DESCRIPTION

Demonstration Circuit 1431A-A is a 600 MHz to 1.3 GHz high dynamic range downconverting mixer featuring the LTC ${ }^{\circledR} 5540$. The LTC5540 is part of a family of high dynamic range, passive downconverting mixers covering the 600 MHz to 4 GHz frequency range. The Demo Circuit 1431A-A and the LTC5540 are optimized for 600 MHz to 1.3 GHz RF applications. The LO frequency must fall within the 700 MHz to 1.2 GHz range for optimum performance.
The LTC5540 is designed for 3.3V operation, however the IF amplifier can be powered by 5 V for the highest P1dB. An integrated SPDT LO switch with fast switching accepts two active LO signals, while providing high isolation.

The LTC5540's high conversion gain and high dynamic range enable the use of lossy IF filters in high-selective receiver designs, while minimizing the total solution cost, board space and systemlevel variation.

High Dynamic Range Downconverting Mixer Family			
DEMO \#	IC PART \#	RF RANGE	LO RANGE
DC1431A-A	LTC5540	$600 \mathrm{MHz}-1.3 \mathrm{GHz}$	700MHz-1.2GHz
DC1431A-B	LTC5541	$1.3 \mathrm{GHz}-2.3 \mathrm{GHz}$	$1.4 \mathrm{GHz}-2.0 \mathrm{GHz}$
DC1431A-C	LTC5542	$1.6 \mathrm{GHz}-2.7 \mathrm{GHz}$	$1.7 \mathrm{GHz}-2.5 \mathrm{GHz}$
DC1431A-D	LTC5543	$2.3 \mathrm{GHz}-4.0 \mathrm{GHz}$	$2.4 \mathrm{GHz}-3.6 \mathrm{GHz}$

Design files for this circuit board are available. Call the LTC factory.
$\overline{\boldsymbol{\Sigma} \boldsymbol{\top}}, \mathrm{LT}, \mathrm{LTC}$, LTM, Linear Technology and the Linear Logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

TABLE 1. TYPICAL PERFORMANCE SUMMARY
$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCIF}}=3.3 \mathrm{~V}, \mathrm{SHDN}=\mathrm{Low}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{RF}}=-3 \mathrm{dBm}$ ($\Delta \mathrm{f}=2 \mathrm{MHz}$ for two-tone IIP3 tests), unless otherwise noted.

PARAMETER	CONDITIONS	VALUE	UNITS
$\mathrm{V}_{\text {CC }}$ Supply Voltage Range		3.1 to 3.5	V
VCCIF Supply Voltage Range		3.1 to 5.3	V
Total Supply Current (VCC $+\mathrm{V}_{\text {CCIF }}$)		193	mA
Total Supply Current During Shutdown	SHDN = High	≤ 500	$\mu \mathrm{A}$
SHDN Input Low Voltage (IC On)		<0.3	V
SHDN Input High Voltage (IC Off)		> 3	V
LOSEL Input Low Voltage (LO1 Selected)		<0.3	V
LOSEL Input High Voltage (LO2 Selected)		> 3	V
LO Input Frequency Range		700 to 1200	MHz
LO Input Return Loss	$\mathrm{Z}_{0}=50 \Omega, \mathrm{f}_{\mathrm{LO}}=700 \mathrm{MHz}$ to 1200 MHz	>12	dB
LO Input Power Range	$\mathrm{fLO}_{\text {L }}=700 \mathrm{MHz}$ to 1200 MHz	-4 to 6	dBm
RF Input Frequency Range	Low-Side LO High-Side LO	$\begin{aligned} & 800 \text { to } 1300 \\ & 600 \text { to } 1100 \end{aligned}$	MHz
RF Input Return Loss	$\mathrm{Z}_{0}=50 \Omega, \mathrm{f}_{\mathrm{RF}}=600 \mathrm{MHz}$ to 1300 MHz	>12	dB

LTC5540

TYPICAL PERFORMANCE SUMMARY, CONTINUED
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCIF}}=3.3 \mathrm{~V}, \mathrm{SHDN}=\mathrm{Low}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{RF}}=-3 \mathrm{dBm}(\Delta \mathrm{f}=2 \mathrm{MHz}$ for two-tone IIP3 tests), unless otherwise noted.

IF Output Frequency (Can be re-matched for other frequencies.)		190	MHz
IF Output Return Loss	$\mathrm{f}_{\mathrm{LO}}=700 \mathrm{MHz}$ to 1200 MHz	>12	dB
LO to RF Leakage	$\mathrm{f}_{\mathrm{LO}}=700 \mathrm{MHz}$ to 1200 MHz	<-30	dBm
LO to IF Leakage	LO 1 Selected, $700 \mathrm{MHz}<\mathrm{f}_{\mathrm{LO}}<1200 \mathrm{MHz}$		
LO2 Selected, $700 \mathrm{MHz}<\mathrm{f}_{\mathrm{LO}}<1200 \mathrm{MHz}$	<-37	dBm	
LO Switch Isolation	$\mathrm{f}_{\text {RF }}=600 \mathrm{MHz}$ to 1300 MHz	>50	dB
RF to LO Isolation	$\mathrm{f}_{\text {RF }}=600 \mathrm{MHz}$ to 1300 MHz	>47	>55
RF to IF Isolation	dB		

Low-Side LO Downmixer Application: RF $=800 \mathrm{MHz}$ to 1300 MHz , IF $=190 \mathrm{MHz}, \mathrm{f}$ LO $=\mathrm{f}_{\mathrm{RF}}-\mathrm{f}_{\mathrm{IF}}$

PARAMETER	CONDITIONS	VALUE	UNITS
Conversion Gain	$\begin{aligned} & \mathrm{RF}=900 \mathrm{MHz} \\ & \mathrm{RF}=1100 \mathrm{MHz} \\ & \mathrm{RF}=1300 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.8 \\ & 8.0 \end{aligned}$	dB
Input $3^{\text {rd }}$ Order Intercept	$\begin{aligned} & \text { RF }=900 \mathrm{MHz} \\ & R F=1100 \mathrm{MHz} \\ & R F=1300 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 24.4 \\ & 24.1 \\ & 23.6 \end{aligned}$	dBm
SSB Noise Figure	$\begin{aligned} & \mathrm{RF}=900 \mathrm{MHz} \\ & \mathrm{RF}=1100 \mathrm{MHz} \\ & \mathrm{RF}=1300 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 10.6 \\ & 10.5 \\ & 10.3 \\ & \hline \end{aligned}$	dB
SSB Noise Figure Under Blocking	$\begin{aligned} & \mathrm{f}_{\mathrm{RF}}=900 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=710 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{BLO}}=1000 \mathrm{MHz}, \mathrm{P}_{\text {BLOCK }}=5 \mathrm{dBm} \end{aligned}$	16.7	dB
2RF - 2LO Output Spurious Product $\left(f_{R F}=f_{L O}+f_{\mathrm{IF}} / 2\right)$	$\mathrm{f}_{\mathrm{RF}}=805 \mathrm{MHz}$ at $-10 \mathrm{dBm}, \mathrm{f}_{\mathrm{LO}}=710 \mathrm{MHz}$	-61.5	dBc
3RF - 3LO Output Spurious Product $\left(f_{R F}=f_{L O}+f_{\mathrm{IF}} / 3\right)$	$\mathrm{f}_{\mathrm{RF}}=773.33 \mathrm{MHz}$ at $-10 \mathrm{dBm}, \mathrm{f}_{\text {LO }}=710 \mathrm{MHz}$	-68	dBc
Input 1dB Compression	$\begin{aligned} & \mathrm{RF}=900 \mathrm{MHz}, \mathrm{~V}_{\mathrm{CCI}}=3.3 \mathrm{~V} \\ & \mathrm{RF}=900 \mathrm{MHz}, \mathrm{~V}_{\mathrm{CCIF}}=5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 11 \\ & 14 \end{aligned}$	dBm

High-Side LO Downmixer Application: RF $=600 \mathrm{MHz}$ to $1100 \mathrm{MHz}, \mathrm{IF}=190 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=\mathrm{f}_{\mathrm{RF}}+\mathrm{f}_{\mathrm{IF}}$

PARAMETER	CONDITIONS	VALUE	UNITS
Conversion Gain	$\mathrm{RF}=700 \mathrm{MHz}$	7.6	dB
	$\mathrm{RF}=900 \mathrm{MHz}$	7.9	
	$\mathrm{RF}=1100 \mathrm{MHz}$	7.9	
Input $3^{\text {rd }}$ Order Intercept	$\mathrm{RF}=700 \mathrm{MHz}$	26.5	dBm
	$\mathrm{RF}=900 \mathrm{MHz}$	25.9	
	$\mathrm{RF}=1100 \mathrm{MHz}$	23.8	
SSB Noise Figure	$\mathrm{RF}=700 \mathrm{MHz}$	10.0	dB
	$\mathrm{RF}=900 \mathrm{MHz}$	9.9	
	$\mathrm{RF}=1100 \mathrm{MHz}$	10.4	
SSB Noise Figure Under Blocking	$\mathrm{f}_{\mathrm{RF}}=900 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=1090 \mathrm{MHz}$		dB
	$\mathrm{f}_{\mathrm{BLOCK}}=800 \mathrm{MHz}, \mathrm{P}_{\mathrm{BLOCK}}=5 \mathrm{dBm}$	16.2	
2LO - 2RF Output Spurious Product $\left(f_{R F}=f_{L O}-f_{I F} / 2\right)$	$\mathrm{f}_{\mathrm{RF}}=995 \mathrm{MHz}$ at $-10 \mathrm{dBm}, \mathrm{f}_{\mathrm{LO}}=1090 \mathrm{MHz}$	-70	dBc
3LO - 3RF Output Spurious Product $\left(f_{\mathrm{RF}}=\mathrm{f}_{\mathrm{LO}}-\mathrm{f}_{\mathrm{IF}} / 3\right)$	$\mathrm{f}_{\mathrm{RF}}=1026.67 \mathrm{MHz}$ at $-10 \mathrm{dBm}, \mathrm{f}_{\text {LO }}=1090 \mathrm{MHz}$	-75	dBc
Input 1dB Compression	$\mathrm{RF}=900 \mathrm{MHz}, \mathrm{V}_{\text {CCIF }}=3.3 \mathrm{~V}$	11	dBm
	$\mathrm{RF}=900 \mathrm{MHz}, \mathrm{V}_{\text {CCIF }}=5 \mathrm{~V}$	14.5	

APPLICATIONS NOTE

For detailed applications information, please refer to the LTC5540 datasheet.
ABSOLUTE MAXIMUM RATINGS
NOTE. Stresses beyond Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Mixer Supply Voltage ($\mathrm{V}_{\mathrm{CC} 1}, \mathrm{~V}_{\mathrm{CC} 2}$). 3.8 V
LO Switch Supply Voltage ($\mathrm{V}_{\mathrm{C} 3}$) 3.8 V
IF Supply Voltage (IF+, IF-) 5.5 V
Shutdown Voltage (SHDN) -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
LO Select Voltage (LOSEL) -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
LO1, LO2 Input Power (0.2 GHz to 2 GHz) 9dBm
LO1, LO2 Input DC Voltage $\pm 0.5 \mathrm{~V}$
RF Input Power (0.2 GHz to 2 GHz) 15dBm
RF Input DC Voltage $\pm 0.1 \mathrm{~V}$
Operating Temperature Range $40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

SUPPLY VOLTAGE RAMPING

Fast ramping of the supply voltage can cause a current glitch in the internal ESD protection circuits. Depending on the supply inductance, this could result in a supply voltage transient that exceeds the maximum rating. A supply voltage ramp time of greater than 1 ms is recommended.
Do not clip powered test leads directly onto the demonstration circuit's VCC and VCC_IF turrets. Instead, make all necessary connections with power supplies turned off, then increase to operating voltage.

SHUTDOWN FEATURE

When the SHDN voltage is logic Low ($<0.3 \mathrm{~V}$), the chip is enabled. When the SHDN voltage is logic High ($>3 \mathrm{~V}$), the chip is disabled, and the current consumption is reduced to below $500 \mu \mathrm{~A}$. The SHDN must be pulled Low or High. If left floating, the On/Off state of the IC will be indeterminate. A logic table for the SHDN is shown in Table 2.

TABLE 2. SHDN LOGIC TABLE

SHDN	IC STATE
Low	On
High	Off

LO SWITCH

The LTC5540 features an integrated SPDT switch designed for high isolation and fast (<50ns) switching. The LO switch is controlled by the LOSEL logic control. The LOSEL must be pulled Low or High. If left floating, the LO selection will be indeterminate. A logic table for the LO switch is shown in Table 3.

TABLE 3. LO SWITCH LOGIC TABLE

LOSEL	ACTIVE LO INPUT
Low	LO1
High	LO2

RF INPUT

The RF input of Demonstration Circuit 1431A-A is matched to 50Ω from 600 MHz to 1.3 GHz with better than 12 dB return loss. For the RF input to be matched, the selected LO input must be driven. The RF input impedance is somewhat dependent on LO frequency and, to a lesser extend, LO input power.

LO INPUTS

The LTC5540's LO amplifiers are optimized for the 700 MHz to 1.2 GHz LO frequency range. LO frequencies above and below this frequency range may be used with degraded performance.

The LO1 and LO2 inputs are always 50 matched when V_{CC} is applied to the chip, even when the chip is shutdown. The DC resistance of the selected LO input is approximately 23Ω, and the unselected input is approximately 50Ω.

The nominal LO input level is OdBm. The LO input power range is between -4 dBm and 6 dBm . LO input power greater than 6dBm may cause conduction of the internal ESD diodes and should be avoided.

LTC5540

IF OUTPUT

Demonstration Circuit 1431A-A features a sin-gle-ended, 50Ω-matched IF output for 190 MHz . The impedance matching is realized with a bandpass topology using an IF transformer as shown in Figure 1.

Figure 1. IF Output with Bandpass Matching
Demonstration Circuit 1431A-A can be easily reconfigured for other IF frequencies by simply replacing inductors L 1 and L 2 . L1 and L2 values for several common IF frequencies are presented in Table 4, and return losses are plotted in Figure 2.

TABLE 4. L1, L2 vs. IF FREQUENCIES

IF FREQUENCY (MHz)	L1, L2 (nH)
140	270
190	150
240	100
380	33
450	22

Figure 2. IF Output Return Loss

For IF frequencies below 70 MHz , the values of L1 and L2 become unreasonably high, and the lowpass topology shown in Figure 3 is preferred. See the LTC5540 datasheet for details.

Figure 3. IF Output with Lowpass Matching

Demonstration Circuit 1431A-A's IF output can be converted to lowpass matching with minimal modifications. Follow the procedures below, and refer to Figure 4.
a. Remove existing L1, L2, and C10.
b. Cut the traces leading to the IF transformer close to the pads of L1 and L2.
c. Insert series inductors on the cut traces.
d. Install a 0Ω jumper between the pads of C 8 and C10.
e. Install R2 at location R2.
f. Install C13 next to, or on top of, R2.

Figure 4. Modifications for Lowpass Matching

MEASUREMENT EQUIPMENT AND SETUP

The LTC5540 is a high dynamic range downconverting mixer IC with very high input 3rd order intercept. Accuracy of its performance measurement is highly dependent on equipment setup and measurement technique. The recommended measurement setups are presented in Figure 5, Figure 6, and Figure 7. The following precautions should be observed:

1. Use high performance signal generators with low harmonic output and low phase noise, such as the Rohde \& Schwarz SME06. Filters at the signal generators' outputs may also be used to suppress higher-order harmonics.
2. A high quality RF power combiner that provide broadband 50Ω-termination on all ports and have good port-to-port isolation should be used, such as the MCLI PS2-17.
3. Use high performance amplifiers with high IP3 and high reverse isolation, such as the MiniCircuits ZHL-1042J, on the outputs of the RF signal generators to improve source isolation to prevent the sources from modulating each other and generating intermodulation products.
4. Use attenuator pads with good VSWR on the demonstration circuit's input and output ports to improve source and load match to reduce reflections, which may degrade measurement accuracy.
5. A high dynamic range spectrum analyzer, such as the Rohde \& Schwarz FSEM30 should be used for linearity measurement.
6. Use narrow resolution bandwidth (RBW) and engage video averaging on the spectrum analyzer to lower the displayed average noise level (DANL) in order to improve sensitivity and to increase dynamic range. However, the trade off is increased sweep time.
7. Spectrum analyzers can produce significant internal distortion products if they are overdriven. Generally, spectrum analyzers are designed to operate at their best with about -30 dBm at their input filter or preselector. Sufficient spectrum analyzer input attenuation should be used to avoid saturating the instrument, but too much attenuation reduces sensitivity and dynamic range.
8. Before taking measurements, the system performance should be evaluated to ensure that:
a. Clean input signals can be produced. The two-tone signals' OIP3 should be at least 15dB better than the DUT's IIP3.
b. The spectrum analyzer's internal distortion is minimized.
c. The spectrum analyzer has enough dynamic range and sensitivity. The measurement system's IIP3 should be at least 15dB better than the DUT's OIP3.
d. The system is accurately calibrated for power and frequency.

A SPECIAL NOTE ABOUT RF TERMINATION

The LTC5540 consists of a high linearity passive double-balanced mixer core and IF buffer amplifier. Due to the bi-directional nature of all passive mixers, $\mathrm{LO} \pm \mathrm{IF}$ mixing product is always present at the RF input, typically at a level of 12 dB below the RF input signal. If the LO $\mathrm{I} F$ "PseudoImage Spur" is not properly terminated, it may interfere with the source signals, and can degrade the measured linearity and noise figure significantly. To avoid interference from the LO IF "Pseudo-Image Spur", terminate the RF input port with an isolator, diplexer, or attenuator. In the recommended measurement setups presented in Figure 6 and Figure 7, the 6dB attenuator pad at the demonstration circuit's RF input serves this purpose.

QUICK START PROCEDURE

Demonstration circuit 1431A-A is easy to set up to evaluate the performance of the LTC5540. Refer to Figure 5, Figure 6, and Figure 7 for proper equipment connections and follow the procedure below:

NOTE. Care should be taken to never exceed absolute maximum input ratings. Make all connections with RF and DC power off.

RETURN LOSS MEASUREMENTS

1. Configure the Network Analyzer for return loss measurement, set appropriate frequency range, and set the test signal to -3 dBm .
2. Calibrate the Network Analyzer.
3. Connect all test equipment as shown in Figure 5 with the signal generator and the DC power supply turned off.
4. Increase VCC supply voltage to 3.3 V , and verify that the current consumption is approximately 193 mA with the LO signal applied. The supply voltage should be confirmed at the demo board VCC and GND terminals to account for lead ohmic losses.
5. With the LO signal applied, and the unused demo board ports terminated in 50Ω, measure return losses of the RF input and IF output ports.
6. Set the test signal to 0 dBm , and re-calibrate the Network Analyzer.
7. Terminate the RF input, the IF output, and the unused LO port in 50Ω. Measure return losses of the LO input ports.

RF PERFORMANCE MEASUREMENTS

1. Connect all test equipment as shown in Figure 6 with the signal generators and the DC power supply turned off.
2. Increase VCC supply voltage to 3.3 V , and verify that the current consumption is approximately 193 mA with the LO signal applied. The supply voltage should be confirmed at the
demo board VCC and GND terminals to account for lead ohmic losses.
3. Set the LO source (Signal Generator 1) to provide a 0dBm, CW signal to the selected demo board LO input port at appropriate LO frequency.
4. Set the RF sources (Signal Generators 2 and 3) to provide two -3 dBm CW signals, 2 MHz apart, to the demo board RF input port at the appropriate RF frequency.
5. Measure the resulting IF output on the Spectrum Analyzer:
a. The wanted two-tone IF output signals are at:

$$
\begin{aligned}
& f_{\mathrm{IF} 1}=\mathrm{f}_{\mathrm{RF} 1}-\mathrm{f}_{\mathrm{LO}}, \text { and } \\
& \mathrm{f}_{\mathrm{IF} 2}=\mathrm{f}_{\mathrm{RF} 2}-\mathrm{f}_{\mathrm{LO}} \text { for low-side } \mathrm{LO}, \\
& \text { and } \\
& \mathrm{f}_{\mathrm{IF1}}=\mathrm{f}_{\mathrm{LO}}-\mathrm{f}_{\mathrm{RF} 1}, \text { and } \\
& \mathrm{f}_{\mathrm{IF} 2}=\mathrm{f}_{\mathrm{LO}}-\mathrm{f}_{\mathrm{RF} 2} \text { for high-side } \mathrm{LO}
\end{aligned}
$$

b. The 3rd order intermodulation products which are closest to the wanted IF signals are used to calculate the Input 3rd Order Intercept:

$$
\begin{aligned}
& f_{I M 3,1}=f_{R F 1}-f_{L O}-\Delta_{I F}, \text { and } \\
& f_{I M 3,2}=f_{R F 2}-f_{L O}+\Delta_{I F} \text { for low-side LO, } \\
& \text { and } \\
& f_{I M 3,1}=f_{L O}-f_{R F 1}+\Delta_{I F} \text {, and } \\
& f_{I M 3,2}=f_{L O}-f_{R F 2}-\Delta_{I F} \text { for high-side LO } \\
& \text { Where } \Delta_{I F}=f_{R F 2}-f_{R F 1} .
\end{aligned}
$$

6. Calculate Input 3rd Order Intercept:

$$
\text { IIP3 }=\left(\Delta_{\mathrm{IM} 3}\right) / 2+\mathrm{P}_{\mathrm{RF}}
$$

Where $\Delta_{\text {IM }}=P_{\text {IF }}-P_{\text {IM }}$. $P_{\text {IF }}$ is the lowest IF output signal power at either $\mathrm{f}_{\mathrm{IF} 1}$ or $\mathrm{f}_{\mathrm{IF} 2}$. $\mathrm{P}_{\mathrm{IM} 3}$ is the highest 3rd order intermodulation product power at either $f_{I M 3,1}$ or $f_{I M 3,2}$. $P_{R F}$ is the pertone RF input power.
7. Turn off one of the RF signal generators, and measure Conversion Gain, RF to IF isolation, LO to IF leakage, and Input 1dB compression point.

NOISE FIGURE MEASUREMENT

1. Configure and calibrate the noise figure meter for mixer measurements.
2. Connect all test equipment as shown in Figure 7 with the signal generator and the DC power supply turned off.
3. Increase VCC supply voltage to 3.3 V , and verify that the current consumption is approximately 193 mA with the LO signal applied. The supply voltage should be confirmed at the demo board VCC and GND terminals to account for lead ohmic losses.
4. Measure the single-sideband noise figure.

Figure 5. Proper Equipment Setup for Return Loss Measurements

Figure 6. Proper Equipment Setup for RF Performance Measurements

Figure 7. Proper Equipment Setup for Noise Figure Measurement

Figure 8. Demonstration Circuit schematic

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Development Tools category:
Click to view products by Analog Devices manufacturer:

Other Similar products are found below :
MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT\# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT\# MAX2692EVKIT\# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 119197HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB

