DEMO MANUAL DC1511A

LTM8042, LTM8042-1 1A, 350mA μ Module LED Driver

DESCRIPTION

Demonstration circuits 1511A-A and 1511A-B feature the LTM ${ }^{\circledR 8042}$ and the LTM8042-1, which are respectively complete 1 A and $350 \mathrm{~mA} \mu$ Module LED drivers. The demonstration circuits are assembled as boost topologies, accepting an input voltage from 3 V to 30 V and supporting an output up to 32 V (see Table 1). The default switching frequency is 600 kHz for DC1511A-A and 950kHz for DC1511A-B, but can be adjusted by changing the value of RT.
DC1511A is easily configured to support other features, including PWM dimming, analog dimming, buck-boost mode and buck mode (step-down). DC1511A includes a

P-channel MOSFET that is necessary for PWM dimming. The RADJ pin/terminal voltage controls the output current. Voltage is either applied directly to the terminal or set by a divider that includes resistor RADJ and the LTM8042's internal 2 V reference and divider resistor. Open LED overvoltage protection is also included. Consult the LTM8042/ LTM8042-1 datasheet for further information on how to properly use or modify the circuit.

Design files for this circuit board are available at http://www.linear.com/demo
$\overline{\boldsymbol{\Sigma} \boldsymbol{\top}, \text { LT, LTC, LTM, } \mu \text { Module, Linear Technology and the Linear logo are registered trademarks of }}$ Linear Technology Corporation. All other trademarks are the property of their respective owners.

PERFORMMAПCE SUMM ARY Specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS/NOTES	VALUE
Input Voltage Range, $\mathrm{V}_{\text {IN }}$ (BSTIN)		3V to 30V (See Table 1)
led	DC1511A-A (LTM8042) DC1511A-B (LTM8042-1) Current Derating May Be Necessary Under Certain V_{IN}, $\mathrm{V}_{\text {OUt }}$, Frequency and Thermal Conditions	$\begin{aligned} & 1 \mathrm{~A} \\ & 350 \mathrm{~mA} \end{aligned}$
Switching Frequency	$\begin{aligned} & \hline \mathrm{RT}=30.1 \mathrm{k}(\mathrm{DC1511A}-\mathrm{A}) \\ & \mathrm{RT}=16.9 \mathrm{k}(\mathrm{DC} 1511 \mathrm{~A}-\mathrm{B}) \end{aligned}$	$\begin{aligned} & 600 \mathrm{kHz} \\ & 950 \mathrm{kHz} \end{aligned}$
Maximum Output Voltage (Open LED Voltage)		36V
Efficiency	$\begin{aligned} & V_{I N}=12 V, V_{\text {LED }}=16.7 V, I_{\text {LED }}=1 \mathrm{~A} \\ & V_{I N}=12 V, V_{\text {LED }}=24.8 V, I_{\text {LED }}=350 \mathrm{~mA} \end{aligned}$	91.5\% (See Figure 2) 89\% (See Figure 3)

BOARD PHOTO

DEMO MANUAL DC1511A

QUICK START PROCEDURE

Demonstration circuit 1511A is easy to set up to evaluate the performance of the LTM8042EV/LTM8042EV-1. Refer to Figure 1 for the proper measurement equipment setup and follow the procedure below for a boost (step-up) topology.

1. Connect a string of LEDs with forward voltage 32 V or less, but greater than the input voltage, to the LED+ (LED anode) and GND (LED cathode) terminals on the PCB, as shown in Figure 1.
2. With the power off, connect the input power supply to the BSTIN/BKLED ${ }^{-}$and GND terminals within the ranges specified in Table 1. Preset the DC input voltage within the recommended input voltage range for the appropriate forward voltage of the LED string.

Table 1. Input Range for Proper Operation (Refer to the LTM8042/LTM8042-1 Datasheet)

DC1511A-A LTM8042		DC1511A-B LTM8042-1	
$\begin{aligned} & \text { INPUT VOLTAGE } \\ & \text { (BSTIN/BKLED} \\ & \text { TO GND) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED STRING } \\ & \text { VOLTAGE } \\ & \text { (LED+ }{ }^{\text {TO GND }} \text {) } \end{aligned}$	\qquad	$\begin{aligned} & \text { LED STRING } \\ & \text { VOLTAGE } \\ & \text { (LED+ TO GND) } \end{aligned}$
5 V to 5.8V	6 V to 9V	3.2 V to 7V	8 V to 12V
6.4 V to 7.7V	8 V to 12V	4.1 V to 10 V	12 V to 16V
8.6 V to 11.3 V	12 V to 16V	4.8 V to 12.3 V	15 V to 21 V
11.3 V to 13.8 V	15 V to 21V	5.8 V to 15 V	18 V to 24 V
13.4 V to 16.5 V	18 V to 24 V	8.5V to 20.8V	24 V to 32V
20.5 V to 22.5V	24 V to 32V		

3. Connect the PWM terminal. If PWM is not used, connect PWM to a 5V source or to the input voltage. PWM must be pulled high or the LEDs will remain off.
4. Turn the input power supply on.
5. Observe the LED string running at the programmed LED current.
6. For PWM dimming, connect a PWM 100 Hz or higher frequency signal to the PWM terminal.
7. Observe the reduction of brightness in the LED string by varying the duty cycle of the PWM signal.

To use the DC1511A in a buck-boost mode topology, make the following modifications to the procedure.

1. At step 1, connect the cathode of the LED string to the BSTIN/BKLED- terminal. The LED forward voltage may be greater than the input voltage for buck-boost mode.
2. At step 2, refer to the datasheet buck-boost mode applications information table. Preset the DC input voltage within the recommended input voltage range for the appropriate forward voltage and current of the LED string.

To use the DC1511A in a buck mode (step-down) topology, make the following modifications to the procedure.

1. Remove the 0Ω jumper at location R8 and instead install the jumper at location R4. This shorts the V_{CC}, TGEN and RUN pins/terminals to BSTOUT/BKIN instead of BSTIN/BKLED.
2. At step 1, connect the cathode of the LED string to the BSTIN/BKLED ${ }^{-}$terminal. The LED forward voltage must be less than the input voltage for buck mode.
3. At step 2, connect the input power supply to BSTOUT/ BKIN and GND. Refer to the datasheet buck mode applications information table. Preset the DC input voltage within the recommended input voltage range for the appropriate forward voltage and current of the LED string.

PUICK START PROCEDURE

Figure 1. Proper Measurement Equipment Set-Up (Boost Topology)

Figure 2. DC1511A-A Efficiency vs $V_{\text {IN }}$ Boost Operation, 16.7V at 1A LED String

Figure 3. DC1511A-B Efficiency vs $V_{\text {IN }}$ Boost Operation, 24.8V at $\mathbf{3 5 0 m A}$ LED String

DEMO MANUAL DC1511A

PARTS LIST

LTM8042EV

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required Circuit Components				
1	1	C1	Cap., X5R, 4.7 ${ }^{\text {F/, 50V, 20\%, } 1206}$	Taiyo Yuden UMK316BJ475ML-T
2	1	C2	Cap., X5R, 10 ${ }^{\text {F, }} 50 \mathrm{~V}, 20 \%, 1210$	Taiyo Yuden UMK325BJ106MM-T
3	1	C4	Cap., X7R, 0.01HF, 25V, 10\%, 0603	AVX 06033C103KAT2A
4	1	RT	Res., Chip, 30.1k, 0.06W, 1\%, 0603	NIC NRC06F3012TRF
5	1	U1	I.C., LED Driver, LGA (77), $15 \mathrm{~mm} \times 9 \mathrm{~mm} \times 4.32 \mathrm{~mm}$	Linear Technology Corporation LTM8042EV

Additional Demo Board Circuit Components

1	1	C3	Cap., X5R, 1 $\mu \mathrm{F}, 50 \mathrm{~V}, 20 \%, 1206$	TDK C3216X5R1H105M
2	0	C5 (OPT)	Cap., 1206	
3	0	R $_{\text {ADJ, R2, R3, R5, R7 (OPT) }}$	Res., 0603	
4	1	R $_{\text {SYNC }}$	Res., Chip, 100k, 0.06W, 5\%, 0603	NIC NRC06J104TRF
5	2	R1, R6	Res./Jumper, Chip, 0 $2,1 / 16 \mathrm{~W}, 1$ A, 0603	Vishay CRCW06030000Z0EA
6	0	R4 (OPT)	Res., 1206	
7	1	R8	Res./Jumper, Chip, 0 $2,1 / 4 \mathrm{~W}, 1$ A, 1206	Vishay CRCW12060000ZOEA
8	1	M1	P-Channel MOSFET, 40V, SOT-23	Vishay Si2319DS-T1-E3 \#PBF

Hardware, for Demo Board Only

1	13	E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13	Turret, Testpoint 0.094"	Mill-Max 2501-2-00-80-00-00-07-0

LTM8042EV-1

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required Circuit Components				
1	1	C1	Cap., X5R, 2.2 $2 \mathrm{~F}, 50 \mathrm{~V}, 20 \%, 1206$	Taiyo Yuden UMK316BJ225MD-T
2	1	C2	Cap., X5R, 10رF, 50V, 20\%, 1210	Taiyo Yuden UMK325BJ106MM-T
3	1	C4	Cap., X7R, $0.01 \mu \mathrm{~F}, 25 \mathrm{~V}, 10 \%$, 0603	AVX 06033C103KAT2A
4	1	RT	Res., Chip, 16.9k, 0.06W, 1\%, 0603	Vishay CRCW060316K9FKEA
5	1	U1	I.C., LED Driver, LGA (77), $15 \mathrm{~mm} \times 9 \mathrm{~mm} \times 4.32 \mathrm{~mm}$	Linear Technology Corporation LTM8042EV-1

Additional Demo Board Circuit Components

1	1	C3	Cap., X5R, 14F, 50V, 20\%, 1206	TDK C3216X5R1H105M
2	0	C5 (0PT)	Cap., 1206	
3	0	R ${ }_{\text {ADJ }}, \mathrm{R} 2, \mathrm{R} 3, \mathrm{R} 5, \mathrm{R} 7$ (OPT)	Res., 0603	
4	1	$\mathrm{R}_{\text {SYNC }}$	Res., Chip, 100k, 0.06W, 5\%, 0603	NIC NRC06J104TRF
5	2	R1, R6	Res./Jumper, Chip, 0Ω, 1/16W, 1A, 0603	Vishay CRCW06030000Z0EA
6	0	R4 (OPT)	Res., 1206	
7	0	R8	Res./Jumper, Chip, 0, 1/4W, 1A, 1206	Vishay CRCW12060000ZOEA
8	1	M1	P-Channel MOSFET, 40V, SOT-23	Vishay Si2319DS-T1-E3 \#PBF

Hardware, for Demo Board Only

1	13	E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13	Turret, Testpoint, 0.094"	Mill-Max 2501-2-00-80-00-00-07-0

SCHEMATIC DIAGRAM

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

DEMO MANUAL DC1511A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).
No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.
This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Lighting Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
MIC2870YFT EV ADP8860DBCP-EVALZ LM3404MREVAL ADM8843EB-EVALZ TDGL014 ISL97682IRTZEVALZ LM3508TLEV EA6358NH MAX16826EVKIT MAX16839EVKIT+ TPS92315EVM-516 MAX1698EVKIT MAX6956EVKIT+ OM13321,598 DC986A DC909A DC824A STEVAL-LLL006V1 IS31LT3948-GRLS4-EB 104PW03F PIM526 PIM527 MAX6946EVKIT+ MAX20070EVKIT\# MAX21610EVKIT\# MAX20090BEVKIT\# MAX20092EVSYS\# PIM498 AP8800EV1 ZXLD1370/1EV4 MAX6964EVKIT MAX25240EVKIT\# MAX25500TEVKITC\# MAX77961BEVKIT06\# 1216.1013 TPS61176EVM-566 TPS61197EVM TPS92001EVM-628 $\underline{1270} \underline{1271.2004} \underline{1272.1030} \underline{1273.1010} \underline{1278.1010} \underline{1279.1002} \underline{1279.1001} \underline{1282.1000} \underline{1293.1900} \underline{1293.1800} \underline{1293.1700} \underline{1293.1500}$

