	1500	Vdc
	Approximate Size	Component Area \times Top Component Height	$2.3 \times 1.45 \times 0.47$	Inches
*Typical minimum startup is 9.3 V				

OPERATING PRINCIPLES

The LTC3725 Single-Switch Forward Controller is used on the primary and provides start-up, gate drive, and protection functions. Once start-up is accomplished, the LTC3726 Secondary-Side Synchronous Forward Controller takes over, and provides the LTC3725 with timing information and bias power through a small pulse transformer.

When input voltage is applied, the LTC3725 commences soft-start of the output voltage. When the secondary bias source reaches the undervoltage threshold, the LTC3726 comes alive and takes control by sending encoded PWM gate pulses to the LTC3725 through T2. These pulses also provide primary bias power efficiently over a wide input voltage range.

The transition from primary to secondary control occurs at a fraction of the nominal output voltage. From then on, operation and design is simplified to that of a
simple buck converter. Secondary control eliminates delays, tames large-signal overshoot, and reduces output capacitance needed to meet transient response requirements.
An optional LC filter stage on the input lowers rms input current. The filter must have output impedance that is less than the converter input impedance to assure stability. This may require a damping impedance. (See Linear Technology Application Note AN19 for a discussion of input filter stability.) A source with a 50m0hm or higher ESR at the filter resonant frequency is one way of providing damping for the filter elements provided on the DC1300A. For bench testing, adding an electrolytic capacitor such as a Sanyo 50ME470AX to the input terminals will provide suitable damping and ripple current capability. The values selected have a filter resonant frequency that is below the converter switching frequency, thus avoiding high circulating currents in the filter.

PUICK START PROCEDURE

Demonstration circuit 1300 is easy to set up to evaluate the performance of the LTC3725 / LTC3726. Refer to Figure 1 for proper measurement equipment setup and follow the procedure below:

NOTE. When measuring the output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the output voltage ripple by touching the probe tip and ground ring directly across the last output capacitor as shown in Figure 12.

1. Set an input power supply that is capable of 9 V to 36 V to 18 V . Then turn off the supply.
2. Direct an airflow of 2001 lm across the unit for sustained operation at full load.
3. With power off, connect the supply to the input terminals +Vin and -Vin.
a. Input voltages lower than 9V can keep the converter from turning on due to the undervoltage lockout feature of the LTC3725 / LTC3726.
b. If efficiency measurements are desired, an ammeter capable of measuring 7Adc or a resistor
shunt can be put in series with the input supply in order to measure the DC1300A's input current.
c. A voltmeter with a capability of measuring at least 36 V can be placed across the input terminals in order to get an accurate input voltage measurement.
4. Turn on the power at the input.

NOTE. Make sure that the input voltage never exceeds 36 V .
5. Check for the proper output voltage of 15 V . Turn off the power at the input.
6. Once the proper output voltages are established, connect a variable load capable of sinking 6.7A at 15 V to the output terminals +Vout and -Vout. Set the current for OA.
a. If efficiency measurements are desired, an ammeter or a resistor shunt that is capable of handling 6.7Adc can be put in series with the out-
put load in order to measure the DC1300A's output current.
b. A voltmeter with a capability of measuring at least 15 V can be placed across the output terminals in order to get an accurate output voltage measurement.

NOTE. If there is no output, temporarily disconnect the load to make sure that the load is not set too high.
8. Once the proper output voltage is again established, adjust the load within the operating range and observe the output voltage regulation, ripple voltage, efficiency and other desired parameters.
7. Turn on the power at the input.

Figure 1. Proper Measurement Equipment Setup

Figure 2. Proper Noise Measurement Setup

Figure 3. Efficiency

Figure 4. Output Ripple at 18Vin and 6.7Aout (50 mV , 5us / div, 25MHz)

Figure 5. Transient Response Waveform at 18Vin and 3.3-6.7Aout (5A, 100mV, 100us / div)

LTC 3725 / LTC 3726

Figure 6. Thermal Map, Frontside at 18 Vin and 3.3 Aout ($\mathrm{Ta}=\mathbf{2 5}$ degrees C)

Figure 7. Thermal Map, Backside at 18 Vin and 3.3 Aout ($\mathrm{Ta}=\mathbf{2 5}$ degrees C)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

